Articles | Volume 9, issue 5
https://doi.org/10.5194/cp-9-2173-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-2173-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Can we determine what controls the spatio-temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model?
Laboratoire de Météorologie Dynamique UMR8539, IPSL/CNRS/UPMC, 4, place Jussieu, 75252 Paris Cedex 05, France
A. Landais
Institut Pierre Simon Laplace (IPSL), Laboratoire des Sciences de Climat et de l'Environnement (LSCE), UMR8212 (CEA-CNRS-UVSQ), CE Saclay, Orme des Merisiers, Bât. 701, 91191 Gif-sur-Yvette, Cedex, France.
R. Winkler
Institut Pierre Simon Laplace (IPSL), Laboratoire des Sciences de Climat et de l'Environnement (LSCE), UMR8212 (CEA-CNRS-UVSQ), CE Saclay, Orme des Merisiers, Bât. 701, 91191 Gif-sur-Yvette, Cedex, France.
F. Vimeux
Institut Pierre Simon Laplace (IPSL), Laboratoire des Sciences de Climat et de l'Environnement (LSCE), UMR8212 (CEA-CNRS-UVSQ), CE Saclay, Orme des Merisiers, Bât. 701, 91191 Gif-sur-Yvette, Cedex, France.
Institut de Recherche pour le Développement (IRD), Laboratoire HydroSciences Montpellier (HSM), UMR5569 (CNRS-IRD-UM1-UM2), Montpellier, France
Related authors
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Di Wang, Lide Tian, Camille Risi, Xuejie Wang, Jiangpeng Cui, Gabriel J. Bowen, Kei Yoshimura, Zhongwang Wei, and Laurent Z. X. Li
Atmos. Chem. Phys., 23, 3409–3433, https://doi.org/10.5194/acp-23-3409-2023, https://doi.org/10.5194/acp-23-3409-2023, 2023
Short summary
Short summary
To better understand the spatial and temporal distribution of vapor isotopes, we present two vehicle-based spatially continuous snapshots of the near-surface vapor isotopes in China during the pre-monsoon and monsoon periods. These observations are explained well by different moisture sources and processes along the air mass trajectories. Our results suggest that proxy records need to be interpreted in the context of regional systems and sources of moisture.
Jiacheng Chen, Jie Chen, Xunchang John Zhang, Peiyi Peng, and Camille Risi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-460, https://doi.org/10.5194/essd-2021-460, 2022
Manuscript not accepted for further review
Short summary
Short summary
To make full use of the advantages of isotope observations and simulations, this study generates a new dataset by integrating multi-GCM data based on data fusion and bias correction methods. This dataset contains monthly δ18Op over mainland China for the 1870–2017 period with a spatial resolution of 50–60 km. The built isoscape shows similar spatial and temporal distribution characteristics to observations, which is reliable and useful to extend the time and space of observations in China.
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021, https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Short summary
The width and the chemical signals of tree rings have the potential to test and improve the physiological responses simulated by global land surface models, which are at the core of future climate projections. Here, we demonstrate the novel use of tree-ring width and carbon and oxygen stable isotopes to evaluate the representation of tree growth and physiology in a global land surface model at temporal scales beyond experimentation and direct observation.
Camille Risi, Joseph Galewsky, Gilles Reverdin, and Florent Brient
Atmos. Chem. Phys., 19, 12235–12260, https://doi.org/10.5194/acp-19-12235-2019, https://doi.org/10.5194/acp-19-12235-2019, 2019
Short summary
Short summary
Water molecules can be light (one oxygen atom and two hydrogen atoms) or heavy (one hydrogen atom is replaced by a deuterium atom). These different molecules are called water isotopes. The isotopic composition of water vapor can potentially provide information about physical processes along the water cycle, but the factors controlling it are complex. As a first step, we propose an equation to predict the water vapor isotopic composition near the surface of tropical oceans.
Aliénor Lavergne, Fabio Gennaretti, Camille Risi, Valérie Daux, Etienne Boucher, Martine M. Savard, Maud Naulier, Ricardo Villalba, Christian Bégin, and Joël Guiot
Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, https://doi.org/10.5194/cp-13-1515-2017, 2017
Short summary
Short summary
Tree rings are long-term recorders of past climate variations, but the origin of the climate signals imprinted is difficult to interpret. Here, using a complex model we show that the temperature signal recorded in tree rings from two species from North and South America is likely related to processes occurring at the leaf level. This result contributes to the quantitative interpretation of these proxies for their future exploitation for millennium-scale climate reconstructions.
Jean-Lionel Lacour, Cyrille Flamant, Camille Risi, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 17, 9645–9663, https://doi.org/10.5194/acp-17-9645-2017, https://doi.org/10.5194/acp-17-9645-2017, 2017
Short summary
Short summary
We present temporal and spatial δD distributions derived from IASI obtained above the North Atlantic in the vicinity of West Africa. We show that the seasonality of δD in the North Atlantic is closely associated with the influence of the Saharan heat low (SHL). We provide an interpretation of the temporal and spatial variations in δD and show that the interactions between the large-scale subsidence, the ITCZ, and the SHL can be disentangled thanks to the added information contained in δD.
Alexandre Cauquoin and Camille Risi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-178, https://doi.org/10.5194/gmd-2017-178, 2017
Revised manuscript not accepted
Short summary
Short summary
AGCMs are known to have a warm and isotopically enriched bias over Antarctica. We test here the hypothesis that these biases are consequences of a too diffusive advection. We show here that a good representation of the advection, especially on the horizontal, is very important to reduce the bias in the isotopic contents of precipitation above this area and to improve the modelled water isotopes – temperature relationship, essential when using GCMs for paleoclimate applications.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Amaelle Landais, Cécile Agosta, Françoise Vimeux, Olivier Magand, Cyrielle Solis, Alexandre Cauquoin, Niels Dutrievoz, Camille Risi, Christophe Leroy-Dos Santos, Elise Fourré, Olivier Cattani, Olivier Jossoud, Bénédicte Minster, Frédéric Prié, Mathieu Casado, Aurélien Dommergue, Yann Bertrand, and Martin Werner
Atmos. Chem. Phys., 24, 4611–4634, https://doi.org/10.5194/acp-24-4611-2024, https://doi.org/10.5194/acp-24-4611-2024, 2024
Short summary
Short summary
We have monitored water vapor isotopes since January 2020 on Amsterdam Island in the Indian Ocean. We show 11 periods associated with abrupt negative excursions of water vapor δ18Ο. Six of these events show a decrease in gaseous elemental mercury, suggesting subsidence of air from a higher altitude. Accurately representing the water isotopic signal during these cold fronts is a real challenge for the atmospheric components of Earth system models equipped with water isotopes.
Di Wang, Lide Tian, Camille Risi, Xuejie Wang, Jiangpeng Cui, Gabriel J. Bowen, Kei Yoshimura, Zhongwang Wei, and Laurent Z. X. Li
Atmos. Chem. Phys., 23, 3409–3433, https://doi.org/10.5194/acp-23-3409-2023, https://doi.org/10.5194/acp-23-3409-2023, 2023
Short summary
Short summary
To better understand the spatial and temporal distribution of vapor isotopes, we present two vehicle-based spatially continuous snapshots of the near-surface vapor isotopes in China during the pre-monsoon and monsoon periods. These observations are explained well by different moisture sources and processes along the air mass trajectories. Our results suggest that proxy records need to be interpreted in the context of regional systems and sources of moisture.
Jiacheng Chen, Jie Chen, Xunchang John Zhang, Peiyi Peng, and Camille Risi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-460, https://doi.org/10.5194/essd-2021-460, 2022
Manuscript not accepted for further review
Short summary
Short summary
To make full use of the advantages of isotope observations and simulations, this study generates a new dataset by integrating multi-GCM data based on data fusion and bias correction methods. This dataset contains monthly δ18Op over mainland China for the 1870–2017 period with a spatial resolution of 50–60 km. The built isoscape shows similar spatial and temporal distribution characteristics to observations, which is reliable and useful to extend the time and space of observations in China.
Ana Moreno, Miguel Iglesias, Cesar Azorin-Molina, Carlos Pérez-Mejías, Miguel Bartolomé, Carlos Sancho, Heather Stoll, Isabel Cacho, Jaime Frigola, Cinta Osácar, Arsenio Muñoz, Antonio Delgado-Huertas, Ileana Bladé, and Françoise Vimeux
Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021, https://doi.org/10.5194/acp-21-10159-2021, 2021
Short summary
Short summary
We present a large and unique dataset of the rainfall isotopic composition at seven sites from northern Iberia to characterize their variability at daily and monthly timescales and to assess the role of climate and geographic factors in the modulation of δ18O values. We found that the origin, moisture uptake along the trajectory and type of precipitation play a key role. These results will help to improve the interpretation of δ18O paleorecords from lacustrine carbonates or speleothems.
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021, https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Short summary
The width and the chemical signals of tree rings have the potential to test and improve the physiological responses simulated by global land surface models, which are at the core of future climate projections. Here, we demonstrate the novel use of tree-ring width and carbon and oxygen stable isotopes to evaluate the representation of tree growth and physiology in a global land surface model at temporal scales beyond experimentation and direct observation.
Camille Risi, Joseph Galewsky, Gilles Reverdin, and Florent Brient
Atmos. Chem. Phys., 19, 12235–12260, https://doi.org/10.5194/acp-19-12235-2019, https://doi.org/10.5194/acp-19-12235-2019, 2019
Short summary
Short summary
Water molecules can be light (one oxygen atom and two hydrogen atoms) or heavy (one hydrogen atom is replaced by a deuterium atom). These different molecules are called water isotopes. The isotopic composition of water vapor can potentially provide information about physical processes along the water cycle, but the factors controlling it are complex. As a first step, we propose an equation to predict the water vapor isotopic composition near the surface of tropical oceans.
Aliénor Lavergne, Fabio Gennaretti, Camille Risi, Valérie Daux, Etienne Boucher, Martine M. Savard, Maud Naulier, Ricardo Villalba, Christian Bégin, and Joël Guiot
Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, https://doi.org/10.5194/cp-13-1515-2017, 2017
Short summary
Short summary
Tree rings are long-term recorders of past climate variations, but the origin of the climate signals imprinted is difficult to interpret. Here, using a complex model we show that the temperature signal recorded in tree rings from two species from North and South America is likely related to processes occurring at the leaf level. This result contributes to the quantitative interpretation of these proxies for their future exploitation for millennium-scale climate reconstructions.
Jean-Lionel Lacour, Cyrille Flamant, Camille Risi, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 17, 9645–9663, https://doi.org/10.5194/acp-17-9645-2017, https://doi.org/10.5194/acp-17-9645-2017, 2017
Short summary
Short summary
We present temporal and spatial δD distributions derived from IASI obtained above the North Atlantic in the vicinity of West Africa. We show that the seasonality of δD in the North Atlantic is closely associated with the influence of the Saharan heat low (SHL). We provide an interpretation of the temporal and spatial variations in δD and show that the interactions between the large-scale subsidence, the ITCZ, and the SHL can be disentangled thanks to the added information contained in δD.
Alexandre Cauquoin and Camille Risi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-178, https://doi.org/10.5194/gmd-2017-178, 2017
Revised manuscript not accepted
Short summary
Short summary
AGCMs are known to have a warm and isotopically enriched bias over Antarctica. We test here the hypothesis that these biases are consequences of a too diffusive advection. We show here that a good representation of the advection, especially on the horizontal, is very important to reduce the bias in the isotopic contents of precipitation above this area and to improve the modelled water isotopes – temperature relationship, essential when using GCMs for paleoclimate applications.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
A. Okazaki, Y. Satoh, G. Tremoy, F. Vimeux, R. Scheepmaker, and K. Yoshimura
Atmos. Chem. Phys., 15, 3193–3204, https://doi.org/10.5194/acp-15-3193-2015, https://doi.org/10.5194/acp-15-3193-2015, 2015
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Ice Cores | Timescale: Milankovitch
Local summer temperature changes over the past 440 ka revealed by the total air content in the Antarctic EPICA Dome C ice core
Improving temperature reconstructions from ice-core water-isotope records
A 120 000-year record of sea ice in the North Atlantic?
Implementation of counted layers for coherent ice core chronology
High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core
Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope records over glacial–interglacial cycles
Dominique Raynaud, Qiuzhen Yin, Emilie Capron, Zhipeng Wu, Frédéric Parrenin, André Berger, and Vladimir Lipenkov
Clim. Past, 20, 1269–1282, https://doi.org/10.5194/cp-20-1269-2024, https://doi.org/10.5194/cp-20-1269-2024, 2024
Short summary
Short summary
There is a lack of reconstructions from Antarctic ice cores of the temperature during the summer, a critical season in terms of solar energy received, preventing a good understanding of the link between Antarctic past climate and astronomically induced insolation changes. Here, the variations in total air content in an Antarctic ice core are found to be correlated to local summer temperatures simulated with a climate model. This tracer can be used to reconstruct past local summer temperatures.
Bradley R. Markle and Eric J. Steig
Clim. Past, 18, 1321–1368, https://doi.org/10.5194/cp-18-1321-2022, https://doi.org/10.5194/cp-18-1321-2022, 2022
Short summary
Short summary
The geochemistry preserved in polar ice can provide detailed histories of Earth’s climate over millennia. Here we use the stable isotope ratios of ice from many Antarctic ice cores to reconstruct temperature variability of Antarctica and the midlatitude Southern Hemisphere over tens of thousands of years. We improve upon existing methods to estimate temperature from the geochemical measurements and investigate the patterns of climate change in the past.
Niccolò Maffezzoli, Paul Vallelonga, Ross Edwards, Alfonso Saiz-Lopez, Clara Turetta, Helle Astrid Kjær, Carlo Barbante, Bo Vinther, and Andrea Spolaor
Clim. Past, 15, 2031–2051, https://doi.org/10.5194/cp-15-2031-2019, https://doi.org/10.5194/cp-15-2031-2019, 2019
Short summary
Short summary
This study provides the first ice-core-based history of sea ice in the North Atlantic Ocean, reaching 120 000 years back in time. This record was obtained from bromine and sodium measurements in the RECAP ice core, drilled in east Greenland. We found that, during the last deglaciation, sea ice started to melt ~ 17 500 years ago. Over the 120 000 years of the last glacial cycle, sea ice extent was maximal during MIS2, while minimum sea ice extent exists for the Holocene.
B. Lemieux-Dudon, L. Bazin, A. Landais, H. Toyé Mahamadou Kele, M. Guillevic, P. Kindler, F. Parrenin, and P. Martinerie
Clim. Past, 11, 959–978, https://doi.org/10.5194/cp-11-959-2015, https://doi.org/10.5194/cp-11-959-2015, 2015
S. Schüpbach, U. Federer, P. R. Kaufmann, S. Albani, C. Barbante, T. F. Stocker, and H. Fischer
Clim. Past, 9, 2789–2807, https://doi.org/10.5194/cp-9-2789-2013, https://doi.org/10.5194/cp-9-2789-2013, 2013
R. Uemura, V. Masson-Delmotte, J. Jouzel, A. Landais, H. Motoyama, and B. Stenni
Clim. Past, 8, 1109–1125, https://doi.org/10.5194/cp-8-1109-2012, https://doi.org/10.5194/cp-8-1109-2012, 2012
Cited articles
Barkan, E. and Luz, B.: High precision measurements of 17O/16O and 18O/16O ratios in H2O, Rapid Commun. Mass Sp., 19, 3737–3742, 2005.
Barkan, E. and Luz, B.: Diffusivity fractionations of H$_2^16$O/H$_2^17$O and H$_2^16$O/H$_2^18$O in air and their implications for isotope hydrology, Rapid Commun. Mass Sp., 21, 2999–3005, 2007.
Barnes, C. and Allison, G.: Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. J. Hydrol, 100, 143–176., 1988.
Barras, V. and Simmonds, I.: Observation and modelling of stable water isotopes as diagnostics of rainfall dynamics over Southeastern Australia, J. Geophys. Res., 114, D23308, https://doi.org/10.1029/2009JD012132, 2009.
Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S., Gajewski, K., Guiot, J., Harrison-Prentice, T. I., Henderson, A., Peyron, O., Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S., Thompson, R. S., Viau, A. E., Williams, J., Wu, H. , O. P.: Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis, Clim. Dynam., 37, 775–802, https://doi.org/10.1007/s00382-010-0904-1, 2010.
Bony, S. and Emanuel, K. A.: A parameterization of the cloudiness associated with cumulus convection, evaluation using TOGA COARE data, J. Atmos. Sci., 58, 3158–3183, 2001.
Bony, S., Risi, C., and Vimeux, F.: Influence of convective processes on the isotopic composition ($\delta O^18$ and $\delta D$) of precipitation and water vapor in the Tropics, Part 1: radiative-convective equilibrium and TOGA-COARE simulations, J. Geophys. Res., 113, D19305, https://doi.org/10.1029/2008JD009942, 2008.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, https://doi.org/10.5194/cp-3-261-2007, 2007.
Cappa, C., Hendricks, M., DePaolo, D., and Cohen, R.: Isotopic fractionation of water during re-evaporation, J. Geophys. Res., 108, 4525–4542, 2003.
Ciais, P. and Jouzel, J.: Deuterium and oxygen 18 in precipitation: isotopic model, including cloud processes, J. Geophys. Res., 99, 16793–16803, 1994.
CLIMAP project members: Seasonal reconstructions of the Earth's surface at the last glacial maximum, Geol. Soc. Am., Map Chart Ser. MC-36, 1981.
Craig, H. and Gordon, L. I.: Deuterium and oxygen-18 variations in the ocean and marine atmosphere, Stable Isotope in Oceanographic Studies and Paleotemperatures, edidted by: E. Tongiorgi, 9-130, Pisa: Lab. Geol. Nucl., 1965.
Dansgaard, W: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.
Delaygue, G.: Relations entre surface océanique et composition isotopique des précipitations antarctiques: simulations pour différents climats, Ph. D. thesis, Université d'Aix-Marseille III, France, 2000.
Franz, P. and Roeckmann, T.: High-precision isotope measurements of h2o, h2o17, h2o18 and delta17o of water vapour in the southern lowermost stratosphere. Atmos. Chem. Physics, 5, 2949–2959, 2005.
Delmotte, M., Masson, V., Jouzel, J., and Morgan, V.: A seasonal deuterium excess signal at Law Dome, coastal Eastern Antarctica: a southern ocean signature, J. Geophys. Res., 105, 7187–7197, 2000.
Dutton, A. L., Wilkinson, B., Welker, J. M., and Lohmann, K. C.: Comparison of river water and precipitation δ18O across the 48 contiguous United States, Hydrol. Processes, 19, 3551–3572, 2005.
Ehhalt, D. H.: Vertical profiles of hto, hdo, and h2o in the troposphere, NCAR technical note, NCAR-TN-STR-100, 1974.
Ekaykin, A. A., Hondoh, T., Lipenkov, V. Y., and Miyamoto, A.: Post-depositional changes in snow isotope content: preliminary results of laboratory experiments, Clim. Past Discuss., 5, 2239–2267, 2009.
Ellehoej, M.: Ice-vapor equilibrium fractionation factor experimental investigations and possible impacts on the understanding of the hydrological cycles on Earth and Mars, Ph. D. thesis, University of Copenhagen, Denmark, 2011.
Emanuel, K. A.: A scheme for representing cumulus convection in large-scale models, J. Atmos. Sci., 48, 2313–2329, 1991.
Emanuel, K. A. and Zivkovic-Rothman, M.: Development and evaluation of a convection scheme for use in climate models, J. Atmos. Sci., 56, 1766–1782, 1991.
Farrera, I., Harrison, S. P., Prentice, I. C., Ramstein, G., Guiot, J., Bartlein, P. J., Bonnefille, R., Bush, M., Cramer, W., von Grafenstein, U., Holmgren, K., Hoohiemstra, H., Hope, G., Jolly, D., Lauritzen, S.-E., Ono, Y., Pinot, S., Stute, M., and Yu, G.: Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data, part I: vegetation, lake-levels and geochemistry, Clim. Dynam., 15, 823–856, 1999.
Fekete, B., Gibson, J., Aggarwal, P., and Vorosmarty, C. J.: Application of isotope tracers in continental scale hydrological modeling, J. Hydrol., 330, 444–456, 2006.
Frankenberg, C., Yoshimura, K., Warneke, T., Aben, I., Butz, A., Deutscher, N., Griffith, D., Hase, F., Notholt, J., Schneider, M., Schrijver, H., and Röckmann, T.: Dynamic processes governing lower-tropospheric HDO/H2O ratios as observed from space and ground, Science, 325, 1374–1377, 2009.
Galewsky, J. and Hurley, J. V.: An advection-condensation model for subtropical water vapor isotopic ratios, J. Geophys. Res., 115, D16115, https://doi.org/10.1029/2009JD013651, 2010.
Gat, J. R.: Atmospheric water balance-the isotopic perspective, Hydrol. Process., 14, 1357–1369, 2000.
Gat, J. R. and Matsui, E.: Atmospheric water balance in the Amazon Basin: an isotopic evapotranspiration model, J. Geophys. Res., 96, 13179–13188, 1991.
Gat, J. R., Shemesh, A., Tziperman, E., Hecht, A., Georgopoulos, D., and Basturk, O.: The stable water isotope composition of waters in the Eastern Mediterranean Sea, J. Geophys. Res., 101, 6441–6451, 1996.
Gates, W. L.: AMIP: the atmospheric model intercomparison project, B. Am. Meteor. Soc., 73, 1962–1970, 1992.
Gibson, J. J., Edwards, T. W. D., Birks, S. J., Amour, N. A. S., Buhay, W. M., McEachern, P., Wolfe, B. B., and Peters1, D. L.: Progress in isotope tracer hydrology in Canada, Hydrol. Processes, 19, 303–327, 2005.
Gurney, S. D. and Lawrence, D. S. L.: Seasonal trends in the stable isotopic composition of snow and meltwater runoff in a subarctic catchment at okstindan, Nord. Hydrol., 35, 119–137, 2004.
Hendricks, M., DePaolo, D., and Cohen, R.: Space and time variation of $\delta^{18O}$ and $\delta D$: can paelotemperatures be estimated from ice cores?, Glob. Geochem. Cy., 14, 851–861, 2000.
Hoffmann, G., Werner, M., and Heimann, M.: Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years, J. Geophys. Res., 103, 16871–16896, 1991.
Hourdin, F. and Armengaud, A.: The use of finite-volume methods for atmospheric advection of trace species, Part I: test of various formulations in a general circulation model, Mon. Weather Rev., 127, 822–837, 1999.
Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Friedlingstein, P., Grandpeix, J.-Y., Krinner, G., Levan, P., Li, Z.-X., and Lott, F.: The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection, Clim. Dynam., 27, 787–813, 2006.
Johnsen, S., Dansgaard, W., Clausen, H., and Langway, J. C.: Oxygen isotope profiles through the Antarctic and Greenland ice sheets, Nature, 235, 429–434, 1972.
Johnson, D. G., Jucks, K. W., Traub, W. A., and Chance, K. V.: Isotopic composition of stratospheric water vapor: implications for transport, J. Geophys. Res., 106, 12219–12226, 2001.
Joussaume, S. and Taylor, K. E.: Status of the paleoclimate modeling intercomparison project, in: Proceedings of the first international AMIP scientific conference, WCRP-92, Monterey, 15–19 May 1995, USA, 425–430, 1995.
Jouzel, J.: Isotopes in cloud physics: Multiphase and multistage condensation processes. Elsevier, 1986.
Jouzel, J.: Water stable isotopes: atmospheric composition and applications in polar ice core studies, Treatise on Geochemistry, 4, 213–243, 2003.
Jouzel, J. and Koster, R. D.: A reconsideration of the initial conditions used for stable water isotope models, J. Geophys. Res., 101, 22933–22938, 1996.
Jouzel, J. and Merlivat, L.: Deuterium and oxygen 18 in precipitation: modeling of the isotopic effects during snow formation, J. Geophys. Res., 89, 11749–11757, https://doi.org/10.1029/JD089iD07p11749, 1984.
Jouzel, J., Merlivat, L., and Lorius, C.: Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum, Nature, 299, 688–691, 1982.
Kendall, C. and Coplen, T. B.: Distribution of oxygen-18 and deuterium in river waters across the United States, Hydrol. Process., 15, 1363–1393, 2001.
Krinner, G., Viovy, N., de Noblet-Ducoudre, N., Ogee, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Glob. Biogeochem. Cycles, 19, GB1015, https://doi.org/10.1029/2003GB002199, 2005.
Lai, C.-T. and Ehleringer, J. R.: Deuterium excess reveals diurnal sources of water vapor in forest air, Oecologia, 165, 213–223, https://doi.org/10.1007/s00442-010-1721-2, 2011..
Landais, A., Barkan, E., and Luz, B: The triple isotopic composition of oxygen in leaf water, Geochim. Cosmochim. Ac., 70, 4105–4115, 2006.
Landais, A., Barkan, E., and Luz, B.: Record of δ18O and 17O-excess in ice from Vostock Antarctica during the last 150 000 years, Geophys. Res. Lett., 35, L02709, https://doi.org/10.1029/2007GL032096, 2008.
Landais, A., Risi, C., Bony, S., Vimeux, F., Descroix, L., Falourd, S., and Bouygues, A.: Combined measurements of 17O-excess and d-excess in African monsoon precipitation: implications for evaluating convective parameterizations, Earth Planet. Sci. Lett., 298, 104–112, 2010.
Landais, A., Ekaykin, A., Barkan, E., Winkler, R., and Luz, B.: Seasonal variations of 17O-excess and d-excess in snow precipitation at Vostok station, East Antarctica, J. Glaciol., 58, 725–733, https://doi.org/10.3189/2012JoG11J237, 2012a.
Landais, A., Steen-Larsen, H.-C., Guillevic, M., Masson-Delmotte, V., Vinther, B., and Winkler, R.: Triple isotopic composition of oxygen in surface snow and water vapor at NEEM (Greenland), Geochim. Cosmochim. Ac., 77, 304–316, 2012b.
Lawrence, J. R., Gedzelman, S. D., Dexheimer, D., Cho, H.-K., Carrie, G. D., Gasparini, R., Anderson, C. R., Bowman, K. P., and Biggerstaff, M. I.: Stable isotopic composition of water vapor in the tropics, J. Geophys. Res., 109, D06115, https://doi.org/10.1029/2003JD004046, 2004.
Lee, J.-E. and Fung, I.: "Amount effect" of water isotopes and quantitative analysis of post-condensation processes, Hydrol. Process., 22, 1–8, 2008.
Lee, J.-E., Fung, I., DePaolo, D. J., and Otto-Bliesner, B.: Water isotopes during the Last Glacial Maximum: new general circulation model calculations, J. Geophys. Res., 113, D19109, https://doi.org/10.1029/2008JD009859, 2008.
Lee, J., Feng, X., Faiia, A. M., Posmentier, E. S., Kirchner, J. W., Osterhuber, R., and Taylor, S.: (2010). Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice. Chemical Geology, 270, 126–134, https://doi.org/10.1016/j.chemgeo.2009.11.011, 2010.
Letreut, H. and Li, Z.-X.: Sensitivity of an atmospheric general circulation model to prescribed sst changes: feedback effects associated with the simulation of cloud optical properties. Cli, 5, 175–187, 1991.
Lorius, C., Merlivat, L., Jouzel, J., and Pourchet, M.: A 30000 yr isotope climatic record from Antarctic ice, Nature, 280, 644–648, 1979.
Luz, B. and Barkan, E.: Variations of 17O/16O and 18O/16O in meteoric waters, Geochim. Cosmochim. Ac., 74, 6276–6286, 2010.
Luz, B., Barkan, E., Yam, R., and Shemesh, A.: Fractionation of oxygen and hydrogen isotopes in evaporating water, Geochim. Cosmochim. Ac., 73, 6697–6703, 2009.
Majoube, M.: Fractionnement en 18O entre la glace et la vapeur d'eau, J. Chim. Phys., 68, 625–636, 1971a.
Majoube, M.: Fractionnement en Oxygène 18 et en Deutérium entre l'eau et sa vapeur, J. Chim. Phys., 10, 1423–1436, 1971b.
MARGO project members: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum, Nat. Geosci., 2, 127–132, 2008.
Marti, O., Braconnot, P., Bellier, J., Benshila, R., Bony, S., Brockmann, P., Cdule, P., Caubel, A., Denvil, S., Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Foujols, M.-A., Fichefer, T., Friedlingstein, P., Grandpeix, J.-Y., Hourdin, F., Krinner, G., Lévy, C., Madec, G., Musat, I., de Noblet, N., Polcher, J., and Tanlandier, C.: The new IPSL climate system model: IPSL-CM4, Technical report, IPSL, France, 2005.
Masson-Delmotte, V., Jouzel, J., Landais, A., Stievenard, M., Johnsen, S. J., White, J. W. C., Werner, M., Sveinbjornsdottir, A., and Fuhrer, K.: GRIP Deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin, Science, 309, 118–121, 2005.
Masson-Delmotte, V., Hou, S., Ekaykin, A., Jouzel, J., Aristarain, A., Bernardo, R. T., Bromwhich, D., Cattani, O., Delmotte, M., Falourd, S., Frezzotti, M., Gallée, H., Genoni, L., Isaksson, E., Landais, A., Helsen, M., Hoffmann, G., Lopez, J., Morgan, V., Motoyama, H., Noone, D., Oerter, H., Petit, J., Royer, A., Uemura, R., Schmidt, G., Schlosser, E., Simes, J., Steig, E., Stenni, B., Stievenard, M., van den Broeke, M., van de Wal, R., van den Berg, W.-J., Vimeux, F., and White, J.: A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation and isotopic modelling, J. Climate, 21, 3359–3387, 2008.
Masson-Delmotte, V., Braconnot, P., Hoffmann, G., Jouzel, J., Kageyama, M., Landais, A., Lejeune, Q., Risi, C., Sime, L., Sjolte, J., Swingedouw, D., and Vinther, B.: Sensitivity of interglacial Greenland temperature and δ18O: ice core data, orbital and increased CO2 climate simulations, Clim. Past, 7, 1041–1059, https://doi.org/10.5194/cp-7-1041-2011, 2011.
Meehl, G. A., Covey, K., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., Stouffer, R. J., and Taylor, K.: The WCRP CMIP3 multimodel dataset: a new era in climate change research, B. Am. Meteor. Soc., 7, 1383–1394, 2007.
Merlivat, L. and Jouzel, J.: Global climatic interpretation of the Deuterium-Oxygen 18 relationship for precipitation, J. Geophys. Res., 84, 5029–5332, 1979.
Merlivat, L. and Nief, G.: Fractionnement isotopique lors des changements d'états solide-vapeur et liquide-vapeur de l'eau à des températures inférieures à 0C, Tellus, 19, 122–127, 1967.
Noone, D.: The influence of midlatitude and tropical overturning circulation on the isotopic composition of atmospheric water vapor and Antarctic precipitation, J. Geophys. Res., 113, D04102, https://doi.org/10.1029/2007JD008892, 2008.
Peltier, W. R.: Ice age paleotopography, Science, 265, 195–201, 1994.
Polcher, J.: Les processus de surface à l'échelle globale et leurs interactions avec l'atmosphère, in: Thèse d'habilitation à diriger des recherches, Université Paris 6, 2003.
Risi, C., Bony, S., and Vimeux, F.: Influence of convective processes on the isotopic composition (18O and D) of precipitation and water vapor in the Tropics, Part 2: Physical interpretation of the amount effect, J. Geophys. Res., 113, D19306, https://doi.org/10.1029/2008JD009943, 2008a.
Risi, C., Bony, S., Vimeux, F., Descroix, L., Ibrahim, B., Lebreton, E., Mamadou, I., and Sultan, B.: What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA campaign, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL035920, 2008b.
Risi, C.: \em Les isotopes stables de l'eau: applications à l'étude du cycle de l'eau et des variations du climat, PhD thesis, Université Pierre et Marie Curie, 2009.
Risi, C., Bony, S., Vimeux, F., Chong, M., and Descroix, L.: Evolution of the water stable isotopic composition of the rain sampled along Sahelian squall lines, Quart. J. Roy. Meteor. Soc., 136, 227–242, 2010a.
Risi, C., Bony, S., Vimeux, F., and Jouzel, J.: Water stable isotopes in the LMDZ4 general circulation model: model evaluation for present day and past climates and applications to climatic interpretation of tropical isotopic records, J. Geophys. Res., 115, D12118, https://doi.org/10.1029/2009JD013255, 2010b.
Risi, C., Landais, A., Bony, S., Masson-Delmotte, V., Jouzel, J., and Vimeux, F.: Understanding the 17O-excess glacial-interglacial variations in Vostok precipitation, J. Geophys. Res, 115, D10112, https://doi.org/10.1029/2008JD011535, 2010c.
Risi, C., Noone, D., Worden, J., Frankenberg, C., Stiller, G., Kiefer, M., Funke, B., Walker, K., Bernath, P., Schneider, M., Wunch, D., Sherlock, V., Deutscher, N., Griffith, D., Wernberg, P., Bony, S., Lee, J., Brown, D., Uemura, R., and Sturm, C.: Process-evaluation of tropical and subtropical tropospheric humidity simulated by general circulation models using water vapor isotopic observations. Part 2: an isotopic diagnostic of the mid and upper tropospheric moist bias, J. Geophy. Res., 117, D05304, 2012.
Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R.: Isotopic patterns in modern global precipitation, Geophysical Monographs Series, AGU, Climate Change in Continental Isotopic records, vol. 78, edited by: Swart, P. K., Lohwan, K. L., McKenzie, J. A., and Savin, S., 1–36, AGU, Washington, D. C., \https://doi.org/10.1029/GM078p00011993, 1993.
Sayres, D. S., Pfister, L., Hanisco, T. F., Moyer, E. J., Smith, J. B., Clair, J. M. S., O'Brien, A. S., Witinski, M. F., Legg, M., and Anderson, J. G.: Influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere, J. Geophys. Res., 11, D00J20, https://doi.org/10.1029/2009JD013100, 2010.
Schoenemann, S. W., Schauer, A. J., and Steig, E. J.: Measurement of SLAP2 and GISP d17O and proposed VSMOWSLAP normalization for d17O and 17Oexcess, Rapid Commun. Mass Spectrom., 27, 582–590, 2013.
Sherwood, S. C.: Maintenance of the free tropospheric tropical water vapor distribution, part II: simulation of large-scale advection, J. Climate, 11, 2919–2934, 1996.
Sobel, A. H. and Bretherton, C. S.: Modeling tropical precipitation in a single column, J. Climate, 13, 4378–4392, 2000.
Sodemann, H., Masson-Delmotte, V., Schwierz, C., Vinther, B. M., and Wernli, H.: Interannual variability of Greenland winter precipitation sources: 2. Effects of North Atlantic Oscillation variability on stable isotopes in precipitation, J. Geophys. Res., 113, D12, https://doi.org/10.1029/2007JD009416, 2008.
Steen-Larsen, H.-C., Johnsen, S., Masson-Delmotte, V., Stenni, B., Risi, C., Sodemann, H., Balslev-Clausen, D., Blunier, T., Dahl-Jensen, D., Ellehoej, M., Falourd, S., Gkinis, V., Grindsted, A., Jouzel, J., Popp, T., Sheldon, S., Simonsen, S., Sjolte, J., Steffensen, J., Sperlich, P., Sveinbjornsdottir, A., Vinther, B., and White, J.: Continuous monitoring of summer surface water vapour isotopic composition above the greenland ice sheet, Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, 2013.
Stenni, B., Masson-Delmotte, V., Johnsen, S., Jouzel, J., Longinelli, A., Monnin, E., Röthlisberger, R., and Selmo, E.: An oceanic cold reversal during the last deglaciation, Science, 293, 2074–2077, 2001.
Stenni, B., Jouzel, J., Masson-Delmotte, V., Röthlisberger, R., Castellano, E., Cattani, O., Falourd, S., Johnsen, S., Longinelli, A., Sachs, J., Selmo, E., Souchez, R., Steffensen, J., and Udisti, R.: A late-glacial high-resolution site and source temperature record derived from the epica dome c isotope records (East Antarctica), Earth Planet. Sci. Lett., 217, 183–195, 2004.
Stewart, M. K.: Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: applications to atmospheric processes and evaporation of lakes, J. Geophys. Res., 80, 1133–1146, 1975.
Taylor, S., F. X. H. K. J. W. O. R. K. B. and Renshaw, C. E.: Isotopic evolution of a seasonal snowpack and its melt, Water Resour. Res., 37, 759–769, 2001.
Uemura, R., Matsui, Y., Yoshimura, K., Motoyama, H., and Yoshida, N.: Evidence of deuterium-excess in water vapour as an indicator of ocean surface conditions, J. Geophys. Res., 113, D19114, https://doi.org/10.1029/2008JD010209, 2008.
Uemura, R., Barkan, E., Abe, O., and Luz, B.: Triple isotope composition of oxygen in atmospheric water vapor, Geophy. Res. Lett., 37, L04402, https://doi.org/10.1029/2009GL041960, 2010.
Uppala, S., Kallberg, P., Simmons, A., Andrae, U., da Costa Bechtold, V., Fiorino, M., Gibson, J., Haseler, J., Hernandez, A., Kelly, G., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R., Andersson, E., Arpe, K., Balmaseda, M., Beljaars, A., van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Holm, E., Hoskins, B., Isaksen, L., Janssen, P., Jenne, R., McNally, A., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N., Saunders, R., Simon, P., Sterl, A., Trenberth, K., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012, 2005.
Van Hook, A.: Vapor pressures of the isotopic waters and ices. J. Phys. Chem., 1234, 1968.
Van Leer, B.: Towards the ultimate conservative difference scheme, IV: a new approach to numerical convection, J. Comput. Phys., 23, 276–299, 1977.
Vimeux, F., Masson, V., Jouzel, J., Stievenard, M., and Petit, J. R.: Glacial-interglacial changes in ocean surface conditions in the Southern Hemisphere, Nature, 398, 410–413, 1999.
Vimeux, F., Masson, V., Delaygue, G., Jouzel, J., Petit, J. R., and Stievenard, M.: A 420 000 year deuterium excess record from East Antarctica: information on past changes in the origin of precipitation at Vostok, J. Geophys. Res., 106, 31863–31873, 2001a.
Vimeux, F., Masson, V., Jouzel, J., Petit, J.-R., Steig, E., Stievenard, M., Vaikmae, R., and White, J. W.: Holocene hydrological cycle changes in the Southern Hemisphere documented in East antarctic deuterium excess records, Clim. Dynam., 17, 503–513, 2001b.
Vimeux, F., Cuffey, K., and Jouzel, J.: New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess correction, Earth Planet. Sci. Lett., 203, 829–843, 2002.
Vimeux, F., Gallaire, R., Bony, S., Hoffmann, G., and Chiang, J. C. H.: What are the climate controls on deltaD in precipitation in the Zongo Valley (Bolivia)? Implications for the Illimani ice core interpretation, Earth Planet. Sci. Lett., 240, 205–220, 2005.
Washburn, E. and Smith, E.: The isotopie fractionation of water by physiological processes, Science, 79, 188–189, 1934.
Welp, L., Lee, W., Griffis, T. J., Wen, X.-F., Xiao, W., Li, S., Sun, X., Hu, Z., Val Martin, M., and Huang, J.: A meta-analysis of water vapor deuterium-excess in the midlatitude atmospheric surface layer, Glob. Biogeochem. Cycles, 26, GB3021, https://doi.org/10.1029/2011GB004246, 2012.
Wen, X.-F., Zhang, S.-C., Sun, X.-M., Yu, G.-R., and Lee, X.: Water vapor and precipitation isotope ratios in Beijing, China. J. Geophys. Res, 115, D01103, https://doi.org/10.1029/2009JD012408, 2010.
Werner, M., Heimann, M., and Hoffmann, G.: Isotopic composition and origin of polar precipitation in present and glacial climate simulations, Tellus B, 53, 53–71, 2001.
Winkler, R., Landais, A., Sodemann, H., Dümbgen, L., Prié, F., Masson-Delmotte, V., Stenni, B., and Jouzel, J.: Deglaciation records of 17O-excess in East Antarctica: reliable reconstruction of oceanic normalized relative humidity from coastal sites, Clim. Past, 8, 1–16, https://doi.org/10.5194/cp-8-1-2012, 2012.
Winkler, R., Landais, Risi, C., A., Baroni, M., Ekaykin, A., Jouzel, J., Petit, J. R., Prie, F., Minster, B., Falourd, S.:Interannual variation of water isotopologues at Vostok indicates a contribution from stratospheric water vapor. Proc. Natl. Acad. Ssi., accepted, https://doi.org/10.1073/pnas.1215209110, 2013.
Worden, J., Noone, D., and Bowman, K.: Importance of rain evaporation and continental convection in the tropical water cycle, Nature, 445, 528–532, 2007.
Zahn, A., Franz, P., Bechtel, C., Grooß, J.-U., and Röckmann, T.: Modelling the budget of middle atmospheric water vapour isotopes, Atmos. Chem. Phys., 6, 2073–2090, https://doi.org/10.5194/acp-6-2073-2006, 2006.