Articles | Volume 10, issue 6
https://doi.org/10.5194/cp-10-2053-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-10-2053-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Effect of the Ordovician paleogeography on the (in)stability of the climate
LSCE – Laboratoire des Sciences du Climat et de l'Environnement, UMR8212 – CNRS-CEA-UVSQ, CEA Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette Cedex, France
Y. Donnadieu
LSCE – Laboratoire des Sciences du Climat et de l'Environnement, UMR8212 – CNRS-CEA-UVSQ, CEA Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette Cedex, France
G. Le Hir
IPGP – Institut de Physique du Globe de Paris, Université Paris7-Denis Diderot, 1 rue Jussieu, 75005 Paris, France
J.-F. Buoncristiani
Laboratoire Biogéosciences, UMR/CNRS 6282, Université de Bourgogne, 6 Bd Gabriel, 21000 Dijon, France
E. Vennin
Laboratoire Biogéosciences, UMR/CNRS 6282, Université de Bourgogne, 6 Bd Gabriel, 21000 Dijon, France
Related authors
Justin Gérard, Loïc Sablon, Jarno J. C. Huygh, Anne-Christine Da Silva, Alexandre Pohl, Christian Vérard, and Michel Crucifix
EGUsphere, https://doi.org/10.5194/egusphere-2024-1983, https://doi.org/10.5194/egusphere-2024-1983, 2024
Short summary
Short summary
We used cGENIE, a climate model, to explore how changes in continental configuration, CO2 levels, and orbital configuration affect ocean oxygen levels during the Devonian period (419–359 million years ago). Key factors contributing to ocean anoxia were identified, highlighting the influence of continental configurations, atmospheric conditions, and orbital changes. Our findings offer new insights into the causes and prolonged durations of Devonian ocean anoxic events.
Pierre Maffre, Yves Goddéris, Guillaume Le Hir, Élise Nardin, Anta-Clarisse Sarr, and Yannick Donnadieu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-220, https://doi.org/10.5194/gmd-2024-220, 2024
Preprint under review for GMD
Short summary
Short summary
A new version (v7) of the numerical model GEOCLIM is presented here. GEOCLIM models the evolution of ocean and atmosphere chemical composition on multi-million years timescale, including carbon and oxygen cycles, CO2 and climate. GEOCLIM is associated to a climate model, and a new procedure to link the climate model to GEOCLIM is presented here. GEOCLIM is applied here to investigate the evolution of ocean oxygenation following Earth's orbital parameter variations, around 94 million years ago.
Justin Gérard, Loïc Sablon, Jarno J. C. Huygh, Anne-Christine Da Silva, Alexandre Pohl, Christian Vérard, and Michel Crucifix
EGUsphere, https://doi.org/10.5194/egusphere-2024-1983, https://doi.org/10.5194/egusphere-2024-1983, 2024
Short summary
Short summary
We used cGENIE, a climate model, to explore how changes in continental configuration, CO2 levels, and orbital configuration affect ocean oxygen levels during the Devonian period (419–359 million years ago). Key factors contributing to ocean anoxia were identified, highlighting the influence of continental configurations, atmospheric conditions, and orbital changes. Our findings offer new insights into the causes and prolonged durations of Devonian ocean anoxic events.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Marlisa Martinho de Brito, Irina Bundeleva, Frédéric Marin, Emmanuelle Vennin, Annick Wilmotte, Laurent Plasseraud, and Pieter T. Visscher
Biogeosciences, 20, 3165–3183, https://doi.org/10.5194/bg-20-3165-2023, https://doi.org/10.5194/bg-20-3165-2023, 2023
Short summary
Short summary
Cyanobacterial blooms are associated with whiting events – natural occurrences of fine-grained carbonate precipitation in the water column. The role of organic matter (OM) produced by cyanobacteria in these events has been overlooked in previous research. Our laboratory experiments showed that OM affects the size and quantity of CaCO3 minerals. We propose a model of OM-associated CaCO3 precipitation during picoplankton blooms, which may have been neglected in modern and ancient events.
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022, https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Short summary
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants describe its middle Eocene to early Oligocene increase in the Northern Hemisphere, but underlying mechanisms have not been studied in detail yet. Using climate simulations, we map global seasonality changes and show that major contemporary forcing – atmospheric CO2 lowering, Antarctic ice-sheet expansion and particularly related sea level drop – participated in this phenomenon and its spatial distribution.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Yurui Zhang, Thierry Huck, Camille Lique, Yannick Donnadieu, Jean-Baptiste Ladant, Marina Rabineau, and Daniel Aslanian
Clim. Past, 16, 1263–1283, https://doi.org/10.5194/cp-16-1263-2020, https://doi.org/10.5194/cp-16-1263-2020, 2020
Short summary
Short summary
The early Eocene (~ 55 Ma) was an extreme warm period accompanied by a high atmospheric CO2 level. We explore the relationships between ocean dynamics and this warm climate with the aid of the IPSL climate model. Our results show that the Eocene was characterized by a strong overturning circulation associated with deepwater formation in the Southern Ocean, which is analogous to the present-day North Atlantic. Consequently, poleward ocean heat transport was strongly enhanced.
Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Ethé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Szopa, and Delphine Tardif
Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, https://doi.org/10.5194/gmd-13-3011-2020, 2020
Short summary
Short summary
Our paper describes IPSL-CM5A2, an Earth system model that can be integrated for long (several thousands of years) climate simulations. We describe the technical aspects, assess the model computing performance and evaluate the strengths and weaknesses of the model, by comparing pre-industrial and historical runs to the previous-generation model simulations and to observations. We also present a Cretaceous simulation as a case study to show how the model simulates deep-time paleoclimates.
Marie Laugié, Yannick Donnadieu, Jean-Baptiste Ladant, J. A. Mattias Green, Laurent Bopp, and François Raisson
Clim. Past, 16, 953–971, https://doi.org/10.5194/cp-16-953-2020, https://doi.org/10.5194/cp-16-953-2020, 2020
Short summary
Short summary
To quantify the impact of major climate forcings on the Cretaceous climate, we use Earth system modelling to progressively reconstruct the Cretaceous state by changing boundary conditions one by one. Between the preindustrial and the Cretaceous simulations, the model simulates a global warming of more than 11°C. The study confirms the primary control exerted by atmospheric CO2 on atmospheric temperatures. Palaeogeographic changes represent the second major contributor to the warming.
Delphine Tardif, Frédéric Fluteau, Yannick Donnadieu, Guillaume Le Hir, Jean-Baptiste Ladant, Pierre Sepulchre, Alexis Licht, Fernando Poblete, and Guillaume Dupont-Nivet
Clim. Past, 16, 847–865, https://doi.org/10.5194/cp-16-847-2020, https://doi.org/10.5194/cp-16-847-2020, 2020
Short summary
Short summary
The Asian monsoons onset has been suggested to be as early as 40 Ma, in a palaeogeographic and climatic context very different from modern conditions. We test the likeliness of an early monsoon onset through climatic modelling. Our results reveal a very arid central Asia and several regions in India, Myanmar and eastern China experiencing highly seasonal precipitations. This suggests that monsoon circulation is not paramount in triggering the highly seasonal patterns recorded in the fossils.
Paul Perron, Michel Guiraud, Emmanuelle Vennin, Isabelle Moretti, Éric Portier, Laetitia Le Pourhiet, and Moussa Konaté
Solid Earth, 9, 1239–1275, https://doi.org/10.5194/se-9-1239-2018, https://doi.org/10.5194/se-9-1239-2018, 2018
Short summary
Short summary
In this paper we present an original multidisciplinary workflow involving various tools (e.g., seismic profiles, satellite images, well logs) and techniques (e.g., photogeology, seismic interpretation, well correlation, geophysics, geochronology, backstripping) as a basis for discussing the potential factors controlling the tectono-stratigraphic architecture within the Palaeozoic intracratonic basins of the Saharan Platform using the Reggane, Ahnet, Mouydir and Illizi basins as examples.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Anthony Bouton, Emmanuelle Vennin, Julien Boulle, Aurélie Pace, Raphaël Bourillot, Christophe Thomazo, Arnaud Brayard, Guy Désaubliaux, Tomasz Goslar, Yusuke Yokoyama, Christophe Dupraz, and Pieter T. Visscher
Biogeosciences, 13, 5511–5526, https://doi.org/10.5194/bg-13-5511-2016, https://doi.org/10.5194/bg-13-5511-2016, 2016
Short summary
Short summary
The modern hypersaline Great Salt Lake shows an extended modern and ancient microbial sedimentary system. This study on aerial images and field observations discusses the non-random distribution patterns of microbial deposits along linear alignments following isobaths, polygonal geometry or straight alignments along a topographic drop-off. This particular distribution of microbial deposits brings further insights to the reconstruction of paleoenvironments and paleoclimatic changes.
Svetlana Botsyun, Pierre Sepulchre, Camille Risi, and Yannick Donnadieu
Clim. Past, 12, 1401–1420, https://doi.org/10.5194/cp-12-1401-2016, https://doi.org/10.5194/cp-12-1401-2016, 2016
Short summary
Short summary
We use an isotope-equipped GCM and develop original theoretical expression for the precipitation composition to assess δ18O of paleo-precipitation changes with the Tibetan Plateau uplift. We show that δ18O of precipitation is very sensitive to climate changes related to the growth of mountains, notably changes in relative humidity and precipitation amount. Topography is shown to be not an exclusive controlling factor δ18O in precipitation that have crucial consequences for paleoelevation studies
G. Hoareau, B. Bomou, D. J. J. van Hinsbergen, N. Carry, D. Marquer, Y. Donnadieu, G. Le Hir, B. Vrielynck, and A.-V. Walter-Simonnet
Clim. Past, 11, 1751–1767, https://doi.org/10.5194/cp-11-1751-2015, https://doi.org/10.5194/cp-11-1751-2015, 2015
Short summary
Short summary
The impact of Neo-Tethys closure on early Cenozoic warming has been tested. First, the volume of subducted sediments and the amount of CO2 emitted along the northern Tethys margin has been calculated. Second, corresponding pCO2 have been tested using the GEOCLIM model. Despite high CO2 production, maximum pCO2 values (750ppm) do not reach values inferred from proxies. Other cited sources of excess CO2 such as the NAIP are also below fluxes required by GEOCLIM to fit with proxy data.
J.-B. Ladant, Y. Donnadieu, and C. Dumas
Clim. Past, 10, 1957–1966, https://doi.org/10.5194/cp-10-1957-2014, https://doi.org/10.5194/cp-10-1957-2014, 2014
G. Le Hir, Y. Teitler, F. Fluteau, Y. Donnadieu, and P. Philippot
Clim. Past, 10, 697–713, https://doi.org/10.5194/cp-10-697-2014, https://doi.org/10.5194/cp-10-697-2014, 2014
Related subject area
Subject: Ocean Dynamics | Archive: Modelling only | Timescale: Pre-Cenozoic
The effect of low ancient greenhouse climate temperature gradients on the ocean's overturning circulation
A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation
Willem P. Sijp and Matthew H. England
Clim. Past, 12, 543–552, https://doi.org/10.5194/cp-12-543-2016, https://doi.org/10.5194/cp-12-543-2016, 2016
Short summary
Short summary
The polar warmth of the greenhouse climates in the Earth's past represents a fundamentally different climate state to that of today, with a strongly reduced temperature difference between the Equator and the poles. It is commonly thought that this would lead to a more quiescent ocean, with much reduced ventilation of the abyss. Surprisingly, using a Cretaceous cimate model, we find that ocean overturning is not weaker under a reduced temperature gradient arising from amplified polar heat.
R. P. M. Topper, J. Trabucho Alexandre, E. Tuenter, and P. Th. Meijer
Clim. Past, 7, 277–297, https://doi.org/10.5194/cp-7-277-2011, https://doi.org/10.5194/cp-7-277-2011, 2011
Cited articles
Berner, R. A.: GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2, Geochim. Cosmochim. Ac., 70, 5653–5664, https://doi.org/10.1016/j.gca.2005.11.032, 2006.
Berner, R. A. and Kothavala, Z.: GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 301, 182–204, https://doi.org/10.2475/ajs.301.2.182, 2001.
Beuf, S., Biju-Duval, B., De Charpal, O., Rognon, P., Gariel, O., and Bennacef, A.: Les grès du Paléozoïque Inférieur au Sahara, Technip, Paris, 464 pp., 1971.
Blakey, R. C.: Carboniferous-Permian paleogeography of the assembly of Pangea, in: Fifteenth International Congress on Carboniferous and Permian Stratigraphy, edited by: Wong, T. E., Utrecht, the Netherlands, pages 443–465, Royal Netherlands Academy of Arts and Sciences, Amsterdam, 2007.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models using palaeoclimatic data, Nat. Clim. Change, 2, 417–424, https://doi.org/10.1038/NCLIMATE1456, 2012.
Brenchley, P. J., Marshall, J. D., Carden, G., Robertson, D., Long, D., Meidla, T., Hints, L., and Anderson, T. F.: Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period, Geology, 22, 295–298, https://doi.org/10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2, 1994.
Brenchley, P. J., Carden, G. A., Hints, L., Kaljo, D., Marshall, J. D., Martma, T., Meidla, T., and Nõlvak, J.: High-resolution stable isotope stratigraphy of Upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation, Geol. Soc. Am. Bull., 115, 89–104, https://doi.org/10.1130/0016-7606(2003)115<0089:HRSISO>2.0.CO;2, 2003.
Budyko, M. I.: The effect of solar radiation variations on the climate of the Earth, Tellus, 21, 611–619, https://doi.org/10.1111/j.2153-3490.1969.tb00466.x, 1969.
Cocks, L. R. M. and Torsvik, T. H.: Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic, Earth-Sci. Rev., 82, 29–74, https://doi.org/10.1016/j.earscirev.2007.02.001, 2007.
Crowley, T. J. and Baum, S. K.: Toward reconciliation of Late Ordovician (∼440 Ma) glaciation with very high CO2 levels, J. Geophys. Res.-Atmos., 96, 22597–22610, https://doi.org/10.1029/91JD02449, 1991.
Crowley, T. J. and Baum, S. K.: Modeling late Paleozoic glaciation, Geology, 2, 507–510, https://doi.org/10.1130/0091-7613(1992)020<0507:MLPG>2.3.CO;2, 1992.
Crowley, T. J. and Baum, S. K.: Reconciling Late Ordovician (440 Ma) glaciation with very high (14X) CO2 levels, J. Geophys. Res.-Atmos., 100, 1093–1101, https://doi.org/10.1029/94JD02521, 1995.
Crowley, T. J., Baum, S. K., and Kim, K. Y.: General circulation model sensitivity experiments with pole-centered supercontinents, J. Geophys. Res.-Atmos., 98, 8793–8800, https://doi.org/10.1029/93JD00122, 1993.
Denis, M., Buoncristiani, J.-F., Konate, M., Ghienne, J.-F., and Guiraud, M.: Hirnantian glacial and deglacial record in SW Djado Basin (NE Niger), Geodin. Acta, 20, 177–195, https://doi.org/10.3166/ga.20.177-195, 2007.
Dera, G. and Donnadieu, Y.: Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event, Paleoceanography, 27, PA2211, https://doi.org/10.1029/2012PA002283, 2012.
Díaz-Martínez, E. and Grahn, Y.: Early Silurian glaciation along the western margin of Gondwana (Peru, Bolivia and northern Argentina): Palaeogeographic and geodynamic setting, Palaeogeogr. Palaeocl., 245, 62–81, https://doi.org/10.1016/j.palaeo.2006.02.018, 2007.
Donnadieu, Y., Goddéris, Y., and Bouttes, N.: Exploring the climatic impact of the continental vegetation on the Mezosoic atmospheric CO2 and climate history, Clim. Past, 5, 85–96, https://doi.org/10.5194/cp-5-85-2009, 2009.
Endal, A. S. and Sofia, S.: Rotation in solar-type stars, I – Evolutionary models for the spin-down of the sun, Astrophys. J., 243, 625–640, https://doi.org/10.1086/158628, 1981.
Ferreira, D., Marshall, J., and Rose, B.: Climate determinism revisited: multiple equilibria in a complex climate model, J. Climate, 24, 992–1012, https://doi.org/10.1175/2010JCLI3580.1, 2011.
Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., Hughes, N. C., Tripati, A. K., and Fischer, W. W.: The magnitude and duration of Late Ordovician-Early Silurian glaciation, Science, 331, 903–906, https://doi.org/10.1126/science.1200803, 2011.
Garnier, E., Barnier, B., Siefridt, L., and Béranger, K.: Investigating the 15 years air-sea flux climatology from the ECMWF re-analysis project as a surface boundary condition for ocean models, Int. J. Climatol., 20, 1653–1673, https://doi.org/10.1002/1097-0088(20001130)20:14<1653::AID-JOC575>3.0.CO;2-G, 2000.
Ghienne, J.-F., Le Heron, D., Moreau, J., Denis, M., and Deynoux, M.: The Late Ordovician glacial sedimentary system of the North Gondwana platform, in: Glacial sedimentary processes and products, Special Publication, edited by: Hambrey, M., Christoffersen, P., Glasser, N., Janssen, P., Hubbard, B., and Siegert, M., 39, 295–319, International Association of Sedimentologists, Blackwells, Oxford, 2007.
Gibbs, M. T., Barron, E. J., and Kump, L. R.: An atmospheric pCO2 threshold for glaciation in the Late Ordovician, Geology, 25, 447–450, https://doi.org/10.1130/0091-7613(1997)025<0447:AAPCTF>2.3.CO;2, 1997.
Golonka, J. and Gaweda, A.: Plate tectonic evolution of the southern margin of Laurussia in the Paleozoic, in: Tectonics – Recent advances, edited by: Sharkov, E., 261–282, InTech, 2012.
Gough, D. O.: Solar interior structure and luminosity variations, Sol. Phys., 74, 21–34, https://doi.org/10.1007/BF00151270, 1981.
Herrmann, A. D., Patzkowsky, M. E., and Pollard, D.: Obliquity forcing with 8–12 times preindustrial levels of atmospheric pCO2 during the Late Ordovician glaciation, Geology, 31, 485–488, https://doi.org/10.1130/0091-7613(2003)031<0485:OFWTPL>2.0.CO;2, 2003.
Herrmann, A. D., Haupt, B. J., Patzkowsky, M. E., Seidov, D., and Slingerland, R. L.: Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciation, Palaeogeogr. Palaeocl., 210, 385–401, https://doi.org/10.1016/j.palaeo.2004.02.034, 2004a.
Herrmann, A. D., Patzkowsky, M. E., and Pollard, D.: The impact of paleogeography, pCO2, poleward ocean heat transport and sea level change on global cooling during the Late Ordovician, Palaeogeogr. Palaeocl., 206, 59–74, https://doi.org/10.1016/j.palaeo.2003.12.019, 2004b.
International Commission on Stratigraphy: International Chronostratigraphic Chart v2014/02, available at: www.stratigraphy.org, 2014.
IPCC: Climate Change 2013: The physical science basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1535 pp., 2013.
Jacob, R. L.: Low frequency variability in a simulated atmosphere ocean system, Ph.D. thesis, University of Wisconsin-Madison, 1997.
Kageyama, M., Merkel, U., Otto-Bliesner, B., Prange, M., Abe-Ouchi, A., Lohmann, G., Ohgaito, R., Roche, D. M., Singarayer, J., Swingedouw, D., and Zhang, X.: Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study, Clim. Past, 9, 935–953, https://doi.org/10.5194/cp-9-935-2013, 2013.
Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Williamson, D. L., and Rasch, P. J.: The national center for Atmospheric Research community climate model: CCM3, J. Climate, 11, 1131–1149, https://doi.org/10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2, 1998.
Kothavala, Z., Oglesby, R. J., and Saltzman, B.: Sensitivity of equilibrium surface temperature of CCM3 to systematic changes in atmospheric CO2, Geophys. Res. Lett., 26, 209–212, https://doi.org/10.1029/1998GL900275, 1999.
Kump, L. R., Arthur, M. A., Patzkowsky, M. E., Gibbs, M. T., Pinkus, D. S., and Sheehan, P. M.: A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician, Palaeogeogr. Palaeocl., 152, 173–187, https://doi.org/10.1016/S0031-0182(99)00046-2, 1999.
Lefebvre, V., Donnadieu, Y., Sepulchre, P., Swingedouw, D., and Zhang, Z.-S.: Deciphering the role of southern gateways and carbon dioxide on the onset of the Antarctic Circumpolar Current, Paleoceanography, 27, PA4201, https://doi.org/10.1029/2012PA002345, 2012.
Lenton, T. M., Crouch, M., Johnson, M., Pires, N., and Dolan, L.: First plants cooled the Ordovician, Nat. Geosci., 5, 86–89, https://doi.org/10.1038/ngeo1390, 2012.
Loi, A., Ghienne, J.-F., Dabard, M. P., Paris, F., Botquelen, A., Christ, N., Elaouad-Debbaj, Z., Gorini, A., Vidal, M., Videt, B., and Destombes, J.: The Late Ordovician glacio-eustatic record from a high-latitude storm-dominated shelf succession: the Bou Ingarf section (Anti-Atlas, Southern Morocco), Palaeogeogr. Palaeocl., 296, 332–358, https://doi.org/10.1016/j.palaeo.2010.01.018, 2010.
Lorenz, E. N.: Climatic determinism, Meteor. Mon., 8, 1–3, 1968.
Marti, O., Braconnot, P., Dufresne, J. L., Bellier, J., Benshila, R., Bony, S., Brockmann, P., Cadule, P., Caubel, A., Codron, F., Noblet, N., Denvil, S., Fairhead, L., Fichefet, T., Foujols, M. A., Friedlingstein, P., Goosse, H., Grandpeix, J. Y., Guilyardi, E., Hourdin, F., Idelkadi, A., Kageyama, M., Krinner, G., Lévy, C., Madec, G., Mignot, J., Musat, I., Swingedouw, D., and Talandier, C.: Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution, Clim. Dynam., 34, 1–26, https://doi.org/10.1007/s00382-009-0640-6, 2010.
Nardin, E., Goddéris, Y., Donnadieu, Y., Le Hir, G., Blakey, R. C., Pucéat, E., and Aretz, M.: Modeling the early Paleozoic long-term climatic trend, Geol. Soc. Am. Bull., 123, 1181–1192, https://doi.org/10.1130/B30364.1, 2011.
North, G. R., Cahalan, R. F., and Coakley, J. A.: Energy balance climate models, Rev. Geophys., 19, 91–121, 80R1502, https://doi.org/10.1029/RG019i001p00091, 1981.
Pancost, R. D., Freeman, K. H., Herrmann, A. D., Patzkowsky, M. E., Ainsaar, L., and Martma, T.: Reconstructing Late Ordovician carbon cycle variations, Geochim. Cosmochim. Ac., 105, 433–454, https://doi.org/10.1016/j.gca.2012.11.033, 2013.
Pollard, D.: A retrospective look at coupled ice sheet – climate modeling, Climate Change, 100, 173–194, https://doi.org/10.1007/s10584-010-9830-9, 2010.
Poulsen, C. J. and Jacob, R. L.: Factors that inhibit snowball Earth simulation, Paleoceanography, 19, PA4021, https://doi.org/10.1029/2004PA001056, 2004.
Poussart, P. F., Weaver, A. J., and Barnes, C. R.: Late Ordovician glaciation under high atmospheric CO2: a coupled model analysis, Paleoceanography, 14, 542–558, https://doi.org/10.1029/1999PA900021, 1999.
Rose, B. E. J. and Marshall, J.: Ocean heat transport, sea ice, and multiple climate states: insights from energy balance models, J. Atmos. Sci., 66, 2828–2843, https://doi.org/10.1175/2009JAS3039.1, 2009.
Rubinstein, C. V., Gerrienne, P., de la Puente, G. S., Astini, R. A., and Steemans, P.: Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana), New Phytol., 188, 365–369, https://doi.org/10.1111/j.1469-8137.2010.03433.x, 2010.
Saltzman, M. R. and Young, S. A.: Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia, Geology, 33, 109–112, https://doi.org/10.1130/G21219.1, 2005.
Scotese, C. R. and McKerrow, W. S.: Ordovician plate tectonic reconstructions, in: Advances in Ordovician geology, edited by: Barnes, C. R. and Williams, S. H., 90–9, 271–282, Geological Survey of Canada, 1991.
Sellers, W. D.: A global climatic model based on the energy balance of the earth-atmosphere system, J. Appl. Meteorol., 8, 392–400, https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2, 1969.
Semtner Jr, A. J.: A model for the thermodynamic growth of sea ice in numerical investigations of climate, J. Phys. Oceanogr., 6, 379–389, https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2, 1976.
Servais, T., Owen, A. W., Harper, D. A., Kröger, B., and Munnecke, A.: The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension, Palaeogeogr. Palaeocl., 294, 99–119, https://doi.org/10.1016/j.palaeo.2010.05.031, 2010.
Sheehan, P. M.: The late Ordovician mass extinction, Annu. Rev. Earth Pl. Sc., 29, 331–364, https://doi.org/10.1146/annurev.earth.29.1.331, 2001.
Spjeldnaes, N.: Ordovician climatic zones, Norsk Geol. Tidsskr., 41, 45–77, 1962.
Steemans, P., Le Herissé, A., Melvin, J., Miller, M. A., Paris, F., Verniers, J., and Wellman, C. H.: Origin and radiation of the earliest vascular land plants, Science, 324, 353–353, https://doi.org/10.1126/science.1169659, 2009.
Stommel, H.: Thermohaline convection with two stable regimes of flow, Tellus, 13, 224–230, https://doi.org/10.1111/j.2153-3490.1961.tb00079.x, 1961.
Sutcliffe, O. E., Dowdeswell, J. A., Whittington, R. J., Theron, J. N., and Craig, J.: Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth's orbit, Geology, 28, 967–970, https://doi.org/10.1130/0091-7613(2000)28<967:CTLOGA>2.0.CO;2, 2000.
Torsvik, T. H. and Cocks, L. R. M.: New global palaeogeographical reconstructions for the Early Palaeozoic and their generation, in: Early Palaeozoic biogeography and palaeogeography, edited by: Harper, D. A. T. and Servais, T., 38, 5–24, Geological Society of London, Memoirs, 2013.
Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C., and Nicoll, R. S.: Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry, Science, 321, 550–554, https://doi.org/10.1126/science.1155814, 2008.
Turner, B. R., Armstrong, H. A., Wilson, C. R., and Makhlouf, I. M.: High frequency eustatic sea-level changes during the Middle to early Late Ordovician of southern Jordan: Indirect evidence for a Darriwilian Ice Age in Gondwana, Sediment. Geol., 251, 34–48, https://doi.org/10.1016/j.sedgeo.2012.01.002, 2012.
Vandenbroucke, T. R., Armstrong, H. A., Williams, M., Paris, F., Zalasiewicz, J. A., Sabbe, K., Nõlvak, J., Challands, T. J., Verniers, J., and Servais, T.: Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse. P. Natl. Acad. Sci., 107, 14983–14986, https://doi.org/10.1073/pnas.1003220107, 2010.
Villas, E., Vennin, E., Álvaro, J. J., Hammann, W., Herrera, Z. A., and Piovano, E. L.: The late Ordovician carbonate sedimentation as a major triggering factor of the Hirnantian glaciation, B. Soc. Geol. Fr., 173, 569–578, https://doi.org/10.2113/173.6.569, 2002.
Yapp, C. J. and Poths, H.: Ancient atmospheric CO2 pressures inferred from natural goethites, Nature, 355, 342–344, https://doi.org/10.1038/355342a0, 1992.
Young, G. M., Minter, W., and Theron, J. N.: Geochemistry and palaeogeography of upper Ordovician glaciogenic sedimentary rocks in the Table Mountain Group, South Africa, Palaeogeogr. Palaeocl., 214, 323–345, https://doi.org/10.1016/j.palaeo.2004.07.029, 2004.
Young, S. A., Saltzman, M. R., Foland, K. A., Linder, J. S., and Kump, L. R.: A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): Links to volcanism and climate?, Geol., 37, 951–954, https://doi.org/10.1130/G30152A.1, 2009.
Zhang, Z.-S., Yan, Q., and Wang, H.-J.: Has the Drake passage played an essential role in the Cenozoic cooling?, Atmos. Ocean. Sci. Lett., 3, 288–292, 2010.