Articles | Volume 10, issue 5
https://doi.org/10.5194/cp-10-1707-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-10-1707-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the Unknown ∼1809 eruption?
A. Guevara-Murua
School of Earth Sciences, Wills Memorial Building, University of Bristol, Bristol BS8 1RJ, UK
Cabot Institute, Royal Fort House, University of Bristol, Bristol BS8 1UJ, UK
C. A. Williams
Cabot Institute, Royal Fort House, University of Bristol, Bristol BS8 1UJ, UK
Department of Hispanic, Portuguese and Latin American Studies, School of Modern Languages, University of Bristol, Bristol BS8 1TE, UK
E. J. Hendy
School of Earth Sciences, Wills Memorial Building, University of Bristol, Bristol BS8 1RJ, UK
Cabot Institute, Royal Fort House, University of Bristol, Bristol BS8 1UJ, UK
A. C. Rust
School of Earth Sciences, Wills Memorial Building, University of Bristol, Bristol BS8 1RJ, UK
Cabot Institute, Royal Fort House, University of Bristol, Bristol BS8 1UJ, UK
K. V. Cashman
School of Earth Sciences, Wills Memorial Building, University of Bristol, Bristol BS8 1RJ, UK
Cabot Institute, Royal Fort House, University of Bristol, Bristol BS8 1UJ, UK
Related authors
No articles found.
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023, https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary
Short summary
We investigate the Maritime Continent climate in the mid-Piacenzian warm period and find it is warmer and wetter and the sea surface salinity is lower compared with preindustrial period. Besides, the fresh and warm water transfer through the Maritime Continent was stronger. In order to avoid undue influence from closely related models in the multimodel results, we introduce a new metric, the multi-cluster mean, which could reveal spatial signals that are not captured by the multimodel mean.
Fred Cook, Rachel Lord, Gary Sitbon, Adam Stephens, Alison Rust, and Walther Schwarzacher
Atmos. Meas. Tech., 13, 2785–2795, https://doi.org/10.5194/amt-13-2785-2020, https://doi.org/10.5194/amt-13-2785-2020, 2020
Short summary
Short summary
We present a cheap, adaptable, and easily assembled thermal sensor for detecting microlitre droplets of water freezing. The sensor was developed to increase the level of automation in droplet array ice nucleation experiments, reducing the total amount of time required for each experiment. As a proof of concept, we compare the ice-nucleating efficiency of a crystalline and glassy sample of K-feldpsar. The glassy sample was found to be a less efficient ice nucleator at higher temperatures.
Alvaro Guevara-Murua, Caroline A. Williams, Erica J. Hendy, and Pablo Imbach
Clim. Past, 14, 175–191, https://doi.org/10.5194/cp-14-175-2018, https://doi.org/10.5194/cp-14-175-2018, 2018
Short summary
Short summary
This study reconstructs a new semi-quantitative rainfall index for the Pacific coast of Central America using documentary sources for the period 1640 to 1945. In addition, we explore the various mechanisms and processes that may explain inter-annual and inter-decadal rainfall variability over the Pacific coast of Central America.
A. Coco, J. Gottsmann, F. Whitaker, A. Rust, G. Currenti, A. Jasim, and S. Bunney
Solid Earth, 7, 557–577, https://doi.org/10.5194/se-7-557-2016, https://doi.org/10.5194/se-7-557-2016, 2016
Short summary
Short summary
We present a numerical model to evaluate ground deformation and gravity changes as a response of the hydrothermal system perturbation (unrest) in a volcanic area. Temporal evolution of the ground deformation indicates that the contribution of thermal effects to the total uplift is almost negligible with respect to the pore pressure contribution during the first years, of the unrest, but increases in time and becomes dominant after a long period of the simulation.
K. Strehlow, J. H. Gottsmann, and A. C. Rust
Solid Earth, 6, 1207–1229, https://doi.org/10.5194/se-6-1207-2015, https://doi.org/10.5194/se-6-1207-2015, 2015
Short summary
Short summary
When magma chambers inflate, they deform the surrounding Earth’s crust. This deformation affects the pore space available for the water in local aquifers, which in turn leads to pressure variations and water table changes. We can observe these changes in wells, and this study investigates if and how we can utilize them for volcano monitoring. Results show that the hydrological response to deformation helps unravelling subsurface magmatic processes, valuable information for eruption forecasting.
N. S. Jones, A. Ridgwell, and E. J. Hendy
Biogeosciences, 12, 1339–1356, https://doi.org/10.5194/bg-12-1339-2015, https://doi.org/10.5194/bg-12-1339-2015, 2015
Short summary
Short summary
Production of calcium carbonate by coral reefs is important in the global carbon cycle. Using a global framework we evaluate four models of reef calcification against observed values. The temperature-only model showed significant skill in reproducing coral calcification rates. The absence of any predictive power for whole reef systems highlights the importance of coral cover and the need for an ecosystem modelling approach accounting for population dynamics in terms of mortality and recruitment.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Historical Records | Timescale: Decadal-Seasonal
Weather and climate and their human impacts and responses during the Thirty Years' War in central Europe
A global inventory of quantitative documentary evidence related to climate since the 15th century
The 1600 CE Huaynaputina eruption as a possible trigger for persistent cooling in the North Atlantic region
Analysis of early Japanese meteorological data and historical weather documents to reconstruct the winter climate between the 1840s and the early 1850s
Climate indices in historical climate reconstructions: a global state of the art
Could phenological records from Chinese poems of the Tang and Song dynasties (618–1279 CE) be reliable evidence of past climate changes?
Central Europe, 1531–1540 CE: The driest summer decade of the past five centuries?
“Everything is scorched by the burning sun”: missionary perspectives and experiences of 19th- and early 20th-century droughts in semi-arid central Namibia
Patterns in data of extreme droughts/floods and harvest grades derived from historical documents in eastern China during 801–1910
The extreme drought of 1842 in Europe as described by both documentary data and instrumental measurements
The climate in south-east Moravia, Czech Republic, 1803–1830, based on daily weather records kept by the Reverend Šimon Hausner
The climate of Granada (southern Spain) during the first third of the 18th century (1706–1730) according to documentary sources
Extracting weather information from a plantation document
Variation of extreme drought and flood in North China revealed by document-based seasonal precipitation reconstruction for the past 300 years
300 years of hydrological records and societal responses to droughts and floods on the Pacific coast of Central America
Multi-proxy reconstructions of May–September precipitation field in China over the past 500 years
Climatic effects and impacts of the 1815 eruption of Mount Tambora in the Czech Lands
Endless cold: a seasonal reconstruction of temperature and precipitation in the Burgundian Low Countries during the 15th century based on documentary evidence
Documentary-derived chronologies of rainfall variability in Antigua, Lesser Antilles, 1770–1890
An underestimated record breaking event – why summer 1540 was likely warmer than 2003
Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the French Alps
Climate variability in Andalusia (southern Spain) during the period 1701–1850 based on documentary sources: evaluation and comparison with climate model simulations
Spring-summer temperatures reconstructed for northern Switzerland and southwestern Germany from winter rye harvest dates, 1454–1970
Rudolf Brázdil, Petr Dobrovolný, Christian Pfister, Katrin Kleemann, Kateřina Chromá, Péter Szabó, and Piotr Olinski
Clim. Past, 19, 1863–1890, https://doi.org/10.5194/cp-19-1863-2023, https://doi.org/10.5194/cp-19-1863-2023, 2023
Short summary
Short summary
The Thirty Years' War (from 1618 to 1648 CE), an armed military conflict in Europe, brought extensive devastation to Europe. The paper analyses annual and seasonal temperature, precipitation, and drought patterns, as well as severe weather extremes, based particularly on documentary data, during this event in central Europe to demonstrate their broad impacts on human society and human responses in coincidence with weather and climate during this period of hardship.
Angela-Maria Burgdorf
Clim. Past, 18, 1407–1428, https://doi.org/10.5194/cp-18-1407-2022, https://doi.org/10.5194/cp-18-1407-2022, 2022
Short summary
Short summary
This comprehensive inventory of quantitative documentary evidence related to climate extending back to 1400 CE promotes the first ever global perspective on documentary climate records. It lays the foundation for incorporating documentary evidence from archives of societies into global-scale climate reconstructions, complementing (early) instrumental measurements and natural climate proxies. Documentary records are particularly relevant in seasons and regions poorly covered by natural proxies.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Junpei Hirano, Takehiko Mikami, and Masumi Zaiki
Clim. Past, 18, 327–339, https://doi.org/10.5194/cp-18-327-2022, https://doi.org/10.5194/cp-18-327-2022, 2022
Short summary
Short summary
The East Asian winter monsoon causes orographic snowfall over the windward side of the Japanese islands (facing the Sea of Japan and the northwesterly winter monsoon flow) and negative temperature anomalies around Japan. In this study, we reconstruct the outbreak of the winter monsoon around Japan for the winter from the 1840s to the early 1850s by using daily weather information recorded in old Japanese diaries and early daily instrumental temperature data.
David J. Nash, George C. D. Adamson, Linden Ashcroft, Martin Bauch, Chantal Camenisch, Dagomar Degroot, Joelle Gergis, Adrian Jusopović, Thomas Labbé, Kuan-Hui Elaine Lin, Sharon D. Nicholson, Qing Pei, María del Rosario Prieto, Ursula Rack, Facundo Rojas, and Sam White
Clim. Past, 17, 1273–1314, https://doi.org/10.5194/cp-17-1273-2021, https://doi.org/10.5194/cp-17-1273-2021, 2021
Short summary
Short summary
Qualitative evidence contained within historical sources provides an important record of climate variability for periods prior to the onset of systematic meteorological data collection. Before such evidence can be used for climate reconstructions, it needs to be converted to a quantitative format. A common approach is the generation of ordinal-scale climate indices. This review, written by members of the PAGES CRIAS working group, provides a global synthesis of the use of the index approach.
Yachen Liu, Xiuqi Fang, Junhu Dai, Huanjiong Wang, and Zexing Tao
Clim. Past, 17, 929–950, https://doi.org/10.5194/cp-17-929-2021, https://doi.org/10.5194/cp-17-929-2021, 2021
Short summary
Short summary
There are controversies about whether poetry can be used as one of the evidence sources for past climate changes. We tried to discuss the reliability and validity of phenological records from poems of the Tang and Song dynasties (618–1279 CE) by analyzing their certainties and uncertainties. A standardized processing method for phenological records from poems is introduced. We hope that this study can provide a reference for the extraction and application of phenological records from poems.
Rudolf Brázdil, Petr Dobrovolný, Martin Bauch, Chantal Camenisch, Andrea Kiss, Oldřich Kotyza, Piotr Oliński, and Ladislava Řezníčková
Clim. Past, 16, 2125–2151, https://doi.org/10.5194/cp-16-2125-2020, https://doi.org/10.5194/cp-16-2125-2020, 2020
Short summary
Short summary
Previous studies related to historical droughts in the Czech Lands showed that the summers of 1531–1540 could represent the driest summer decade of the past 500 years. To confirm this hypothesis, documentary data from central Europe were collected and presented for individual summers and complemented by maps of precipitation and drought distribution to document corresponding weather patterns and their various impacts. The main droughts occurred in 1532, 1534–1536, 1538, and particularly in 1540.
Stefan Grab and Tizian Zumthurm
Clim. Past, 16, 679–697, https://doi.org/10.5194/cp-16-679-2020, https://doi.org/10.5194/cp-16-679-2020, 2020
Short summary
Short summary
Here we describe the unique nature of droughts over semi-arid central Namibia (southern Africa) between 1850 and 1920. We establish temporal shifts in the influence and impact that historical droughts had on society and the environment during this period. The paper demonstrates and argues that human experience and the associated reporting of drought events depend strongly on social, environmental, spatial, and societal developmental situations and perspectives.
Zhixin Hao, Maowei Wu, Jingyun Zheng, Jiewei Chen, Xuezhen Zhang, and Shiwei Luo
Clim. Past, 16, 101–116, https://doi.org/10.5194/cp-16-101-2020, https://doi.org/10.5194/cp-16-101-2020, 2020
Short summary
Short summary
Using reconstructed extreme drought/flood chronologies and grain harvest series derived from historical documents, it is found that the frequency of reporting of extreme droughts in any subregion of eastern China was significantly associated with lower reconstructed harvests during 801–1910. The association was weak during the warm epoch of 920–1300 but strong during the cold epoch of 1310–1880, which indicates that a warm climate might weaken the impact of extreme drought on poor harvests.
Rudolf Brázdil, Gaston R. Demarée, Andrea Kiss, Petr Dobrovolný, Kateřina Chromá, Miroslav Trnka, Lukáš Dolák, Ladislava Řezníčková, Pavel Zahradníček, Danuta Limanowka, and Sylvie Jourdain
Clim. Past, 15, 1861–1884, https://doi.org/10.5194/cp-15-1861-2019, https://doi.org/10.5194/cp-15-1861-2019, 2019
Short summary
Short summary
The paper presents analysis of the 1842 drought in Europe (except the Mediterranean) based on documentary data and instrumental records. First the meteorological background of this drought is shown (seasonal distribution of precipitation, annual variation of temperature, precipitation and drought indices, synoptic reasons) and effects of drought on water management, agriculture, and in society are described in detail with particular attention to human responses.
Rudolf Brázdil, Hubert Valášek, Kateřina Chromá, Lukáš Dolák, Ladislava Řezníčková, Monika Bělínová, Adam Valík, and Pavel Zahradníček
Clim. Past, 15, 1205–1222, https://doi.org/10.5194/cp-15-1205-2019, https://doi.org/10.5194/cp-15-1205-2019, 2019
Short summary
Short summary
The paper analyses a weather diary of the Reverend Šimon Hausner from Buchlovice in south-east Moravia, Czech Republic, in the 1803–1831 period. From daily weather records, series of numbers of precipitation days, cloudiness, strong winds, fogs, and thunderstorms were created. These records were further used to interpret weighted temperature and precipitation indices. Records of Šimon Hausner represent an important contribution to the study of climate fluctuations on the central European scale.
Fernando S. Rodrigo
Clim. Past, 15, 647–659, https://doi.org/10.5194/cp-15-647-2019, https://doi.org/10.5194/cp-15-647-2019, 2019
Short summary
Short summary
The climate of Granada (southern Spain) during the first third of the 18th century is reconstructed. Results suggest that climatic conditions were similar to those of the first decades of the 20th century, when the global warming signal was of less importance than today. In addition, the paper presents the instrumental data taken in Granada in 1729, probably the first instrumental meteorological data recorded in Spain. Some extreme events, such as the cold wave of winter 1729, are studied.
Gregory Burris, Jane Washburn, Omar Lasheen, Sophia Dorribo, James B. Elsner, and Ronald E. Doel
Clim. Past, 15, 477–492, https://doi.org/10.5194/cp-15-477-2019, https://doi.org/10.5194/cp-15-477-2019, 2019
Short summary
Short summary
Historical documents are full of untapped data on past climate conditions. Our paper sets out a method for extracting this information into a database that is easily utilized by climate scientists. We apply this method to a document from Shirley Plantation covering the years 1816–1842. We then provide two case studies to demonstrate the validity and utility of the new method and database.
Jingyun Zheng, Yingzhuo Yu, Xuezhen Zhang, and Zhixin Hao
Clim. Past, 14, 1135–1145, https://doi.org/10.5194/cp-14-1135-2018, https://doi.org/10.5194/cp-14-1135-2018, 2018
Short summary
Short summary
We investigated the decadal variations of extreme droughts and floods in North China using a 17-site seasonal precipitation reconstruction from a unique historical archive. Then, the link of extreme droughts and floods with ENSO episodes and large volcanic eruptions was discussed. This study helps us understand whether the recent extreme events observed by instruments exceed the natural variability at a regional scale, which may be useful for adaptation to extremes and disasters in the future.
Alvaro Guevara-Murua, Caroline A. Williams, Erica J. Hendy, and Pablo Imbach
Clim. Past, 14, 175–191, https://doi.org/10.5194/cp-14-175-2018, https://doi.org/10.5194/cp-14-175-2018, 2018
Short summary
Short summary
This study reconstructs a new semi-quantitative rainfall index for the Pacific coast of Central America using documentary sources for the period 1640 to 1945. In addition, we explore the various mechanisms and processes that may explain inter-annual and inter-decadal rainfall variability over the Pacific coast of Central America.
Feng Shi, Sen Zhao, Zhengtang Guo, Hugues Goosse, and Qiuzhen Yin
Clim. Past, 13, 1919–1938, https://doi.org/10.5194/cp-13-1919-2017, https://doi.org/10.5194/cp-13-1919-2017, 2017
Short summary
Short summary
We reconstructed the multi-proxy precipitation field for China over the past 500 years, which includes three leading modes (a monopole, a dipole, and a triple) of precipitation variability. The dipole mode may be controlled by the El Niño–Southern Oscillation variability. Such reconstruction is an essential source of information to document the climate variability over decadal to centennial timescales and can be used to assess the ability of climate models to simulate past climate change.
Rudolf Brázdil, Ladislava Řezníčková, Hubert Valášek, Lukáš Dolák, and Oldřich Kotyza
Clim. Past, 12, 1361–1374, https://doi.org/10.5194/cp-12-1361-2016, https://doi.org/10.5194/cp-12-1361-2016, 2016
Short summary
Short summary
The paper deals with climatic and human impacts of the strong Tambora (Indonesia) volcanic eruption in April 1815 over the Czech Lands territory based on analysis of documentary data and instrumental records. While climatic effects were related particularly to summers 1815 and 1816 (1816 is known as "a Year Without Summer"), quite important were societal impacts represented after bad harvest by steep increase in prices and shortages of food.
C. Camenisch
Clim. Past, 11, 1049–1066, https://doi.org/10.5194/cp-11-1049-2015, https://doi.org/10.5194/cp-11-1049-2015, 2015
Short summary
Short summary
This paper applies the methods of historical climatology to present a climate reconstruction for the area of the Burgundian Low Countries during the 15th century. The results are based on documentary evidence. Approximately 3000 written records derived from about 100 different sources were examined and converted into seasonal seven-degree indices of temperature and precipitation.
A. J. Berland, S. E. Metcalfe, and G. H. Endfield
Clim. Past, 9, 1331–1343, https://doi.org/10.5194/cp-9-1331-2013, https://doi.org/10.5194/cp-9-1331-2013, 2013
O. Wetter and C. Pfister
Clim. Past, 9, 41–56, https://doi.org/10.5194/cp-9-41-2013, https://doi.org/10.5194/cp-9-41-2013, 2013
H. Castebrunet, N. Eckert, and G. Giraud
Clim. Past, 8, 855–875, https://doi.org/10.5194/cp-8-855-2012, https://doi.org/10.5194/cp-8-855-2012, 2012
F. S. Rodrigo, J. J. Gómez-Navarro, and J. P. Montávez Gómez
Clim. Past, 8, 117–133, https://doi.org/10.5194/cp-8-117-2012, https://doi.org/10.5194/cp-8-117-2012, 2012
O. Wetter and C. Pfister
Clim. Past, 7, 1307–1326, https://doi.org/10.5194/cp-7-1307-2011, https://doi.org/10.5194/cp-7-1307-2011, 2011
Cited articles
Appel, J. W.: Francisco José de Caldas: a scientist at work in Nueva Granada, T. Am. Philos. Soc., 84, 1–154, 1994.
Archibald, E. D.: The sky-haze and some of its effect, Section I in Part IV, Russell, F. A. R. and Archibald, E. D.: On the unusual optical phenomena of the atmosphere, 1883-6, including twilight effects, coronal appearances, sky haze, coloured suns, moons, edited by: Symons, G. J., The eruption of Krakatoa: and subsequent phenomena, Report of the Krakatoa committee of the Royal Society, Trübner & Company, London, 199–218, 1888.
Arfeuille, F., Weisenstein, D., Mack, H., Rozanov, E., Peter, T., and Brönnimann, S.: Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600-present, Clim. Past, 10, 359–375, https://doi.org/10.5194/cp-10-359-2014, 2014.
Bluth, G. J., Doiron, S. D., Schnetzler, C. C., Krueger, A. J., and Walter, L. S.: Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions, Geophys. Res. Lett., 19, 151–154, 1992.
Briffa, K. R., Jones, P. D., Schweingruber, F. H., and Osborn, T. J.: Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years, Nature, 393, 450–455, 1998.
Caldas, F. J.: Obras de Caldas, Ed. E. Posada, Bogotá, Imprenta Nacional, 1912.
Camuffo, D. and Enzi, S.: Chronology of "dry fogs" in Italy, 1374–1891, Theor. Appl. Climatol., 50, 31–33, 1994.
Chenoweth, M.: Two major volcanic cooling episodes derived from global marine air temperature, AD 1807–1827, Geophys. Res. Lett., 28, 2963–2966, 2001.
Cole-Dai, J., Mosley-Thompson, E., and Thompson, L. G.: Annually resolved southern hemisphere volcanic history from two Antarctic ice cores, J. Geophys. Res., 102, 16761–16771, https://doi.org/10.1029/97JD01394, 1997.
Cole-Dai, J., D. Ferris, A. Lanciki, J. Savarino, M. Baroni, and Thiemens M. H.: Cold decade (AD 1810–1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption, Geophys. Res. Lett., 36, L22703, https://doi.org/10.1029/2009GL040882, 2009
Crowley, T. J., Zielinski, J. G., Vinter, B., Udisti, R., Kreutz, K., Cole-Dai, J., and Castellano, E.: Volcanism and the Little Ice Age, PAGES Newslett., 16, 22–23, 2008.
Crowley, T. J. and Unterman, M. B.: Technical details concerning development of a 1200 yr proxy index for global volcanism, Earth Syst. Sci. Data, 5, 187–197, https://doi.org/10.5194/essd-5-187-2013, 2013.
Cushman, G. T.: Humboldtian Science, Creole meteorology, and the discovery of human-caused climate change in South America, Osiris, 26, 16–44, 2011.
Dai, J., Mosley-Thompson, E., and Thompson, L. G.: Ice core evidence for an explosive tropical volcanic eruption 6 years preceding Tambora, J. Geophys. Res.-Atmos., 96, 17361–17366, 1991.
D'Arrigo, R., Wilson, R., and Tudhope, A.: The impact of volcanic forcing on tropical temperatures during the past four centuries, Nat. Geosci., 2, 51–56, 2009.
Deirmendjian, D.: On Volcanic and Other Particulate Turbidlty Anomalies, Adv. Geophys., 16, 267–296, 1973.
Eddy, J. A.: The Maunder Minimum, Science, 192, 1189–1202, 1976.
Feldman, L. H.: Mountains of Fire, Lands that Shake, Calver City, CA, Labyrinthos, 1993.
Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models, J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239, 2008.
Glick, T. F.: Science and Independence in Latin América (with special reference to New Granada), The Hispanic Am. Hist. Rev., 71, 307–334, 1991.
Graf, H.-F.: Arctic radiation deficit and climate variability, Clim. Dyn., 7, 19–28, 1992.
Grattan, J. P. and Brayshay, M. B.: An amazing and portentous summer: Environmental and social responses in Britain to the 1783 eruption of an Iceland Volcano, Geogr. J., 161, 125–134, 1995.
Grattan, J. P and Pyatt, F. B: Volcanic eruptions dry fogs and the European palaeoenvironmental record: localised phenomena or hemispheric impacts?, Global Planet. Change, 21, 173–179, 1999.
Hamill, P., Jensen, E. J., Russell, P. B, and Bauman, J. J.: The life cycle of stratospheric aerosol particles, Bull. Am. Meteorol. Soc., 78, 1395–1410, 1997.
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys., 33, 403–439, 1995.
Humboldt, A. V., Kutzinski, V. M., and Ette, O. (Eds.): Political Essay on the Island of Cuba: A Critical Edition, Chicago University Press, Chicago and London, 496 pp., 2011.
IDEAM and Fondo de Prevención y Atención de Emergencias: Estudio de la caracterización climática de Bogotá y Cuenca alta del río Tunjuelo, 118pp. Milenio, Bogotá, 2007.
Jones, P. D., Briffa, K. R., and Schweingruber, F. H.: Tree-ring evidence of the widespread effects of explosive volcanic eruptions, Geophys. Res. Lett., 22, 1333–1336, 1995.
Kurbatov, A. V., Zielinski, G. A., Dunbar, N. W., Mayewski, P. A., Meyerson, E. A., Sneed, S. B., and Taylor, K. C.: A 12 000 year record of explosive volcanism in the Siple Dome Ice Core, West Antarctica, J. Geophys. Res., 111, D12307, https://doi.org/10.1029/2005JD006072, 2006.
Lamb, H. H.: Volcanic dust in the atmosphere; with a chronology and assessment of its meteorological significance, Phil. Trans. R. Soc. Lond. A, 266, 425–533, 1970.
Legrand, M. R. and Delmas, R. J.: A 220-year continuous record of volcanic H2SO4 in the Antarctic Ice-Sheet, Nature, 27, 671–676, 1987.
Lilienfeld, P.: A blue sky history, Opt. Photonics News, 15, 32–39, 2004.
Liou, K.-N.: Influence of cirrus clouds on weather and climate processes: A global perspective, Mon. Weather Rev., 114, 1167–1199, 1986.
Longo, B. M., Yang, W., Green, J. B., Crosby, F. L., and Crosby, V. L.: Acute health effects associated with exposure to volcanic air pollution (vog) from increased activity at Kilauea Volcano in 2008, J. Toxicol. Env. Health, Part A, 73, 1370–1381, 2010.
Márquez, R. M., González, Y., and Hurtado, G.: Las heladas en Colombia, Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá, IDEAM-METEO/003-2008, 50 pp., 2008.
Moore, J. C., Narita, H., and Maeno, N.: A continuous 770-year record of volcanic activity from East Antarctica, J. Geophy. Res., 96, 17353–17359, 1991.
Mosley-Thompson, E., Mashiotta, T. A., and Thompson, L. G.: High resolution ice core records of late Holocene volcanism: Current and future contributions from the Greenland PARCA core, Geophys. Monogr. Ser., 139, 153–164, 2003.
Nieto, M., Castaño, P., and Ojeda, D.: 'El influjo del clima sobre los seres organizados' y la retórica ilustrada en el Semanario del Nuevo Reyno de Granada, Hist. Crit., 30, 91–114, 2005.
Nieto Olarte, M.: Scientific instruments, Creole science, and natural order in the New Granada of the early nineteenth century, J. Spanish Cult. Stud., 8, 235–252, 2007. Oman, L., Robock, A., Stenchikov, G., Schmidt, G. A., and Ruedy, R.: Climatic response to high-latitude volcanic eruptions, J. Geophys. Res.-Atmos., 110, D13103, https://doi.org/10.29/2004JD005487, 2005.
Oppenheimer, C.: Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815, Prog. Phys. Geog., 27, 230–259, 2003.
Plumb, R. A.: A tropical pipe model of stratospheric transport, J. Geophys. Res., 101, 3957–3972, 1996.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, 2000.
Russell, F. A. R.: General list of dates of first appearance of all the optical phenomena, Section II in Part IV, Russell, F. A. R. and Archibald, E. D.: On the unusual optical phenomena of the atmosphere, 1883-6, including twilight effects, coronal appearances, sky haze, coloured suns, moons, edited by: Symons, G. J., The eruption of Krakatoa: and subsequent phenomena, Report of the Krakatoa committee of the Royal Society, Trübner & Company, London, 263–311, 1888.
Schneider, D. P., Ammann, C. M., Otto-Bliesner, B. L., and Kaufman, D. S.: Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model, J. Geophys. Res.-Atmos., 114, D15101, https://doi.org/10.1029/2008JD011222, 2009.
Schneider, S. H.: Cloudiness as a Global Climatic Feedback Mechanism: The Effects on the Radiation Balance and Surface Temperature of Variations in Cloudiness, J. Atmos. Sci., 29, 1413–1422, 1972.
Sigl, M., McConnell, J. R., Layman, L., Maselli, O., Pasteris, D., McGwire, K., Dahl-Jensen, D., Steffensen, J. P., Vinther, B. M., Edwards, R., Mulvaney, R., and Kipfstuhl, S.: A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years, Geophys. Res. Atmos., 118, 1151–1169, 2013.
Simkin, T. and Fiske, R. S.: Krakatau 1883. The volcanic eruption and its effects, Smithsonian Institution Press, Washington DC, 464 pp., 1984.
Stothers, R. B.: The great Tambora eruption in 1815 and its aftermath, Science, 224, 1191–1198, 1984.
Stothers, R. B.: The great dry fog of 1783, Clim. Change, 32, 79–89, 1996.
Stothers, R. B.: Volcanic dry fogs, climate cooling, and plague pandemics in Europe and the Middle East, Clim. Change, 42, 713–723, 1999.
Stothers, R. B. and Rampino, M. R.: Historic volcanism, European dry fogs, and Greenland acid precipitation, 1500 BC to AD 1500, Science, 222, 411–413, 1983.
Symons, G. J. (Ed): The eruption of Krakatoa: and subsequent phenomena, Report of the Krakatoa committee of the Royal Society, Trübner & Company, London, 627 pp., 1888. Thompson, L. G., Mosley-Thompson, E., Bolzan, J. F., and Koci, B. R.: A 1500 year record of tropical precipitation recorded in ice cores from the Quelccaya Ice Cap, Peru, Science, 229, 971–973, 1985.
Thordarson, T. and Self, S.: Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment, J. Geophy. Res. Atmos., 108, 4011, https://doi.org/10.1029/2001JD002042, 2003.
Toohey, M., Krüger, K., Niemeier, U., and Timmreck, C.: The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions, Atmos. Chem. Phys., 11, 12351–12367, https://doi.org/10.5194/acp-11-12351-2011, 2011.
Toohey, M., Krüger, K., and Timmreck, C.: Volcanic sulfate deposition to Greenland and Antarctica: A modeling sensitivity study, J. Geophys. Res. Atmos., 118, 4788–4800, 2013.
Trenberth, K. E. and Dai, A.: Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering, Geophys. Res. Lett., 34, L15702, https://doi.org/10.1029/2007GL030524, 2007.
Trepte, C. R., Veiga, R. E., and McCormick, M. P.: The poleward dispersal of Mount Pinatubo volcanic aerosol, J. Geophys. Res.-Atmos., 98, 18563–18573, 1993.
Unanue, J. H.: Observaciones sobre el clima de Lima: y sus influencias en los seres organizados, en especial el hombre, Madrid, Imprenta de Sancha, 1815.
Yalcin, K., Wake, C. P., Kreutz, K. J., Germani, M. S., and Whitlow, S. I.: Ice core evidence for a second volcanic eruption around 1809 in the Northern Hemisphere, Geophys. Res. Lett., 33, L14706, https://doi.org/10.1029/2006GL026013, 2006.
Yoshimori, M. and Broccoli, A. J.: Equilibrium response of an atmosphere-mixed layer ocean model to different radiative forcing agents: Global and zonal mean response, J. Clim., 21, 4399–4423, 2008.
Yoshimori, M. and Broccoli, A. J.: On the link between Hadley circulation changes and radiative feedback processes, Geophys. Res. Lett., 36, L20703, https://doi.org/10.1029/2009GL040488, 2009.
Zerefos, C. S., Gerogiannis, V. T., Balis, D., Zerefos, S. C., and Kazantzidis, A.: Atmospheric effects of volcanic eruptions as seen by famous artists and depicted in their paintings, Atmos. Chem. Phys., 7, 4027–4042, https://doi.org/10.5194/acp-7-4027-2007, 2007.
Zerefos, C. S., Tetsis, P., Kazantzidis, A., Amiridis, V., Zerefos, S. C., Luterbacher, J., Eleftheratos, K., Gerasopoulos, E., Kazadzis, S., and Papayannis, A.: Further evidence of important environmental information content in red-to-green ratios as depicted in paintings by great masters, Atmos. Chem. Phys., 14, 2987–3015, https://doi.org/10.5194/acp-14-2987-2014, 2014.
Zimmerer, K. S.: Humboldt's nodes and modes of interdisciplinary environmental science in the andean world, Geogr. Rev., 96, 335–360, 2006.