Articles | Volume 9, issue 4
https://doi.org/10.5194/cp-9-1431-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-9-1431-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Holocene climate variations in the western Antarctic Peninsula: evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability
J. Etourneau
LOCEAN, UMR7159, CNRS/UPMC/IRD/MNHN, 4 Place Jussieu, 75252 Paris, France
L. G. Collins
LOCEAN, UMR7159, CNRS/UPMC/IRD/MNHN, 4 Place Jussieu, 75252 Paris, France
V. Willmott
Royal Netherlands Institute for Sea Research, Department of Marine Biogeochemistry and Toxicology, 1790 Den Burg, Texel, the Netherlands
J.-H. Kim
Royal Netherlands Institute for Sea Research, Department of Marine Biogeochemistry and Toxicology, 1790 Den Burg, Texel, the Netherlands
L. Barbara
EPOC, UMR5805, CNRS – Université Bordeaux 1, Avenue des Facultés, 33405 Talence, France
A. Leventer
Colgate University, Department of Geology, 13 Oak Drive, 13346 Hamilton, USA
S. Schouten
Royal Netherlands Institute for Sea Research, Department of Marine Biogeochemistry and Toxicology, 1790 Den Burg, Texel, the Netherlands
J. S. Sinninghe Damsté
Royal Netherlands Institute for Sea Research, Department of Marine Biogeochemistry and Toxicology, 1790 Den Burg, Texel, the Netherlands
A. Bianchini
Colgate University, Department of Geology, 13 Oak Drive, 13346 Hamilton, USA
V. Klein
LOCEAN, UMR7159, CNRS/UPMC/IRD/MNHN, 4 Place Jussieu, 75252 Paris, France
X. Crosta
EPOC, UMR5805, CNRS – Université Bordeaux 1, Avenue des Facultés, 33405 Talence, France
G. Massé
LOCEAN, UMR7159, CNRS/UPMC/IRD/MNHN, 4 Place Jussieu, 75252 Paris, France
Related authors
J. Etourneau, R. S. Robinson, P. Martinez, and R. Schneider
Biogeosciences, 10, 5663–5670, https://doi.org/10.5194/bg-10-5663-2013, https://doi.org/10.5194/bg-10-5663-2013, 2013
Isabel A. Dove, Ian W. Bishop, Xavier Crosta, Natascha Riedinger, R. Patrick Kelly, and Rebecca S. Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2023-2564, https://doi.org/10.5194/egusphere-2023-2564, 2023
Preprint archived
Short summary
Short summary
The diatom-bound nitrogen isotope proxy is used to study how efficiently diatoms in the Southern Ocean help to remove CO2 from the atmosphere, but may be biased by different diatom species. We examine a specific type of diatom, Chaetoceros resting spores (CRS), commonly preserved in Southern Ocean sediments. We find that CRS record surprisingly low δ15NDB values compared to other diatoms, yet changes in their relative abundance over time does not significantly bias previously published records.
Matthew Chadwick, Xavier Crosta, Oliver Esper, Lena Thöle, and Karen E. Kohfeld
Clim. Past, 18, 1815–1829, https://doi.org/10.5194/cp-18-1815-2022, https://doi.org/10.5194/cp-18-1815-2022, 2022
Short summary
Short summary
Algae preserved in seafloor sediments have allowed us to reconstruct how Antarctic sea ice has varied between cold and warm time periods in the last 130 000 years. The patterns and timings of sea-ice increase and decrease vary between different parts of the Southern Ocean. Sea ice is most sensitive to changing climate at the external edges of Southern Ocean gyres (large areas of rotating ocean currents).
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Ryan A. Green, Laurie Menviel, Katrin J. Meissner, Xavier Crosta, Deepak Chandan, Gerrit Lohmann, W. Richard Peltier, Xiaoxu Shi, and Jiang Zhu
Clim. Past, 18, 845–862, https://doi.org/10.5194/cp-18-845-2022, https://doi.org/10.5194/cp-18-845-2022, 2022
Short summary
Short summary
Climate models are used to predict future climate changes and as such, it is important to assess their performance in simulating past climate changes. We analyze seasonal sea-ice cover over the Southern Ocean simulated from numerical PMIP3, PMIP4 and LOVECLIM simulations during the Last Glacial Maximum (LGM). Comparing these simulations to proxy data, we provide improved estimates of LGM seasonal sea-ice cover. Our estimate of summer sea-ice extent is 20 %–30 % larger than previous estimates.
Jacob Jones, Karen E. Kohfeld, Helen Bostock, Xavier Crosta, Melanie Liston, Gavin Dunbar, Zanna Chase, Amy Leventer, Harris Anderson, and Geraldine Jacobsen
Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, https://doi.org/10.5194/cp-18-465-2022, 2022
Short summary
Short summary
We provide new winter sea ice and summer sea surface temperature estimates for marine core TAN1302-96 (59° S, 157° E) in the Southern Ocean. We find that sea ice was not consolidated over the core site until ~65 ka and therefore believe that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice does appear to have coincided with Antarctic Intermediate Water production and subduction, suggesting it may have influenced intermediate ocean circulation changes.
Matthew Chadwick, Claire S. Allen, Louise C. Sime, Xavier Crosta, and Claus-Dieter Hillenbrand
Clim. Past, 18, 129–146, https://doi.org/10.5194/cp-18-129-2022, https://doi.org/10.5194/cp-18-129-2022, 2022
Short summary
Short summary
Algae preserved in marine sediments have allowed us to reconstruct how much winter sea ice was present around Antarctica during a past time period (130 000 years ago) when the climate was warmer than today. The patterns of sea-ice increase and decrease vary between different parts of the Southern Ocean. The Pacific sector has a largely stable sea-ice extent, whereas the amount of sea ice in the Atlantic sector is much more variable with bigger decreases and increases than other regions.
Kelly-Anne Lawler, Giuseppe Cortese, Matthieu Civel-Mazens, Helen Bostock, Xavier Crosta, Amy Leventer, Vikki Lowe, John Rogers, and Leanne K. Armand
Earth Syst. Sci. Data, 13, 5441–5453, https://doi.org/10.5194/essd-13-5441-2021, https://doi.org/10.5194/essd-13-5441-2021, 2021
Short summary
Short summary
Radiolarians found in marine sediments are used to reconstruct past Southern Ocean environments. This requires a comprehensive modern dataset. The Southern Ocean Radiolarian (SO-RAD) dataset includes radiolarian counts from sites in the Southern Ocean. It can be used for palaeoceanographic reconstructions or to study modern species diversity and abundance. We describe the data collection and include recommendations for users unfamiliar with procedures typically used by the radiolarian community.
Kate E. Ashley, Xavier Crosta, Johan Etourneau, Philippine Campagne, Harry Gilchrist, Uthmaan Ibraheem, Sarah E. Greene, Sabine Schmidt, Yvette Eley, Guillaume Massé, and James Bendle
Biogeosciences, 18, 5555–5571, https://doi.org/10.5194/bg-18-5555-2021, https://doi.org/10.5194/bg-18-5555-2021, 2021
Short summary
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
Fanny Lhardy, Nathaëlle Bouttes, Didier M. Roche, Xavier Crosta, Claire Waelbroeck, and Didier Paillard
Clim. Past, 17, 1139–1159, https://doi.org/10.5194/cp-17-1139-2021, https://doi.org/10.5194/cp-17-1139-2021, 2021
Short summary
Short summary
Climate models struggle to simulate a LGM ocean circulation in agreement with paleotracer data. Using a set of simulations, we test the impact of boundary conditions and other modelling choices. Model–data comparisons of sea-surface temperatures and sea-ice cover support an overall cold Southern Ocean, with implications on the AMOC strength. Changes in implemented boundary conditions are not sufficient to simulate a shallower AMOC; other mechanisms to better represent convection are required.
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
Lisa Claire Orme, Xavier Crosta, Arto Miettinen, Dmitry V. Divine, Katrine Husum, Elisabeth Isaksson, Lukas Wacker, Rahul Mohan, Olivier Ther, and Minoru Ikehara
Clim. Past, 16, 1451–1467, https://doi.org/10.5194/cp-16-1451-2020, https://doi.org/10.5194/cp-16-1451-2020, 2020
Short summary
Short summary
A record of past sea temperature in the Indian sector of the Southern Ocean, spanning the last 14 200 years, has been developed by analysis of fossil diatoms in marine sediment. During the late deglaciation the reconstructed temperature changes were highly similar to those over Antarctica, most likely due to a reorganisation of global ocean and atmospheric circulation. During the last 11 600 years temperatures gradually cooled and became increasingly variable.
Nathaelle Bouttes, Didier Swingedouw, Didier M. Roche, Maria F. Sanchez-Goni, and Xavier Crosta
Clim. Past, 14, 239–253, https://doi.org/10.5194/cp-14-239-2018, https://doi.org/10.5194/cp-14-239-2018, 2018
Short summary
Short summary
Atmospheric CO2 is key for climate change. CO2 is lower during the oldest warm period of the last million years, the interglacials, than during the most recent ones (since 430 000 years ago). This difference has not been explained yet, but could be due to changes of ocean circulation. We test this hypothesis and the role of vegetation and ice sheets using an intermediate complexity model. We show that only small changes of CO2 can be obtained, underlying missing feedbacks or mechanisms.
Lisa Warden, Jung-Hyun Kim, Claudia Zell, Geert-Jan Vis, Henko de Stigter, Jérôme Bonnin, and Jaap S. Sinninghe Damsté
Biogeosciences, 13, 5719–5738, https://doi.org/10.5194/bg-13-5719-2016, https://doi.org/10.5194/bg-13-5719-2016, 2016
Short summary
Short summary
Enhanced analytical techniques were applied to characterize fossilized microbial cell membrane lipids from samples in the Tagus River basin spanning the last 6000 years. Using the novel methods and calibration, the pH estimates were improved upon, and this study reveals new factors that should be considered when using this proxy as well as affirms the importance of examining the provenance of these lipids before applying them for paleoclimate reconstructions.
Philippine Campagne, Xavier Crosta, Sabine Schmidt, Marie Noëlle Houssais, Olivier Ther, and Guillaume Massé
Biogeosciences, 13, 4205–4218, https://doi.org/10.5194/bg-13-4205-2016, https://doi.org/10.5194/bg-13-4205-2016, 2016
Short summary
Short summary
Diatoms and biomarkers have been recently used for palaeoclimate reconstructions in the Southern Ocean. Few sediment-based ecological studies have investigated their relationships with environmental conditions. Here, we compare high-resolution sedimentary records with meteorological data to study relationships between our proxies and recent atmospheric and sea surface changes. Our results indicate that coupled wind pattern and sea surface variability act as the proximal forcing at that scale.
Douwe S. Maat, Nicole J. Bale, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, Stefan Schouten, and Corina P. D. Brussaard
Biogeosciences, 13, 1667–1676, https://doi.org/10.5194/bg-13-1667-2016, https://doi.org/10.5194/bg-13-1667-2016, 2016
Short summary
Short summary
This study shows that the phytoplankter Micromonas pusilla alters its lipid composition when the macronutrient phosphate is in low supply. This reduction in phospholipids is directly dependent on the strength of the limitation. Furthermore we show that, when M. pusilla is infected by viruses, lipid remodeling is lower. The study was carried out to investigate how phytoplankton and its viruses are affected by environmental factors and how this affects food web dynamics.
R. L. Sobrinho, M. C. Bernardes, G. Abril, J.-H. Kim, C. I Zell, J.-M. Mortillaro, T. Meziane, P. Moreira-Turcq, and J. S. Sinninghe Damsté
Biogeosciences, 13, 467–482, https://doi.org/10.5194/bg-13-467-2016, https://doi.org/10.5194/bg-13-467-2016, 2016
Short summary
Short summary
The principal objective of the present work is to quantify the fractions of the principal sources of sedimentary organic matter (SOM) in floodplain lakes of the central Amazon basin. The results indicate that the main source of SOM is not the riverine particulate material, as postulated by the literature, but the macrophytes and the forests.
M. Rodrigo-Gámiz, S. W. Rampen, H. de Haas, M. Baas, S. Schouten, and J. S. Sinninghe Damsté
Biogeosciences, 12, 6573–6590, https://doi.org/10.5194/bg-12-6573-2015, https://doi.org/10.5194/bg-12-6573-2015, 2015
Short summary
Short summary
This research reports a test of the applicability of three organic-derived temperature proxies (UK'37, TEX86 and LDI) at high latitudes around Iceland. A range of samples including suspended particular material (SPM), trapped descending particles and surface sediments were collected to test the different proxies in the water column and the sediment.The combination of three independent SST organic proxies provided important information about seasonality and differences in habitat depth.
M. Sollai, E. C. Hopmans, S. Schouten, R. G. Keil, and J. S. Sinninghe Damsté
Biogeosciences, 12, 4725–4737, https://doi.org/10.5194/bg-12-4725-2015, https://doi.org/10.5194/bg-12-4725-2015, 2015
Short summary
Short summary
The distribution of Thaumarchaeota and anammox bacteria in the water column of the eastern tropical North Pacific (ETNP) oxygen-deficient zone (ODZ) was investigated by collecting suspended particulate matter (SPM) and analyzing it for the content of specific intact polar lipids (IPLs) produced by the two microbial groups. We found a clear niche segregation in the distribution of the two groups in the coastal waters of the ETNP but a partial overlap of their niches in the open-water setting.
C. Bottini, E. Erba, D. Tiraboschi, H. C. Jenkyns, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 11, 383–402, https://doi.org/10.5194/cp-11-383-2015, https://doi.org/10.5194/cp-11-383-2015, 2015
C. Zell, J.-H. Kim, M. Balsinha, D. Dorhout, C. Fernandes, M. Baas, and J. S. Sinninghe Damsté
Biogeosciences, 11, 5637–5655, https://doi.org/10.5194/bg-11-5637-2014, https://doi.org/10.5194/bg-11-5637-2014, 2014
L. K. Buckles, J. W. H. Weijers, X.-M. Tran, S. Waldron, and J. S. Sinninghe Damsté
Biogeosciences, 11, 5539–5563, https://doi.org/10.5194/bg-11-5539-2014, https://doi.org/10.5194/bg-11-5539-2014, 2014
C. López-Rodríguez, A. Stadnitskaia, G. J. De Lange, F. Martínez-Ruíz, M. Comas, and J. S. Sinninghe Damsté
Biogeosciences, 11, 3187–3204, https://doi.org/10.5194/bg-11-3187-2014, https://doi.org/10.5194/bg-11-3187-2014, 2014
S. Kasper, M. T. J. van der Meer, A. Mets, R. Zahn, J. S. Sinninghe Damsté, and S. Schouten
Clim. Past, 10, 251–260, https://doi.org/10.5194/cp-10-251-2014, https://doi.org/10.5194/cp-10-251-2014, 2014
S. T. Belt, T. A. Brown, L. Ampel, P. Cabedo-Sanz, K. Fahl, J. J. Kocis, G. Massé, A. Navarro-Rodriguez, J. Ruan, and Y. Xu
Clim. Past, 10, 155–166, https://doi.org/10.5194/cp-10-155-2014, https://doi.org/10.5194/cp-10-155-2014, 2014
S. K. Lengger, Y. A. Lipsewers, H. de Haas, J. S. Sinninghe Damsté, and S. Schouten
Biogeosciences, 11, 201–216, https://doi.org/10.5194/bg-11-201-2014, https://doi.org/10.5194/bg-11-201-2014, 2014
D. S. Maat, N. J. Bale, E. C. Hopmans, A.-C. Baudoux, J. S. Sinninghe Damsté, S. Schouten, and C. P. D. Brussaard
Biogeosciences, 11, 185–194, https://doi.org/10.5194/bg-11-185-2014, https://doi.org/10.5194/bg-11-185-2014, 2014
N. J. Bale, L. Villanueva, E. C. Hopmans, S. Schouten, and J. S. Sinninghe Damsté
Biogeosciences, 10, 7195–7206, https://doi.org/10.5194/bg-10-7195-2013, https://doi.org/10.5194/bg-10-7195-2013, 2013
J. Etourneau, R. S. Robinson, P. Martinez, and R. Schneider
Biogeosciences, 10, 5663–5670, https://doi.org/10.5194/bg-10-5663-2013, https://doi.org/10.5194/bg-10-5663-2013, 2013
P. Mathiot, H. Goosse, X. Crosta, B. Stenni, M. Braida, H. Renssen, C. J. Van Meerbeeck, V. Masson-Delmotte, A. Mairesse, and S. Dubinkina
Clim. Past, 9, 887–901, https://doi.org/10.5194/cp-9-887-2013, https://doi.org/10.5194/cp-9-887-2013, 2013
B. Veuger, A. Pitcher, S. Schouten, J. S. Sinninghe Damsté, and J. J. Middelburg
Biogeosciences, 10, 1775–1785, https://doi.org/10.5194/bg-10-1775-2013, https://doi.org/10.5194/bg-10-1775-2013, 2013
Related subject area
Subject: Ice Dynamics | Archive: Marine Archives | Timescale: Holocene
Deglacial and Holocene sea-ice and climate dynamics in the Bransfield Strait, northern Antarctic Peninsula
Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat
Deglacial to postglacial history of Nares Strait, Northwest Greenland: a marine perspective from Kane Basin
Trace elements and cathodoluminescence of detrital quartz in Arctic marine sediments – a new ice-rafted debris provenance proxy
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Kate E. Ashley, Robert McKay, Johan Etourneau, Francisco J. Jimenez-Espejo, Alan Condron, Anna Albot, Xavier Crosta, Christina Riesselman, Osamu Seki, Guillaume Massé, Nicholas R. Golledge, Edward Gasson, Daniel P. Lowry, Nicholas E. Barrand, Katelyn Johnson, Nancy Bertler, Carlota Escutia, Robert Dunbar, and James A. Bendle
Clim. Past, 17, 1–19, https://doi.org/10.5194/cp-17-1-2021, https://doi.org/10.5194/cp-17-1-2021, 2021
Short summary
Short summary
We present a multi-proxy record of Holocene glacial meltwater input, sediment transport, and sea-ice variability off East Antarctica. Our record shows that a rapid Antarctic sea-ice increase during the mid-Holocene (~ 4.5 ka) occurred against a backdrop of increasing glacial meltwater input and gradual climate warming. We suggest that mid-Holocene ice shelf cavity expansion led to cooling of surface waters and sea-ice growth, which slowed basal ice shelf melting.
Eleanor Georgiadis, Jacques Giraudeau, Philippe Martinez, Patrick Lajeunesse, Guillaume St-Onge, Sabine Schmidt, and Guillaume Massé
Clim. Past, 14, 1991–2010, https://doi.org/10.5194/cp-14-1991-2018, https://doi.org/10.5194/cp-14-1991-2018, 2018
Short summary
Short summary
We present our results from a radiocarbon-dated core collected in central Nares Strait, NW Greenland. Sedimentological and geochemical data reveal that marine sedimentation began ca. 9.0 cal ka BP with the complete opening of the strait occurring at 8.3 cal ka BP. The collapse of the glacial buttress in central Nares Strait led to accelerated glacial fluxes of the bordering ice sheets between 8.3 and 7.5 cal ka BP, while the Humboldt Glacier retreated in eastern Kane Basin ca. 8.1 cal ka BP.
A. Müller and J. Knies
Clim. Past, 9, 2615–2630, https://doi.org/10.5194/cp-9-2615-2013, https://doi.org/10.5194/cp-9-2615-2013, 2013
Cited articles
Abram, N., Mulvaney, R., Wolff, E.W., Triest, J., Kipfsthul, S., Trusel, L.D., Vimeux, F., Fleet, L., and Arrowsmith, C.: Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century, Nat. Geosci., 6, 404–411, https://doi.org/10.1038/NGEO1787, 2013.
Allen, C. S., Pike, J., Pudsey, C. J., and Leventer, A.: Submillennial variations in ocean conditions during deglaciation based on diatom assemblages from the southwest Atlantic, Paleoceanography, 20, PA2012, https://doi.org/10.1029/2004PA001055, 2005.
Allen, C. S., Oakes-Fretwell, L., Anderson, J. B., and Hodgson, D. A.: A record of Holocene glacial and oceanographic variability in Neny Fjord, Antarctic Peninsula, Holocene, 20, 551–564, 2010.
Alonso-Sáez, L., Waller, A. S., Mende, D. R., Bakker, K., Farnelid, H., Yager, P. L., Lovejoy, C., Tremblay, J.-É. Potvin, M., Heinrich, F., Estrada, Riemann, M., L., Bork, P., Pedrós-Alió, C., and Bertilsson, S.: Role for urea in nitrification by polar marine Archaea, Proc. Natl. Acad. Sci. USA, 109, 17989–17994, https://doi.org/10.1073/pnas.1201914109, 2012.
Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher, M. Q., Anderson, B. E., and Burckle, L. H.: Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2, Science, 323, 1443–1448, 2009.
Annett, A. L., Carson, D. S., Crosta, X., Clarke, A., and Ganeshram, R. S.: Seasonal progression of diatom assemblages in surface waters of Ryder Bay, Antarctica, Polar Biol., 33, 13–29, 2010.
Arrigo, K. R., van Dijken, G. L., Ainley, D. G., Fahnestock, M. A., and Markus, T.: Ecological impact of a large Antarctic iceberg, Geophys. Res. Lett., 29, 8-1–8-4, https://doi.org/10.1029/2001GL014160, 2002.
Barbara, L., Crosta, X., Massé, G., and Ther, O.: Deglacial envrionments in eastern Prydz Bay, East Antarctica, Quaternary Sci. Rev., 29, 2731–2740, 2010.
Barber, D. C., Dyke, A., Hillaire-Marcel, C., Jennings, A. E., Andrews, J. T., Kerwin, M. W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M. D., and Gagnon, J.-M.: Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes, Nature, 400, 344–348, 1999.
Belt, S. T., Allard, W. G., Massé, G., Robert, J. M., and Rowland, S. J.: Highly branched isoprenoids (HBIs): identification of the most common and abundant sedimentary isomers, Geochim. Cosmoschim. Acta, 64, 3839–3851, 2000.
Belt, S. T., Massé, G., Rowland, S. J., Poulin, M., Michel, C., and LeBlanc, B.: A novel chemical fossil of palaeo sea ice: IP25, Org. Geochem., 38, 16–27, 2007.
Bentley, M. J., Hodgson, D. A., Smith, J. A., Ó Cofaigh, C., Domack, E. W., Larter, R. D., Roberts, S. J., Brachfeld, S., Leventer, A., Hjort, C., Hillenbrand, C.-D., and Evans, J.: Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula region, Holocene, 19, 51–69, 2009.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last 10 million years, Quarternary Sci. Rev., 10, 297–317, 1991.
Buffen, A., Leventer, A., Rubin, A., and Hutchins, T.: Diatom assemblages in surface sediments of the northwestern Weddell Sea, Antarctic Peninsula, Marine Micropal., 62, 7–30, 2007.
Chazen, C. R., Altabet, M. A., and Herbert, T.: Abrupt mid-Holocene onset of centennial-scale climate variability on the Peru-Chile Margin, Geophys. Res. Let., 36, L18704, https://doi.org/10.1029/2009GL039749, 2009.
Collins, L. G., Allen, C. S., Pike, J., Hodgson, D. A., Weckstrom, K., and Masse, G.: Evaluating highly branched isoprenoid (HBI) biomarkers as a novel Antarctic sea-ice proxy in deep ocean glacial age sediments, Quaternary Sci. Rev., https://doi.org/10.1016/j.quascirev.2013.02.004, in press, 2013.
Conroy, J. L., Overpeck, J. T., Cole, J. E., Shanahan, T. M., and Steinitz-Kannan, M.: Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record, Quaternary Sci. Rev., 27, 1166–1180, 2008.
Cowie, R. O. M., Maas, E. W., and Ryan, K. G.: Archaeal diversity revealed in Antarctic sea ice, Antarct. Sci., 23, 531–536, 2011.
Crosta, X. and Koç, N.: Diatoms: From Micropaleontology to Isotope Geochemistry, in "Developments in Marine Geology", 327–369, Elsevier, 2007.
Crosta, X., Pichon, J.-J., and Labracherie, M.: Distribution of Chaetoceros resting spore in modern peri-Antarctic sediments, Mar. Micropal., 29, 283–299, 1997.
Crosta, X., Pichon, J. J., and Burckle, L. H.: Application of modern analog technique to marine Antarctic diatoms: Reconstruction of maximum sea-ice extent at the Last Glacial Maximum, Paleoceanography, 13, 284–297, 1998.
Crosta, X., Sturm, A., Armand, L., and Pichon, J. J.: Late Quaternary sea ice history in the Indian sector of the Southern Ocean as recorded by diatom assemblages, Mar. Micropal., 50, 209–223, 2004.
Crosta, X., Debret, M., Denis, D., Courty, M. A., and Ther, O.: Holocene long- and short-term climate changes off Adelie Land, East Antarctica, Geochem. Geophys. Geosyst., 8, 1–15, 2007.
Crosta, X., Denis, D., and Ther, O.: Sea ice seasonality during the Holocene, Adélie Land, East Antarctica, Mar. Micropal., 66, 222–232, 2008.
Das, S. and Alley, R. B.: Rise in frequency of surface melting at Siple Dome through the Holocene: Evidence for increasing marine influence on the climate of West Antarctica, J. Geophys. Res.-Atmos., 113, D02112, https://doi.org/10.1029/2007JD008790, 2008.
Denis, D., Crosta, X., Zaragosi, S., Romero, O., Martin, B., and Mas, V.: Seasonal and subseasonal climate changes recorded in laminated diatom ooze sediments, Adelie Land, East Antarctica, Holocene, 16, 1137–1147, 2006.
Denis, D., Crosta, X., Barbara, L., Massé, G., Renssen, H., Ther, O., and Giraudeau, J.: Sea ice and wind variability during the Holocene in East Antarctica: insight on middle–high latitude coupling, Quaternary Sci. Rev., 29, 3709–3719, 2010.
Dierssen, H. M., Smith, R. C., and Vernet, M.: Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula, Proc. Natl. Acad. Sci. USA, 99, 1790–1795, 2002.
Doake, C. S. M. and Vaughan, D. G.: Rapid disintegration of the wordie ice shelf in response to atmospheric warming, Nature, 350, 328–330, 1991.
Domack, E., Leventer, A., Dunbar, R., Taylor, F., Brachfeld, S., and Sjunneskog, C.: Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic, Holocene, 11, 1–9, 2001.
Domack, E., Leventer, A., Burnett, A., Bindschadler, R., Convey, P. and Kirby, M., 2003: Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives. Antarct. Res. Ser. AGU, Washington, DC, 260 pp., 2003.
Ellison, C. R. W., Chapman, M. R., and Hall, I. R.: Surface and deep ocean interactions during the cold climate event 8200 years ago, Science, 312, 1929–1932, 2006.
Fryxell, G. A.: Marine phytoplankton at the Weddell Sea ice edge: seasonal changes at the specific level, Polar Biol., 10, 1–18, 1989.
Fryxell, G. A. and Prasad, A. K. S. K.: Eucampia antarctica var. recta (Mangin) stat. nov. (Biddulphiaceae, Bacillariophyceae): life stages at the Weddell Sea ice edge, Phycologia, 29, 27–38, 1990.
Gersonde, R. and Zielinski, U.: The reconstruction of Late Quaternary Antarctic sea-ice distribution – the use of diatoms as a proxy for sea ice, Palaeogeo. Palaeoclim. Palaeoecol., 162, 263–286, 2000.
Gersonde, R., Crosta, X., Abelmann, A., and Armand, L.: Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum – a circum-Antarctic view based on siliceous microfossil records, Quaternary Sci. Rev., 24, 869–896, 2005.
Grzymski, J. J., Riesenfeld, C. S., Williams, T. J., Dussaq, A. M., Ducklow, H., Erickson, M., Cavicchioli, R., and Murray, A. E.: A metanogenomic assessment of winter and summer bacterioplankton from Antarctica Peninsula costal surface water, ISME J., 6, 1901–1915, 2012.
Heroy, D. C., Sjunneskog, C., and Anderson, J. B.: Holocene climate change in the Bransfield basin, Antarctic Peninsula: evidence from sediment and diatom analysis, Antarctic Sci., 20, 69–87, 2008.
Hopmans, E. C., Schouten, S., Pancost, R. D., Meer, J. v. d., and Sinninghe Damsté J. S.: Analysis of intact tetraether lipids in archaeal cell material and sediments using high performance liquid chromatography/atmospheric pressure ionization mass spectrometry, Rapid Com. Mass Spectrom., 14, 585–589, 2000.
Hopmans, E. C., Weijers, J. W. H., Schefuß, E., Herfort, L., Sinninghe Damsté, J. S., and Schouten, S.: A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids, Earth Planet. Sci. Lett., 224, 107–116, 2004.
Huybers, P. and Denton, G.: Antarctic temperature at orbital timescales controlled by local summer duration, Nat. Geosci., 1, 787–792, 2008.
Iizuka, Y., Hondoh, T., and Fujii, Y.: Antarctic sea ice extent during the Holocene reconstructed from inland ice core evidence, J. Geophys. Res., 113, D15114, https://doi.org/10.1029/2007JD009326, 2008.
Ishman, S. E. and Sperling, M. R.: Benthic foraminiferal record of Holocene deep-water evolution in the Palmer Deep, western Antarctic Peninsula, Geology, 30, 435–438, 2002.
Jensen, S., Renberg, L., and Reutergårdh.: Residue analysis of sediment and sewage sludge for organochlorines in the presence of elemental sulphur, Anal. Chem., 49, 316–318, 1977.
Johns, L., Wraige, E. J., Belt, S. T., Lewis, C. A., Massé, G., Robert, J.-M., and Rowland, S. J.: Identification of C25 Highly Branched Isoprenoid (HBI) Dienes in Antarctic sediments, sea-ice diatoms and laboratory cultures of diatoms, Org. Geochem., 30, 1471–1475, 1999.
Joughin, I. and Alley, R. B.: Stability of the West Antarctic ice sheet in a warming world, Nat. Geosci., 4, 506–513, 2011.
Kaczmarska, I., Barbrick, N. E., Ehrman, J. M., and Cant, G. P.: Eucampia Index as an indicator of the Late Pleistocene oscillations of the winter sea-ice extent at the ODP Leg 119 Site 745B at the Kerguelen Plateau, Hydrobiologia, 269/270, 103–112, 1993.
Kalanetra, K. M., Bano, N., and Hollibaugh, J. T.: Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters, Environ. Microbiol., 11, 2434–2445, 2009.
Kim, J.-H., Schouten, S., Hopmans, E.., Donner, B., and Sinninghe Damsté, J. S.: Global sediment core-top calibration of the TEX86 paleothermometer in the ocean, Geochim. Cosmochim. Acta, 72, 1154–1173, 2008.
Kim, J.-H., Meer, J. v. d., Schouten, S., Helmke, P., Wilmott, V., Sangiorgi, F., Koç, N., Hopmans, E. C., and SinningheDamsté, J. S.: New indices and calibrations derived from the distribution of creanarchaealisoprenoidtetraether lipids: Implications for past sea surface temperature reconstructions, Geochim. Cosmochim. Acta, 74, 4639–4654, 2010.
Kim, J.-H., Crosta, X., Willmott, V., Renssen, H., Massé, G., Bonnin, J., Helmke, P., Schouten, S., and Sinninghe Damsté, J. S.: Increase in Late Holocene subsurface temperature variability in East Antarctica, Geophys. Res. Lett., 39, L06705, https://doi.org/10.1029/2012GL051157, 2012.
King, J.: Recent climate variability in the vicinity of the Antarctic Peninsula, Int. J. Climatol., 14, 357–369, 1994.
Klinck, J. M., Hofmann, E. E., Beardsley, R. C., Salihoglu, B., and Howard, S.: Watermass properties and circulation on the west Antarctic Peninsula Continental Shelf in Austral Fall and Winter 2001, Deep-Sea Res. Part II, 51, 1925–1946, 2004.
Krebs, W. N.: Ecology of neritic marine diatoms, Arthur Harbor, Antarctica, Micropaleontology, 29, 267–297, 1983.
Kwok, R. and Comiso, J. C.: Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation, Am. Meteorol. Soc., 15, 487–501, 2002.
Lamy, F., Kilian, R., Arz, H. W., François, J.-P., Kaiser, J., Prange, M., and Steinke, T.: Holocene changes in the position and intensity of the southern westerly wind belt, Nat. Geosci., 3, 695–699, 2010.
Leventer, A.: The fate of Antarctic "sea-ice diatoms" and their use as paleoenvironmental indicators, in: Antarctic sea ice biological processes, interactions and variability, AGU Antarctic Res. Series, edited by: Lizotte, M. and Arrigo, K., 121–137, 1626–1644, 1998.
Leventer, A., Domack, E. W., Ishman, S. E., Brachfeld, S., McClennen, C. E., and Manley, P.: Productivity cycles of 200–300 years in the Antarctic Peninsula region: Understanding linkages among the sun, atmosphere, oceans, sea ice, and biota, Geolog. Soc. Am. Bull., 108, 1626–1644, 1996.
Leventer, A., Domack, E., Barkoukis, A., McAndrews, B., and Murray, J.: Laminations from the Palmer Deep: A diatom-based interpretation, Paleoceanography, 17, https://doi.org/10.1029/2001PA000624, 2002.
Levitus, S. and Boyer, T.P.: World Ocean Atlas 1994, Volume 4: Temperature, number 4, 1994.
Levitus, S., Antonov, J. I., Boyer, T. P., and Stephens, C.: Warming of the world ocean, Science, 287, 2225–2229, 2000.
Makou, M. C., Eglinton, T. I., Oppo, D. W., and Hughen, K. A.: Postglacial changes in El Niño and La Niña behavior, Geology, 38, 43–46, 2011.
Marinov, I., Gnanadesikan, A., Toggweiler, J. R., and Sarmiento, J. L.: The Southern Ocean biogeochemical divide, Nature, 441, 964–967, 2006.
Martinson, D. G., Stammerjohn, S. E., Iannuzzi, R. A., Smith, R. C., and Vernet, M.: Western Antarctic Peninsula physical oceanography and spatio-temporal variability, Deep Sea Res. Part II, 55, 1964–1987, 2008.
Massé, G., Rowland, S. J., Sicre, M.-A., Jacob, J., Jansen, E., and Belt, S. T.: Abrupt climate changes for Iceland during the last millennium: Evidence from high resolution sea ice reconstructions, Earth Planet. Sci. Lett., 269, 564–568, 2008.
Massé, G., Belt, S., Crosta, X., Schmidt, S., Snape, I., Thomas, D. N., and Rowland, S. J.: Highly branched isoprenoids as proxies for variable sea ice conditions in the Southern Ocean, Antarct. Sci., 23, 487–498, 2011.
Moffat, C., Breadsley, R. C., Owens, B., and van Lipzig, N.: A first description of the Antarctic Peninsula Coastal Current, Deep Sea Res. Part II, 55, 277–293, 2008.
Montade, V., Combourieu Nebout, N., Chapron, E., Mulsow, S., Abarzúa, A. M., Debret, M., Foucher, A., Desmet, M., Winiarski, T., and Kissel, C.: Regional vegetation and climate changes during the last 13 kyr from a marine pollen record in Seno Reloncaví, southern Chile, Rev. Palaeobotany and Palynology, 181, 11–21, 2012.
Moreno, P. I., François, J. P., Moy, C. M., and Villa-Martinez, R.: Covariability of the Southern Westerlies and atmospheric CO2 during the Holocene, Geology, 38, 727–730, 2010.
Morrill, C. and Jacobsen, R. M.: How widespread were climate anomalies 8200 years ago?, Geophys. Res. Lett., 32, L19701, https://doi.org/10.1029/2005GL023536, 2005.
Moy, C. M., Seltzer, G. O., Rodbell, D. T., and Anderson, D. M.: Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch, Nature, 420, 162–165, 2002.
Mulvaney, R., Abram, N. J., Hindmarsh, C. A., Arrowsmith, C., Fleet, L., Triest, J., Sime, L. C., Alemany, O., and Foord, S.: Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history, Nature, 489, 141–145, 2012.
Murray, A. E., Preston, C. M., Massana, R., Taylor, L. T., Blakis, A., Wu, K., and DeLong, E. F.: Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica, Appl. Environ. Microbiol., 64, 2585–2595, 1998.
Nielsen, S. H. H., Koç, N., and Crosta, X.: Holocene climate in the Atlantic sector of the Southern Ocean: controlled by insolation or oceanic circulation?, Geology, 32, 317–320, 2004.
Orsi, A. H., Smethie Jr., W. M., and Bullister, J. L.: On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements, J. Geophys. Res., 107, 3122, https://doi.org/10.1029/2001JC000976, 2002.
Pike, J., Allen, C. S., Leventer, A., Stickley, C., and Pudsey, C. J.: Comparison of contemporary and fossil diatom assemblages from the western Antarctic Peninsula shelf, Mar. Micropal., 67, 274–287, 2008.
Pike, J., Crosta, X., Maddison, E. J., Stickley, C. E., Denis, D., Barbara, L., Renssen, H., and Leventer, A.: Observations on the relationship between the Antarctic coastal diatoms Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen and sea ice concentrations during the Late Quaternary, Mar. Micropal., 73, 14–25, 2009.
Pike, J., Swann, G. E. A., Leng, M. J., and Snelling, A. M.: Glacial discharge along the west Antarctic Peninsula during the Holocene, Nat. Geosci., 6, 199–202, 2013.
Renssen, H., Goosse, H., Fichefet, T., Masson-Delmotte, V., and Koc, N.: Holocene climate evolution in the high-latitude Southern Hemisphere simulated by a coupled atmosphere-sea ice-ocean-vegetation model, Holocene, 15, 951–964, 2005.
Rignot, E.: Changes in ice dynamics and mass balance of the Antarctic ice sheet, Philosophical transactions of the royal society, 364, 1637–1655, 2006.
Rintoul, S. R., Hughes, C. W., and Olbers, D.: The Antarctic Circumpolar Current System, in: Ocean Circulation and Climate. Observing and Modelling the Global Ocean, edited by: Siedler, G., Church, J., and Gould, J., 271–302, Academic Press, 2001.
Riis, V. and Babel, W.: Removal of sulfur interfering in the analysis of organochlorines by GC-ED, Analyst, 124, 1771–1773, 1999.
Robson, J. N., and Rowland, S. J.: Biodegradation of highly branched isoprenoid hydrocarbons: A possible explanation of sedimentary abundance, Org. Geochem., 13, 691–695, 1988.
Rohling, E. J. and Pälike, H.: Centennial-scale climate cooling with a sudden cold event around 8,200 years ago, Nature, 434, 975–979, 2005.
Rott, H., Skvarca, P., and Agler, T.: Rapid collapse of Northern Larsen Ice Shelf, Antarct. Sci., 271, 788–792, 1996.
Russell, A. and McGregor, G.: Southern Hemisphere atmospheric circulation: impacts on Antarctic climate and reconstructions from Antarctic ice core data, Clim. Change, 99, 155–192, 2010.
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P.: High-latitude controls of thermocline nutrients and low latitude biological productivity, Nature, 427, 56–60, 2004.
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J. S.: Distributional variations in marine crenarchaeotal membrane lipids: A new organic proxy for reconstructing ancient sea water temperatures, Earth Planet. Sci. Lett., 204, 265–274, 2002.
Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M., and Sinninghe Damsté J. S.: Analytical Methodology for TEX86 Paleothermometry by High-Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization-Mass Spectrometry, Anal. Chem., 79, 2940–2944, 2007.
Shevenell, A. E. and Kennett, J. P.: Antarctic Holocene climate change: a benthic foraminifer stable isotope record from Palmer Deep, Paleoceanography, 17, https://doi.org/10.1029/2000PA000596, 2002.
Shevenell, A. E., Domack, E. W., and Kernan, G. M.: Record of Holocene palaeoclimate change along the Antarctic Peninsula: evidence from glacial marine sediments, Lallemand Fjord, Papers and Proceedings of the Royal Society of Tasmania, 130, 55–64, 1996.
Shevenell, A. E., Ingalls, A. E., Domack, E. W., and Kelly, C.: Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula, Nature, 470, 250–254, 2011.
Sievers, H. A. and Nowlin Jr., W. D.: The stratification and water masses at Drake Passage, J. Geophys. Res., 89, 10489–10514, 1984.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Coolen, M. J. L., Schouten, S., and Volkman, J. K.: Rapid sulfurisation of highly branched isoprenoid (HBI) alkenes in sulfidic Holocene sediments from Ellis Fjord, Antarctica, Org. Geochem., 38, 128–139, 2007.
Sjunneskog, C. and Taylor, F.: Postglacial marine diato record of the Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1098) 1. Total diatom abundance, Paleoceanography, 17, https://doi.org/10.1029/2000PA000563, 2002.
Smith, D. A., Hofmann, E. E., Klinck, J. M., and Lascara, C. M.: Hydrography and circulation of the west Antarctic Peninsula continental shelf, Deep-Sea Res. Part I, 46, 925–949, 1999.
Stammerjohn, S. E. and Smith, R. C.: Spatial and temporal variability of western Antarctic Peninsula sea ice coverage, in: Foundations for ecological research west of the Antarctic Peninsula, 81–104, AGU, 1996.
Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X., and Rind, D.: Trends in Antarctic annual sea ice retreat and advance and their relation to El Nino-Southern Oscillation and Southern Annular Mode variability, J. Geophys. Res., 108, C03S90, https://doi.org/10.1029/2002JC001543, 2008a.
Stammerjohn, S. E., Martinson, D. G., Smith, R. C., and Iannuzzi, R. A.: Sea ice in the western Antarctic Peninsula region: Spatio-temporal variability from ecological and climate change perspectives, Deep Sea Res. Part II, 55, 2041–2058, 2008b.
Steig, E. J.: Climate change: brief but warm Antarctic summer, Nature, 498, 39–41, 2012.
Steig, E. J., Schneider, D. P., Rutherfold, S. D., Mann, M. E., Comiso, J. C., and Shindell, D. T.: Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical year, Nature, 457, 459–463, 2009.
Taylor, F. and Sjunneskog, C.: Postglacial marine diatom record of the Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1098) 2; Diatom assemblages, Paleoceanography, 17, https://doi.org/10.1029/2000PA000564, 2002.
Taylor, F., Whitehead, J., and Domack, E.: Holocene paleoclimate change in the Antarctic Peninsula: evidence from the diatom, sedimentary and geochemical record, Mar. Micropal., 41, 25–43, 2001.
Toggweiler, J. R., Russell, J. L., and Carson, S. R.: Mid latitude westerlies, atmospheric CO2, and climate change during the ice ages, Paleoceanography, 21, PA2005, https://doi.org/10.1029/2005PA001154, 2006.
Turner, J.: The El Niño-Southern Oscillation and Antarctica, Int. J. Climatol., 24, 1–31, 2004.
Varma, V., Prange, M., Merkel, U., Kleinen, T., Lohmann, G., Pfeiffer, M., Renssen, H., Wagner, A., Wagner, S., and Schulz, M.: Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models, Clim. Past, 8, 391–402, https://doi.org/10.5194/cp-8-391-2012, 2012.
Vaughan, D. G. and Doake, C. S. M.: Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula, Nature, 379, 328–331, 1996.
Vaughan, D. G., Marshall, G. J., Conrolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J., and Turner, J.: Recent rapid regional climate warming on the Antarctic Peninsula, Clim. Change, 60, 243–274, 2003.
Volkman, J. K., Barrett, S. M., and Dunstan, G. A.: C25 and C30 highly branchedisoprenoid alkenes in laboratory cultures of two marine diatoms, Org. Geochem., 21, 407–413, 1994.
Weijers, J. W. H., Schouten, S., Spaargaren, O., and Sinninghe Damsté, J. S.: Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index, Org. Geochem., 37, 1680–1693, 2006.
Whitehead, J. M., Wotherspoon, S., and Bohaty, S. M.: Minimal Antarctic sea ice during the Pliocene, Geology, 33, 137–140, 2005.
Willmott, V., Rampen, S. W., Domack, E., Canals, M., and Sinninghe Damsté, J. S., and Schouten, S.: Holocene changes in Proboscia diatomproductivity in shelf waters of the north-western Antarctic Peninsula, Antarct. Sci., 22, 3–10, 2010.
Yoon, H. I., Park, B. K., Kim, Y., and Kan, C. Y.: Glaciomarine sedimentation and its paleoclimatic implications on the Antarctic Peninsula shelf over the last 15000 years, Palaeogeo., Palaeoclim., Palaeoeco., 185, 235–254, 2002.
Yuan, X.: ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms, Antarct. Sci., 16, 415–425, 2004.
Yuan, X. and Martinson, D. G.: Antarctic sea ice extent variability and its global connectivity, J. Climate, 13, 1697–1717, 2000.