Articles | Volume 9, issue 6
https://doi.org/10.5194/cp-9-2595-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-2595-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean
M. Sarnthein
Institut für Geowissenschaften, University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
Institut für Geologie und Paläontologie, University of Innsbruck, 6020 Innsbruck, Austria
B. Schneider
Institut für Geowissenschaften, University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
P. M. Grootes
Institute of Ecosystem Research, University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
Related authors
Michael Sarnthein and Pieter M. Grootes
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-173, https://doi.org/10.5194/cp-2021-173, 2022
Manuscript not accepted for further review
Short summary
Short summary
Changes in the geometry of ocean Meridional Overturning Circulation (MOC) are crucial in controlling past changes of climate and the carbon inventory of the atmosphere. However, the accurate timing and global correlation of short-term glacial-to-deglacial changes of MOC in various ocean basins still present a major challenge now met by the fine structure of jumps and plateaus in atmospheric and planktic radiocarbon (14C) concentration that reflect authentic changes in atmospheric 14C production.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
K. Wallmann, B. Schneider, and M. Sarnthein
Clim. Past, 12, 339–375, https://doi.org/10.5194/cp-12-339-2016, https://doi.org/10.5194/cp-12-339-2016, 2016
Short summary
Short summary
An Earth system model was set up and applied to evaluate the effects of sea-level change, ocean dynamics, and nutrient utilization on seawater composition and atmospheric pCO2 over the last glacial cycle. The model results strongly suggest that global sea-level change contributed significantly to the slow glacial decline in atmospheric pCO2 and the gradual pCO2 increase over the Holocene whereas the rapid deglacial pCO2 rise was induced by fast changes in ocean dynamics and nutrient utilization.
Michael Sarnthein and Pieter M. Grootes
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-173, https://doi.org/10.5194/cp-2021-173, 2022
Manuscript not accepted for further review
Short summary
Short summary
Changes in the geometry of ocean Meridional Overturning Circulation (MOC) are crucial in controlling past changes of climate and the carbon inventory of the atmosphere. However, the accurate timing and global correlation of short-term glacial-to-deglacial changes of MOC in various ocean basins still present a major challenge now met by the fine structure of jumps and plateaus in atmospheric and planktic radiocarbon (14C) concentration that reflect authentic changes in atmospheric 14C production.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Malte Heinemann, Joachim Segschneider, and Birgit Schneider
Geosci. Model Dev., 12, 1869–1883, https://doi.org/10.5194/gmd-12-1869-2019, https://doi.org/10.5194/gmd-12-1869-2019, 2019
Short summary
Short summary
Ocean CO2 uptake played a crucial role for the global cooling during ice ages. Dust formation, e.g. by ice scraping over bedrock, potentially contributed to this CO2 uptake because (1) the iron in the dust is a fertilizer and (2) the heavy dust particles can accelerate sinking organic matter (ballasting hypothesis). This study tests the glacial dust ballasting hypothesis for the first time, using an ocean model. It turns out, however, that the ballasting effect probably played a minor role.
Joachim Segschneider, Birgit Schneider, and Vyacheslav Khon
Biogeosciences, 15, 3243–3266, https://doi.org/10.5194/bg-15-3243-2018, https://doi.org/10.5194/bg-15-3243-2018, 2018
Short summary
Short summary
To gain a better understanding of climate and marine biogeochemistry variations over the last 9500 years (the Holocene), we performed non-accelerated model simulations with a global coupled climate and biogeochemistry model forced by orbital parameters and atmospheric greenhouse gases. One main outcome is an increase in the volume of the eastern equatorial Pacific oxygen minimum zone, driven by a slowdown of the large-scale circulation.
K. Wallmann, B. Schneider, and M. Sarnthein
Clim. Past, 12, 339–375, https://doi.org/10.5194/cp-12-339-2016, https://doi.org/10.5194/cp-12-339-2016, 2016
Short summary
Short summary
An Earth system model was set up and applied to evaluate the effects of sea-level change, ocean dynamics, and nutrient utilization on seawater composition and atmospheric pCO2 over the last glacial cycle. The model results strongly suggest that global sea-level change contributed significantly to the slow glacial decline in atmospheric pCO2 and the gradual pCO2 increase over the Holocene whereas the rapid deglacial pCO2 rise was induced by fast changes in ocean dynamics and nutrient utilization.
A. Regenberg, B. Schneider, and R. Gangstø
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-11343-2013, https://doi.org/10.5194/bgd-10-11343-2013, 2013
Revised manuscript not accepted
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz
Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, https://doi.org/10.5194/cp-9-605-2013, 2013
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Millenial/D-O
Rejuvenating the ocean: mean ocean radiocarbon, CO2 release, and radiocarbon budget closure across the last deglaciation
Deglacial records of terrigenous organic matter accumulation off the Yukon and Amur rivers based on lignin phenols and long-chain n-alkanes
Deglacial carbon cycle changes observed in a compilation of 127 benthic δ13C time series (20–6 ka)
δ13C decreases in the upper western South Atlantic during Heinrich Stadials 3 and 2
Marine productivity response to Heinrich events: a model-data comparison
Ventilation changes in the western North Pacific since the last glacial period
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Mengli Cao, Jens Hefter, Ralf Tiedemann, Lester Lembke-Jene, Vera D. Meyer, and Gesine Mollenhauer
Clim. Past, 19, 159–178, https://doi.org/10.5194/cp-19-159-2023, https://doi.org/10.5194/cp-19-159-2023, 2023
Short summary
Short summary
We use sediment records of lignin to reconstruct deglacial vegetation change and permafrost mobilization, which occurred earlier in the Yukon than in the Amur river basin. Sea ice extent or surface temperatures of adjacent oceans might have had a strong influence on the timing of permafrost mobilization. In contrast to previous evidence, our records imply that during glacial peaks of permafrost decomposition, lipids and lignin might have been delivered to the ocean by identical processes.
Carlye D. Peterson and Lorraine E. Lisiecki
Clim. Past, 14, 1229–1252, https://doi.org/10.5194/cp-14-1229-2018, https://doi.org/10.5194/cp-14-1229-2018, 2018
Short summary
Short summary
Our study presents an analysis of a four-dimensional compilation of globally distributed carbon isotope time series that span 20 to 6 thousand years ago. We explore carbon cycle connections between the deep ocean, atmosphere, and land-based carbon storage on thousand-year time scales to provide useful constraints for global carbon cycle reconstructions. Additionally, these carbon isotope time series are suitable for comparison with deglacial simulations from isotope-enabled Earth system models.
Marília C. Campos, Cristiano M. Chiessi, Ines Voigt, Alberto R. Piola, Henning Kuhnert, and Stefan Mulitza
Clim. Past, 13, 345–358, https://doi.org/10.5194/cp-13-345-2017, https://doi.org/10.5194/cp-13-345-2017, 2017
Short summary
Short summary
Our new planktonic foraminiferal stable carbon isotopic data from the western South Atlantic show major decreases during abrupt climate change events of the last glacial. These anomalies are likely related to periods of a sluggish Atlantic meridional overturning circulation and increase (decrease) in atmospheric CO2 (stable carbon isotopic ratios). We hypothesize that strengthening of Southern Ocean deep-water ventilation and weakening of the biological pump are responsible for these decreases.
V. Mariotti, L. Bopp, A. Tagliabue, M. Kageyama, and D. Swingedouw
Clim. Past, 8, 1581–1598, https://doi.org/10.5194/cp-8-1581-2012, https://doi.org/10.5194/cp-8-1581-2012, 2012
Y. Okazaki, T. Sagawa, H. Asahi, K. Horikawa, and J. Onodera
Clim. Past, 8, 17–24, https://doi.org/10.5194/cp-8-17-2012, https://doi.org/10.5194/cp-8-17-2012, 2012
Cited articles
Adkins, J. F., Cheng, H., Boyle, E. A., Druffel, E. R. M., and Edwards, R. L.: Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago, Science, 280, 725–728, 1998.
Amante, C. and B. W. Eakins: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Techn. Memorandum NESDIS NGDC-24, 19 pp., 2009.
Anderson, R. F., Fleisher, M. Q., Lao, Y., and Winckler, G.: Modern CaCO3 preservation in equatorial Pacific sediments in the context of Late-Pleistocene glacial cycles, Mar. Chem., }{111, 30–46, 2008.
Antia, A.N., Koeve, W., Fischer, G., Blanz, T., Schulz-Bull, D., Scholten, J., Neuer, S., Kremling, K., Kuss, J., Peinert, R., Hebbeln, D., Bathmann, U., Conte, M., Fehner, U., and Zeitzschel, B.: Basin-wide particulate carbon flux in the Atlantic Ocean: regional export patterns and potential for atmospheric CO2 sequestration, Global Biogeochem. Cy., 15, 845–862, 2001.
Archer, D. and Winguth, A.: What caused the glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys. 38, 159–189, 2000.
Archer, D., Martin, P., Buffett, B., Brovkin, V., Rahmstorf, S., and Ganopolski, A.: The importance of ocean temperature to global biogeochemistry, Earth Planet. Sci. Lett., 222, 333–348, 2004.
Bard, E.: Geochemical and geophysical implications of the radiocarbon calibration, Geochim Cosmochim A, 62, 2025–2038, 1998.
Barker, S., Knorr, G., Vautravers, M. J., Diz, P., and Skinner, L. C.: Extreme deepening of the Atlantic overturning circulation during deglaciation, Nature Geosci., 3, 567–571, https://doi.org/10.1038/NGEO921, 2010.
Basak, C., Martin, E. E., Horikawa, K., and Marchitto, T. M.: Southern Ocean source of 14C-depleted carbon in North Pacific Ocean during the last deglaciation, Nature Geosci., 3, 770–774, 2010.
Berelson, W. M., Balch, W. M., Najjar, R., Feely, R. A., Sabine, C., and Lee, K.: Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: A revised global carbonate budget, Global Biogeochem. Cy., 21, GB1024, https://doi.org/10.1029/2006GB002803, 2007.
Berger, W. H.: Deep-sea carbonates. Pleistocene dissolution cycles, J. Foram. Res., 3, 187–193, 1973.
Berger, W. H. and Keir, R. S.: Glacial-Holocene changes in atmospheric CO2 and the deep-sea record, AGU Geophys. Monogr., 29, 337–351, 1984.
Boyle, E. A.: The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon-dioxide, J. Geophys. Res.-Oceans 93, 15701–15714, 1988a.
Boyle, E. A.: Vertical oceanic nutrient fractionation and glacial interglacial CO2 cycles, Nature 331, 55–56, 1988b.
Bronk Ramsey, C., Staff, R. A., Bryant, C. L., Brock, F., Kitagawa, H., van der Plicht, J., Schlolaut, G., Marshall, M. H., Brauer, A., Lamb, H. F., Payne, R. L., Tarasov, P. E., Haraguchi, T., Gotanda, K., Yonenobu, H., Yokoyama, Y., Tada, R., and Nakagawa, T.: A Complete Terrestrial Radiocarbon Record for 11.2 to 52.8 kyr B.P., Science, 338, 370–374, 2012.
Broecker, W. S.: Glacial-to-interglacial changes in ocean chemistry, Prog. Oceanogr., 11, 151–197, 1982.
Broecker, W. S.: The great ocean conveyor, Oceanography, 4, 79–89, 1991.
Broecker, W. and Barker, S. A.: 190\permil drop in atmosphere's Δ14C during the 'Mystery Interval, Earth Planet. Sci. Lett., 256, 90–99, 2007.
Broecker W., Barker, S., Clark, E., Hajdas, I., Bonani, G., and Stott L.: Ventilation of the Glacial deep Pacific Ocean, Science, 306, 1169–1172, 2004.
Broecker, W., Clark, E., Barker, S., Hajdas, I., Bonani, G., and Moreno, E.: Radiocarbon age of late glacial deep waters from the equatorial Pacific, Paleoceanography, 22, PA2206, https://doi.org/10.1029/2006PA001359, 2007.
Bryan, S. P., Marchitto, T. M., and Lehman, S. J.: The release of 14C-depleted carbon from the deep ocean during the last deglaciation: Evidence from the Arabian Sea, Earth Planet. Sci. Lett., }{298, 244–254, 2010.
Burke, A. and Robinson, L. F.: The Southern Ocean's role in carbon exchange during the last deglaciation, Science, 335, 557–561, 2012.
Campin, J.-M., Fichefet, T., and Duplessy, J.-C.: Problems with unsing radiocarbon to infer ocean ventilation rates for past and present climates, Earth Planet. Sci. Lett., 165, 17–24, 1999.
Chase, Z., Anderson, R. F., Fleisher, M. Q., and Kubik, P. W.: Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years, Deep-Sea Res. II, 50, 799–832, 2003.
Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., Scholze, M., Hoffmann, G., Louranton, A., Harrison, S. P., Prentice, I. C., Kelley, D. I., Koven, C., and Piao, S. L.: Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum, Nature Geoscience, 5, 74–79, 2012.
Crowley, T. J.: Proximal trigger for late glacial Antarctic circulation and CO2 changes, PAGES news, 19, 70–71, 2011.
Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean, Paleoceanography, 20, PA1017, https://doi.org/10.1029/2004PA001021, 2005.
Denton, G. H., Broecker, W. S., and Alley, R. B.: The Mystery Interval 17.5–14.5 kyrs ago, PAGES News, 14, 14–16, 2006.
Duplessy, J.-C., Arnold, M., Bard, E., Juillet-Leclerc, A., Kallel, N., and Labeyrie, L.: AMS 14C study of transient events and of the ventilation rate of the Pacific intermediate water during the last deglaciation, Radiocarbon, 31, 493–502, 1989.
Duplessy, J.-C., Labeyrie, L., Juillet-Leclerc, A., Maitre, F., Duprat, J., and Sarnthein, M.: Surface salinity reconstruction of the North Atlantic Ocean during the Last Glacial Maximum, Ocean. Acta, 14, 311–324, 1991a.
Duplessy, J.-C., Bard, E., Arnold, M., Shackleton, N. J., Duprat, J., and Labeyrie, L. D.: How fast did the ocean-atmosphere system run during the last deglaciation?, Earth Planet. Sci. Lett., 103, 27–40, 1991b.
Fairbanks, R. G., Mortlock, R. A., Chiu, T.-C., Cao, L., Kaplan, A., Guilderson, T. P., Fairbanks, T. W., Bloom, A. L., Grootes, P. M., and Nadeau, M. J.: Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 130Th/234U/238U and 14C dates on pristine corals, Quaternary Sci. Rev., 24, 1781–1796, 2005.
Franke, J., Schulz, M., Paul, A., and Adkins, A. F.: Assessing the ability of the 14C projection-age method to constrain the circulation of the past in a 3-D ocean model, Geochem. Geophys. Geosyst., 9, Q08003, https://doi.org/10.1029/2008GC001943, 2008.
Gebhardt, H., Sarnthein, M., Kiefer, T., Erlenkeuser, H., Schmieder, F., and Röhl, U.: Paleonutrient and paleoproductivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V, Paleoceanography, 23, PA4212, https://doi.org/10.1029/2007PA001513, 2008.
Hain, M. P., Sigman, D. M., and Haug, G. H.: Shortcomings of the isolated abyssal reservoir model for deglacial radiocarbon changes in the mid-depth Indo-Pacific Ocean, Geophys. Res. Lett., 38, L04604, https://doi.org/10.1029/2010GL046158, 2011.
Huiskamp, W. N. and Meissner, K. J.: Oceanic carbon and water masses during the Mystery Interval: A model-data comparison study, Paleoceanography, 27, PA4206, https://doi.org/10.1029/2012PA002368, 2012.
Jaccard, S. L. and Galbraith, E. D.: Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation, Nature Geoscience, 5, https://doi.org/10.1038/ngeo1352, 2012.
Jaccard, S. L. and Galbraith, E. D.: Direct ventilation of the North Pacific did not reach the deep ocean during the last deglaciation, Geophys. Res. Lett., 40, 199–203, https://doi.org/10.1029/2012GL054118, 2013.
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T.-H.: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cy., 18, GB4031, https://doi.org/10.1029/2004GB002247, 2004.
Laj, C., Kissel, C., and Beer, J.: High resolution global paleointensity stack since 75 kyr (GLOPIS-75) calibrated to absolute values, in: Timescales of the Paleomagnetic Field, Amer. Geophys. Union Monographs, 145, 255–265, 2004.
Lund, D. C., Mix, A. C., and Southon, J.: Increased ventilation age of the deep northeasst Pacific Ocean during the last deglaciation, Nature Geoscience, 4, 771–774, https://doi.org/10.1038/ngeo1272, 2011.
Marchitto, T., Lehman, S., Ortiz, J., Fluckiger, J., and van Geen, A.: Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise, Science, }{316, 1456–1459, 2007.
Matsumoto, K.: Radiocarbon-based circulation age of the world oceans, J. Geophys. Res., 112, C09004, https://doi.org/10.1029/2007JC0040952007, 2007.
McCave, I. N., Carter, l., and Hall, I. R.: Glacial-interglacial changes in water mass structure and flow in the SW Pacific Ocean, Quat. Sci. Rev., 27, 1886–1908, 2008.
Miao, Q. and Thunnell, R. C.: Glacial-Hoocene carbonate dissolution and sea surface temperatures in the South China and Sulu seas, Paleocean}ography,{ 9, 269–290, 1994.
Mix, A. C, Bard, E., and Schneider, R.: Environmental processesof the Ice age: land, oceans, glaciers (EPILOG), Quatern. Sci. Rev., 20, 627–658, 2001.
Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T. F., Raynaud, D., and Barnola, J.-M.: Atmospheric CO2 concentrations over the last glacial termination, Science, 291, 112–114, 2001.
Muscheler, R., Beer, J., Kubik, P. W., and Synal, H.-A.: Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C, Quatern. Sci. Rev., 24, 1849–1860, 2005.
Negre, C., Zahn, R., Thomas, A. L., Masque, P., Henderson, G. M., Martínez-Méndez, G., Hall, I. R., and Mas J. L.: Reversed flow of Atlantic deep water during the Last Glacial Maximum, Nature, 468, 84–88, 2010.
Olausson, E.: Evidence of climatic changes in North-Atlantic deep-sea cores with remarks on isotopic paleotemperature analysis, Prog. Oceanogr., 3, 221–252, 1965.
Orsi, A. H., Smethie, W. M., and Bullister, J. L.: On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measur-ements., J. Geophys. Res.-Oceans, 107, 3122, https://doi.org/10.1029/2001JC000976, 2002.
Pflaumann, U., Sarnthein, M., Chapman, M., Funnell, B., Huels, M., Kiefer, T., Maslin, M., Schulz, H., Swallow, J., van Kreveld, S., Vautravers, M., Vogelsang, E., and Weinelt, M.: The glacial North Atlantic: Sea surface conditions reconstructed by GLAMAP-2000, Paleoceanography, 18, 1–28, https://doi.org/10.1029/2002PA000774, 2003.
Rahmstorf, S.: Thermohaline ocean circulation, Encyclopedia of Quaternary Sciences, Elsevier, 1–10, 2006.
Raven, J. A. and Falkowski, P. G.: Oceanic sinks for atmospheric CO2, Plant Cell Environ., }{22, 741–755, 1999.
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of organisms on the composition of sea-water, 26–77, in: The Sea, Hill, M. N., Vol.2, 554 pp., John Wiley & Sons, New York, 1963.
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B. McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeyer, C. E.: INTCAL09 and MARINE09 radiocarbon age calibration curves, 0–50,000 years cal. BP, Radiocarbon, 51, 1111–1150, 2009.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmannm, D. I., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: INTCAL13 and MARINE13 radiocarbon age calibration curves, 0–50,000 years cal. BP, Radiocarbon, 55, 1869–1887, 2013.
Ritz, S. P., Stocker, T. F., Grimalt, J. O., Menviel, L., and Timmermann, A.: Estimated strength of the Atlantic overturning circulation during the last deglaciation, Nature geoscience, }{6, 208–212, https://doi.org/10.1038/NGEO1723, 2013.
Robinson, L., Adkins, J. F., Keigwin, L. D., Southon, J., Fernandez,D. P., Wang, S.-L., and Scheirer, D. S.: Radiocarbon variability in the western North Atlantic during the last deglaciation, Science, 310, 1469–1473, 2005.
Rose, K. A., Sikes, E. L., Guilderson, T. P., Shane, P., Hill, T. M., Zahn, R., and Spero, H. J.: Upper-ocean-to atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release, Nature, 466, 1093–1097, 2010.
Sarnthein, M.: Northern meltwater pulses, CO2 and Atlantic ocean convection, Science, 331, 156–158, 2011.
Sarnthein, M., Winn, K., Jung, S., Duplessy, J. C., Labeyrie, L., Erlenkeuser, H., and Ganssen, G.: Changes in East Atlantic deepwater circulation over the last 30,000 years – An eight-time-slice record, Paleoceanography, 9, 209–267, 1994.
Sarnthein, M., Stattegger, K. , Dreger, D. , Erlenkeuser, H., Grootes, P., Haupt, B., Jung, S., Kiefer, T., Kuhnt, W., Pflaumann, U., Schäfer-Neth, C., Schulz, H., Schulz, M., Seidov, D., Simstich, J., van Kreveld-Alfane, S., Vogelsang, E., Völker, A., and Weinelt, M.: Fundamental modes and abrupt changes in North Atlantic circulation and climate over the last 60 ky – Concepts, reconstruction, and numerical modelling, in: The northern North Atlantic: A changing environment, edited by: Schäfer, P., Ritzrau, W., Schlüter, M., and Thiede, J., Springer, 365–410, 2001.
Sarnthein, M., Grootes, P. M., Kennett, J. P., and Nadeau, M.-J.: 14C reservoir ages show deglacial changes in ocean currents and carbon cycle, AGU Geophys. Monogr., 173, 175–196, 2007.
Sarnthein, M., Grootes, P. M., Holbourn, A., Kuhnt, W., and Kühn, H.: Tropical warming in the Timor Sea led deglacial Antarctic warming and almost coeval atmospheric CO2 rise by > 500 yr, Earth Planet. Sci. Lett., 302, 337–348, 2011.
Schlitzer, R.: Carbon export fluxes in the Southern Ocean: results from inverse modelling and comparison with satellite-based estimates, Deep Sea Res. II, 49, 1623–1644, https://doi.org/10.1016/S0967-0645(02)00004-8, 2002.
Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A., Chappellaz, J., Köhler, P., Joos, F., Stocker, T. F., Leuenberger, M., and, Fischer, H.: Carbon isotope constraints on the deglacial CO2 rise from ice cores, Science, 23, 711–714, https://doi.org/10.1126/science.1217161, 2012.
Schneider, B., Schlitzer, R., Fischer, G., and Nöthig, E.-M.: Depth-dependent elemental compositions of particulate organic matter (POM) in the ocean, Global Biogeochem. Cy., 17, 1032–1047, https://doi.org/10.1029/2002GB001871, 2003.
Sigman, D. M. and Boyle, E.: Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 407, 859–869, 2000.
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial cycles in atmospheric CO2 concentration, Nature, 466, 47–55, 2010.
Skinner, L. C.: Glacial-interglacial atmospheric CO2 change: a possible "standing volume" effect on deep-ocean carbon sequestration, Clim. Past, 5, 537–550, https://doi.org/10.5194/cp-5-537-2009, 2009.
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., and Barker, S.: Ventilation of the deep Southern Ocean and deglacial CO2 rise, Science, 328, 1147–1151, 2010.
Stommel, H.: Thermohaline convection with two stable regimes of flow, Tellus, 13, 224–230, 1961.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding oxygen-minimum zones in the tropical oceans, Science, 320, 655–658, 2008.
Stuiver, M. and Braziunas, T. V.: Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 B.C., Radiocarbon, 35, 137–189, 1993.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Rasmussen, S. O., Röthlisberger, R., Steffensen, J. P., and Vinther, B. M.: The Greenland Ice Core Chronology 2005, 15–42 ka. Part 2: comparison to other records, Quatern. Sci. Rev., 25, 3258–3267, 2006.
Tagliabue, A., Bopp, L., Roche, D. M., Bouttes, N., Dutay, J.-C., Alkama, R., Kageyama, M., Michel, E., and Paillard, D.: Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum, Clim. Past, 5, 695–706, https://doi.org/10.5194/cp-5-695-2009, 2009.
Thiede, J.: Wind regimes over the late Quaternary southwest Pacific Ocean, Geology, 7, 259–262, 1979.
Thornalley, D. J. R., Barker, S., Broecker, W. S., Elderfield, H., and McCave, I. N.: The deglacial evolution of the North Atlantic deep convection, Science 331, 202–205, 2011.
Voelker, A.: Zur Deutung der Dansgaard-Oeschger Ereignisse in ultrahoch auflösenden Sedimentprofilen aus dem Europäischen Nordmeer, D.Sc. Thesis, 1–180, Univ. of Kiel, Kiel, Germany, 1999.
Vogel, J. C., Grootes, P. M., and Mook, W. G.: Isotopic fractionation between gaseous and dissolved carbon dioxide, Z. Physik, 230, 225–238, 1970.
Waelbroeck, C., Duplessy, J.-C., Michel, E., Labeyrie, L., Paillard, D., and Duprat, J.: The timing of the last deglaciation in North Atlantic climate records, Nature, 412, 724–727, 2001.
Weinelt, M., Vogelsang, E., Kucera, M., Pflaumann, U., Sarnthein, M., Voelker, A., Erlenkeuser, H., and Malmgren, B. A.: Variability of North Atlantic heat transfer during MIS 2, Paleoceanography, 18, PA1071, https://doi.org/10.1029/2002PA000772, 2003.
Yu, J., Broecker, W. S., Elderfield, H., Jin, Z., McManus, J., and Zhang, F.: Loss of carbon from the deep sea since the last glacial maximum, Science, 330, 1084–1087, 2010.