Articles | Volume 8, issue 3
https://doi.org/10.5194/cp-8-977-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-8-977-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Productivity response of calcareous nannoplankton to Eocene Thermal Maximum 2 (ETM2)
M. Dedert
Cluster Earth & Climate Department of Earth Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands
H. M. Stoll
Dept. de Geologia, Universidad de Oviedo, Asturias, Spain
Geosciences Department, University of Massachusetts at Amherst, Amherst, MA, USA
D. Kroon
School of GeoSciences, University of Edinburgh, Edinburgh, UK
N. Shimizu
Department of Geology and Geophysics, Woods Hole Oceanographic Institute, Woods Hole, MA, USA
K. Kanamaru
Geosciences Department, University of Massachusetts at Amherst, Amherst, MA, USA
P. Ziveri
Cluster Earth & Climate Department of Earth Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands
ICTA, Autonomous University of Barcelona (UAB), Bellaterra, Spain
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Nonlinear increase in seawater 87Sr ∕ 86Sr in the Oligocene to early Miocene and implications for climate-sensitive weathering
Limited exchange between the deep Pacific and Atlantic oceans during the warm mid-Pliocene and Marine Isotope Stage M2 “glaciation”
Late Cenozoic sea-surface-temperature evolution of the South Atlantic Ocean
Buoyancy forcing: a key driver of northern North Atlantic sea surface temperature variability across multiple timescales
Lipid-biomarker-based sea surface temperature record offshore Tasmania over the last 23 million years
Late Neogene nannofossil assemblages as tracers of ocean circulation and paleoproductivity over the NW Australian shelf
Plio-Pleistocene Perth Basin water temperatures and Leeuwin Current dynamics (Indian Ocean) derived from oxygen and clumped-isotope paleothermometry
Temperate Oligocene surface ocean conditions offshore of Cape Adare, Ross Sea, Antarctica
A revised mid-Pliocene composite section centered on the M2 glacial event for ODP Site 846
Lessons from a high-CO2 world: an ocean view from ∼ 3 million years ago
Late Pliocene Cordilleran Ice Sheet development with warm northeast Pacific sea surface temperatures
Understanding the mechanisms behind high glacial productivity in the southern Brazilian margin
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX86-based sea surface temperature reconstructions
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 2: Insights from Oligocene–Miocene dinoflagellate cyst assemblages
Variations in Mediterranean–Atlantic exchange across the late Pliocene climate transition
Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma
Constraints on ocean circulation at the Paleocene–Eocene Thermal Maximum from neodymium isotopes
Expansion and diversification of high-latitude radiolarian assemblages in the late Eocene linked to a cooling event in the southwest Pacific
Microfossil evidence for trophic changes during the Eocene–Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge)
A major change in North Atlantic deep water circulation 1.6 million years ago
Contribution of changes in opal productivity and nutrient distribution in the coastal upwelling systems to Late Pliocene/Early Pleistocene climate cooling
Technical note: Late Pliocene age control and composite depths at ODP Site 982, revisited
Pliocene three-dimensional global ocean temperature reconstruction
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Anna Hauge Braaten, Kim A. Jakob, Sze Ling Ho, Oliver Friedrich, Eirik Vinje Galaasen, Stijn De Schepper, Paul A. Wilson, and Anna Nele Meckler
Clim. Past, 19, 2109–2125, https://doi.org/10.5194/cp-19-2109-2023, https://doi.org/10.5194/cp-19-2109-2023, 2023
Short summary
Short summary
In the context of understanding current global warming, the middle Pliocene (3.3–3.0 million years ago) is an important interval in Earth's history because atmospheric carbon dioxide concentrations were similar to levels today. We have reconstructed deep-sea temperatures at two different locations for this period, and find that a very different mode of ocean circulation or mixing existed, with important implications for how heat was transported in the deep ocean.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Bjørg Risebrobakken, Mari F. Jensen, Helene R. Langehaug, Tor Eldevik, Anne Britt Sandø, Camille Li, Andreas Born, Erin Louise McClymont, Ulrich Salzmann, and Stijn De Schepper
Clim. Past, 19, 1101–1123, https://doi.org/10.5194/cp-19-1101-2023, https://doi.org/10.5194/cp-19-1101-2023, 2023
Short summary
Short summary
In the observational period, spatially coherent sea surface temperatures characterize the northern North Atlantic at multidecadal timescales. We show that spatially non-coherent temperature patterns are seen both in further projections and a past warm climate period with a CO2 level comparable to the future low-emission scenario. Buoyancy forcing is shown to be important for northern North Atlantic temperature patterns.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Boris-Theofanis Karatsolis and Jorijntje Henderiks
Clim. Past, 19, 765–786, https://doi.org/10.5194/cp-19-765-2023, https://doi.org/10.5194/cp-19-765-2023, 2023
Short summary
Short summary
Ocean circulation around NW Australia plays a key role in regulating the climate in the area and is characterised by seasonal variations in the activity of a major boundary current named the Leeuwin Current. By investigating nannofossils found in sediment cores recovered from the NW Australian shelf, we reconstructed ocean circulation in the warmer-than-present world from 6 to 3.5 Ma, as mirrored by long-term changes in stratification and nutrient availability.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Timothy D. Herbert, Rocio Caballero-Gill, and Joseph B. Novak
Clim. Past, 17, 1385–1394, https://doi.org/10.5194/cp-17-1385-2021, https://doi.org/10.5194/cp-17-1385-2021, 2021
Short summary
Short summary
The Pliocene represents a geologically warm period with polar ice restricted to the Antarctic. Nevertheless, variability and ice volume persisted in the Pliocene. This work revisits a classic site on which much of our understanding of Pliocene paleoclimate variability is based and corrects errors in data sets related to ice volume and ocean surface temperature. In particular, it generates an improved representation of an enigmatic glacial episode in Pliocene times (circa 3.3 Ma).
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Maria Luisa Sánchez-Montes, Erin L. McClymont, Jeremy M. Lloyd, Juliane Müller, Ellen A. Cowan, and Coralie Zorzi
Clim. Past, 16, 299–313, https://doi.org/10.5194/cp-16-299-2020, https://doi.org/10.5194/cp-16-299-2020, 2020
Short summary
Short summary
In this paper, we present new climate reconstructions in SW Alaska from recovered marine sediments in the Gulf of Alaska. We find that glaciers reached the Gulf of Alaska during a cooling climate 2.9 million years ago, and after that the Cordilleran Ice Sheet continued growing during a global drop in atmospheric CO2 levels. Cordilleran Ice Sheet growth could have been supported by an increase in heat supply to the SW Alaska and warm ocean evaporation–mountain precipitation mechanisms.
Rodrigo da Costa Portilho-Ramos, Tainã Marcos Lima Pinho, Cristiano Mazur Chiessi, and Cátia Fernandes Barbosa
Clim. Past, 15, 943–955, https://doi.org/10.5194/cp-15-943-2019, https://doi.org/10.5194/cp-15-943-2019, 2019
Short summary
Short summary
Fossil microorganisms from the last glacial found in marine sediments collected off southern Brazil suggest that more productive austral summer upwelling and more frequent austral winter incursions of nutrient-rich waters from the Plata River boosted regional productivity year-round. While upwelling was more productive due to the higher silicon content from the Southern Ocean, more frequent riverine incursions were modulated by stronger alongshore southwesterly winds.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Ángela García-Gallardo, Patrick Grunert, and Werner E. Piller
Clim. Past, 14, 339–350, https://doi.org/10.5194/cp-14-339-2018, https://doi.org/10.5194/cp-14-339-2018, 2018
Short summary
Short summary
We study the variability in Mediterranean–Atlantic exchange, focusing on the surface Atlantic inflow across the mid-Pliocene warm period and the onset of the Northern Hemisphere glaciation, still unresolved by previous works. Oxygen isotope gradients between both sides of the Strait of Gibraltar reveal weak inflow during warm periods that turns stronger during severe glacials and the start of a negative feedback between exchange at the Strait and the Atlantic Meridional Overturning Circulation.
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
April N. Abbott, Brian A. Haley, Aradhna K. Tripati, and Martin Frank
Clim. Past, 12, 837–847, https://doi.org/10.5194/cp-12-837-2016, https://doi.org/10.5194/cp-12-837-2016, 2016
Short summary
Short summary
The Paleocene-Eocene Thermal Maximum (PETM) was a brief period when the Earth was in an extreme greenhouse state. We use neodymium isotopes to suggest that during this time deep-ocean circulation was distinct in each basin (North and South Atlanic, Southern, Pacific) with little exchange between. Moreover, the Pacific data show the most variability, suggesting this was a critical region possibly involved in both PETM triggering and remediation.
K. M. Pascher, C. J. Hollis, S. M. Bohaty, G. Cortese, R. M. McKay, H. Seebeck, N. Suzuki, and K. Chiba
Clim. Past, 11, 1599–1620, https://doi.org/10.5194/cp-11-1599-2015, https://doi.org/10.5194/cp-11-1599-2015, 2015
Short summary
Short summary
Radiolarian taxa with high-latitude affinities are present from at least the middle Eocene in the SW Pacific and become very abundant in the late Eocene at all investigated sites. A short incursion of low-latitude taxa is observed during the MECO and late Eocene warming event at Site 277. Radiolarian abundance, diversity and taxa with high-latitude affinities increase at Site 277 in two steps in the latest Eocene due to climatic cooling and expansion of cold water masses.
M. Bordiga, J. Henderiks, F. Tori, S. Monechi, R. Fenero, A. Legarda-Lisarri, and E. Thomas
Clim. Past, 11, 1249–1270, https://doi.org/10.5194/cp-11-1249-2015, https://doi.org/10.5194/cp-11-1249-2015, 2015
Short summary
Short summary
Deep-sea sediments at ODP Site 1263 (Walvis Ridge, South Atlantic) show that marine calcifying algae decreased in abundance and size at the Eocene-Oligocene boundary, when the Earth transitioned from a greenhouse to a more glaciated and cooler climate. This decreased the food supply for benthic foraminifer communities. The plankton rapidly responded to fast-changing conditions, such as seasonal nutrient availability, or to threshold-levels in pCO2, cooling and ocean circulation.
N. Khélifi and M. Frank
Clim. Past, 10, 1441–1451, https://doi.org/10.5194/cp-10-1441-2014, https://doi.org/10.5194/cp-10-1441-2014, 2014
J. Etourneau, C. Ehlert, M. Frank, P. Martinez, and R. Schneider
Clim. Past, 8, 1435–1445, https://doi.org/10.5194/cp-8-1435-2012, https://doi.org/10.5194/cp-8-1435-2012, 2012
N. Khélifi, M. Sarnthein, and B. D. A. Naafs
Clim. Past, 8, 79–87, https://doi.org/10.5194/cp-8-79-2012, https://doi.org/10.5194/cp-8-79-2012, 2012
H. J. Dowsett, M. M. Robinson, and K. M. Foley
Clim. Past, 5, 769–783, https://doi.org/10.5194/cp-5-769-2009, https://doi.org/10.5194/cp-5-769-2009, 2009
Cited articles
Aubry, M. P.: Early Paleogene calcareous nannoplankton evolution: a tale of climatic amelioration, in: Late Paleocene Early Eocene climatic and biotic events in the marine and terrestrial records, edited by: Aubry, M. P., Lucas, S. G., and Berggren, W. A., 158–203, Columbia University Press, New York, 1998.
Balch, W. M., Bowler, B. C., Drapeau, D. T., Poulton, A. J., and Holligan, P. M.: Biominerals and the vertical flux of particulate carbon from the surface ocean, Geophys. Res. Lett., 37, L22605, https://doi.org/10.1029/2010GL044640, 2010.
Barber, R. T. and Hiscock, M. R.: A rising tide lifts all phytoplankton: Growth response of other phytoplankton taxa in diatom-dominated blooms, Global Biogeochem. Cy., 20, GB4S03, https://doi.org/10.1029/2006GB002726, 2006.
Beaufort, L., Probert, I., de Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Rickaby, R. E. M., and de Vargas, C.: Sensitivity of coccolithophores to carbonate chemistry and ocean acidification, Nature, 476, 7358, https://doi.org/10.1038/nature10295, 2011.
Boeckel, B. and Baumann, K. H.: Distribution of coccoliths in the surface sediments of the south-eastern South Atlantic Ocean: ecology, preservation and carbonate distribution, Mar. Micropaleontol., 51, 301–320, 2004.
Bowen, G. J., Beerling, D. J., Koch, P. L., Zachos, J. C., and Quattlebaum, T.: A humid climate state during the Paleocene/ Eocene Thermal Maximum, Nature, 432, 495–499, 2004.
Bown, P. R. (Ed.): Calcareous nannofossil biostratigraphy, Chapman and Hall, Kluwer Academic Publishers, 315 pp., 1998.
Bown, P. R., Lees, J. A., and Young, J. R.: Calcareous nannoplankton evolution and biodiversity through time, in: Coccolithophores: from molecular processes to global impact, edited by: Thierstein, H. R. and Young, J. R., 481–508, Springer, New York, 2004.
Bralower, T. J., Premoli Silva, I., Malone, M., and the Scientific Participants of Leg 198: Proceedings of the Ocean Drilling Program, Initial Report, V. 198, available at: http://www-odp.tamu.edu/publications/198_IR/198ir.htm, 2002a.
Bralower, T. J.: Evidence for surface water oligotrophy during the Paleocene-Eocene Thermal Maximum: Nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea, Paleoceanography, 17, 1023, https://doi.org/10.1029/2001PA000662, 2002b.
Broecker, W. S.: The oceanic CaCO3 cycle, in: Treatise on Geochemistry, vol. 6, The oceans and marine geochemistry, edited by: Henry Elderfield, 529–549, Pergamon, Oxford, UK, 2003.
Cramer, B. S., Wright, J. D., Kent, D. V., and Aubry, M.-P.: Orbital climate forcing of d13C excursions in the late Paleocene–early Eocene (chrons C24n–C25n), Paleoceanography, 18, 1097, https://doi.org/10.1029/2003PA000909, 2003.
Chun, C. O. J., Delaney, M. L., and Zachos, J. C.: Paleoredox changes across the Paleocene-Eocene thermal maximum, Walvis Ridge (ODP Sites 1262, 1263, and 1266): Evidence from Mn and U enrichment factors, Paleoceanography, 25, PA4202, https://doi.org/10.1029/2009PA001861, 2010.
Dedert, M., Stoll, H. M., Kars, S., Young, J. R., Shimizu, N., Lourens, L., Kroon, D., and Ziveri, P.: Temporally variable diagenetic overgrowth on deep-sea nannofossil carbonates across Palaeogene hyperthermals and implications for isotopic analyses, Marine Micropaleontology, submitted, 2012a.
Dedert, M., Stoll, H. M., Young, J. R., Shimuzi, N., Kanamaru, K., Lourens, L., Ziveri, P., and Kroon, D.: Continued productivity and robust calcification of calcareous nannoplankton during the PETM, to be submitted to Palaeogeogr. Palaeocl., 2012b.
Delille, B., Harlay, J., Zondervan, I., Jacquet, S., Chou, L., Wollast, R., Bellerby, R. G. J., Frankignoulle, M., Borges, A. V., Riebesell, U., and Gattuso, J. P.: Response of primary production and calcification to changes of pCO(2) during experimental blooms of the coccolithophorid Emiliania huxleyi, Global Biogeochem. Cy., 19, Gb2023, https://doi.org/10.1029/2004gb002318, 2005.
De Villiers, S., Greaves, M., and Elderfield, H.: An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES, Geochem. Geophys. Geosyst., 3, 1001, https://doi.org/10.1029/2001GC000169, 2002.
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A.,Schofield, O., and Taylor, F. J. R.: The evolution of modern eukaryotic phytoplankton, Science, 305, 354–360, 2004.
Gibbs, S. J., Bown, P. R., Sessa, J. A., Bralower, T. J., and Wilson, P. A.:, Nannoplankton extinction and origin across the Paleocene-Eocene thermal maximum, Science, 314, 1770–1773, https://doi.org/10.1126/science.1133902, 2006a.
Gibbs, S. J., Bralower, T. J., Bown, P. R., Zachos, J. C., and Bybell, L. M.: Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: implications for global productivity gradients, Geology, 34, 233–236, 2006b.
Gibbs, S. J., Stoll, H. M., Bown, P. R., and Bralower, T. J.: Ocean acidification and surface water carbonate production across the Paleocene – Eocene Thermal Maximum, Earth Planet. Sci. Lett., 295, 583–592, https://doi.org/10.1016/j.epsl.2010.04.044, 2010.
Huber, M. and Sloan, L. C.: Warm climate transitions: a general circulation modeling study for the Late Paleocene Thermal Maximum ( 56 Ma), J. Geophys. Res., 104, 16633–16655, 1999.
Huber, M. and Sloan, L. C.: Climatic responses to tropical sea surface temperature changes on a "Greenhouse" Earth, Paleoceanography, 15, 443–450, 2000.
Huber, M. and Sloan, L.C.: Heat transport, deep waters, and thermal gradients: coupled simulation of an Eocene "greenhouse" climate, Geophys. Res. Let., 28, 3481–3484, 2001.
Jahn, B., Donner, B., Muller, P. J., Röhl, U., Schneider, R. R., and Wefer, G.: Pleistocene variations in dust input and marine productivity in the northern Benguela Current: evidence of evolution of global glacial-interglacial cycles, Palaeogeogr. Palaeocl., 193, 515–533, 2003.
Jiang, S. and Wise Jr., S. W.: Surface-water chemistry and fertility variations in the tropical Atlantic across the Paleocene-Eocene Thermal Maximum as evidenced by calcareous nannoplankton from ODP Leg 207, Hole 1259B, Revue de Micropaleontologie, 49, 227–244, 2006.
Jiang, S. and Wise Jr., S. W.: Distinguishing the influence of diagenesis on the paleoecological reconstruction of nannoplankton across the Paleocene-Eocene Thermal Maximum: an example from the Kerguelen Plateau, Southern Indian Ocean, Mar. Micropaleontol., 72, 49–59, 2009.
Klaas, C. and Archer, D.: Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio, Global Biogeochem. Cy., 16, 1116, https://doi.org/10.1029/2001GB001765, 2002.
Krug, S. A., Schulz, K. G., and Riebesell, U.: Effects of changes in carbonate chemistry speciation on Coccolithus braarudii: a discussion of coccolithophorid sensitivities, Biogeosciences, 8, 771–777, https://doi.org/10.5194/bg-8-771-2011, 2011.
Langer, G., Geisen, M., Baumann, K. H., Klas, J., Riebesell, U., Thoms, S., and Young, J. R.: Species-specific responses of calcifying algae to changing seawater carbonate chemistry, Geochem. Geophys. Geosyst., 7, Q09006, https://doi.org/10.1029/2005GC001227, 2006.
Langer, G., Nehrke, G., Probert, I., Ly, J., and Ziveri, P.: Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry, Biogeosciences, 6, 2637–2646, https://doi.org/10.5194/bg-6-2637-2009, 2009.
Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thomas, E., Rohl, U., Bowles, J., and Raffi, I.: Astronomically pacing of late Palaeocene to early Eocene global warming events, Nature, 435, 1083–1087, 2005.
Minoletti F., Gardin, S., Nicot, E., Renard, M., and Spezzaferri, S.: A new experimental protocol for granulometric separation of calcareous nannofossil assemblages: palaeoecological and geochemical applications, B. Soc. Geol. Fr., 172, 437–446, 2001.
Murphy, B. H., Zachos, J. C., McCarren, H. K., Thomas, E., and Roehl, U.: High resolution records of the Elmo Event at Shatsky Rise, IODP Sites 1209 and 1211, available at: http://adsabs.harvard.edu/abs/2006AGUFMPP23C1777M, 2005.
Mutterlose, J., Linnert, C., and Norris, D.: Calcareous nannofossils from the Paleocene-Eocene Thermal Maximum of the equatorial Atlantic (ODP Site 1260B): evidence for tropical warming, Mar. Micropaleontol., 65, 13–31, 2007.
Nicolo, M. J., Dickens, G. R., Hollis, C. J., and Zachos, J. C.: Multiple early Eocene hyperthermals; their sedimentary expression on the New Zealand continental margin and in the deep sea, Geology, 35, 699–702, 2007.
Perch-Nielsen, K.: Cenozoic calcareous nannofossils, in: Plankton Stratigraphy, edited by: Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., 427–554, Cambridge University Press, Cambridge, 1985.
Raffi, I. and de Bernardi, B.: Response of calcareous nannofossils to the Paleocene-Eocene Thermal Maximum: observations on composition, preservation and calcification in sediments from ODP Site 1263 (Walvis Ridge – SW Atlantic), Mar. Micropaleontol., 69, 119–138, 2008.
Ravizza, G., Norris, R. N., Blusztajn, J., and Aubry, M. P.: An Osmium isotope excursion associated with the late Paleocene Thermal Maximum: Evidence of intensified chemical weathering, Paleoceanography, 16, 155–163, 2001.
Rickaby, R. E. M., Schrag, D. P., Zondervan, I., and Riebesell, U.: Growth rate dependence of Sr incorporation during calcification of Emiliania huxleyi, Global Biogeochem. Cy., 16, 1006, https://doi.org/10.1029/2001GB001408, 2002.
Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R. E., and Morel, F. M. M.: Reduced calcification of marine phytoplankton in response to increased atmospheric CO2, Nature, 407, 364–367, 2000.
Richter, F. M. and Liang, Y.: The rate and consequences of Sr diagenesis in deep-sea carbonates, Earth Plane. Sci. Lett., 117, 553–565, 1993.
Ridgwell, A. and Schmidt, D. N.: Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release, Nat. Geosci., 3, 196–200, https://doi.org/10.1038/ngeo755, 2010.
Ridgwell, A and Zeebe, R. E.: The role of the global carbonate cycle in the regulation and evolution of the earth system, Earth Planet. Sci. Lett., 234, 299–315, 2005.
Schneider, R. R., Muller, P. J., Ruhland, G., Meineke, G., Schmidt, H., and Wefer, G.: Late Quaternary surface temperature and productivity in the east-equatorial South Atlantic: response to changes in trade/ monsoon wind forcing and surface water advection, in: The South Atlantic: Present and Past circulation, edited by: Wefer, G., Berger, W. H., Siedler, G., and Webb, D. J., 527–551, Springer, Berlin, 1996.
Sexton, P. F., Norris, R. D., Wilson, P. A., Pälike, H., Westerhold, T., Röhl, U., Bolton, C. T., and Gibbs, S.: Eocene global warming events driven by ventilation of oceanic dissolved organic carbon, Nature, 471, 349–352, https://doi.org/10.1038/nature09826, 2011.
Sloan, L. C. and Huber, M.: Eocene oceanic responses to orbital forcing on precessional time scales, Paleoceanography, 16, 101–111, 2001.
Stap, L., Sluijs, A., Thomas, E., and Lourens, L.: Patterns and magnitude of deep sea carbonate dissolution during the Eocene Thermal Maximum 2 and H2, Walvis Ridge, Southeastern Atlantic Ocean, Paleoceanography, 24, PA1211, https://doi.org/10.1029/2008PA001655, 2009.
Stap, L., Lourens, L., van Dijk, A., Schouten, S., and Thomas, E.: Coherent pattern and timing of the carbon isotope excursion and warming during Eocene Thermal Maximum 2 as recorded in planktic and benthic foraminifera, Geochem. Geophys. Geosyst., 11, Q11011, https://doi.org/10.1029/2010GC003097, 2010a.
Stap, L., Lourens, L., Thomas, E., Sluijs, A., Bohaty, S., and Zachos, J.,C.: High-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2, Geology, 38, 607–610, https://doi.org/10.1130/G30777.1, 2010b.
Stoll, H. M. and Bains, S.: Coccolith Sr/Ca records of productivity during the Paleocene-Eocene Thermal Maximum from the Weddell Sea, Paleoceanography, 18, 1049, https://doi.org/10.1029/2002PA000875, 2003.
Stoll, H. M. and Schrag, D. P.: Effects of Quaternary sea level changes on strontium in seawater, Geochim. Cosmochim. Acta, 62, 1107–1118, 1998.
Stoll, H. M. and Schrag, D. P.: Sr/Ca variations in Cretaceous carbonates: relation to productivity and sea level changes, Palaeogeography, Palaeoclimatology, Palaeoecology, 168, 311–336, 2001.
Stoll, H. M. and Shimizu, N.: Micro-picking of nannofossils in preparation for analysis by secondary ion mass spectrometry, Nat. Protoc., 4, 1038–1043, 2009.
Stoll, H. M. and Ziveri, P.: Separation of monospecific and restricted coccolith assemblages from sediments using differential settling velocity, Mar. Micropaleontol., 46, 209–221, 2002.
Stoll, H. M., Klaas, C., Probert, I., Ruiz-Encinar, J., and Garcia-Alonso, J. I.: Calcification rate and temperature effects on Sr partitioning in coccoliths of multiple species of coccolithophorids in culture, Global Planet. Change, 34, 153–171, 2002a.
Stoll, H. M., Rosenthal, Y., and Falkowski, P.: Climate proxies from the Sr/Ca of coccolith calcite: calibrations from continuous culture of Emiliania huxleyi, Geochim. Cosmochim. Acta, 66, 927–936, 2002b.
Stoll, H. M., Ziveri, P., Shimizu, N., Conte, M. H., and Theroux, S.: Relationship between coccolith Sr/Ca ratios and coccolithophore production and export in the Arabian Sea and Sargasso Sea, Deep-sea Res. II, 54, 581–600, https://doi.org/10.1016/j.dsr2.2007.01.003, 2007a.
Stoll, H. M., Shimizu, N., Archer, D., and Ziveri, P.: Coccolithophore productivity response to greenhouse event of the Paleocene-Eocene Thermal Maximum, Earth Planet. Sci. Lett., 258, 192–206, 2007b.
Stoll, H. M., Shimizu, N., Arevalos, A., Matell, N., Banasiak, A., and Zeren, S.: Insights on coccolith chemistry from a new ion probe method for analysis of individually picked coccoliths, Geochem. Geophys. Geosyst., 8, Q06020, https://doi.org/10.1029/2006GC001546, 2007c.
Sweeney, E. N., McGillicuddy Jr., D. J., and Buesseler, K. O.: Biogeochemical impacts due to mesoscale eddy activity in the Sargasso Sea as measured at the Bermuda Atlantic time – series Study (BATS), Deep-sea Res. II, 50, 3017–3039, 2003.
Torfstein, A., Winckler, G., and Tripati, A.: Productivity feedback did not terminate the Paleocene-Eocene Thermal Maximum (PETM), Clim. Past, 6, 265–272, https://doi.org/10.5194/cp-6-265-2010, 2010.
Tremolada, F. and Bralower, T. J.: Nannofossil assemblage flucuations during the Paleocene- Eocene Thermal maximum at sites 213 (Indian Ocean) and 401 (North Atlantic Ocean): palaeoceanographical implications, Mar. Micropaleontol., 52, 107–116, 2004.
West, S., Jansen, J. H. F., and Stuut, J.-B.: Surface water conditions in the Northern Benguela Region (SE Atlantic) during the last 460 kyr reconstructed from assemblages of planktonic forams, Mar. Micropaleontol., 51, 321–344, 2004.
Westerhold, T., Rohl, U., McCarren, H. K., and Zachos, J. C.: Latest on the absolute age of the Paleocene Eocene thermal maximum (PETM): new insights from exact stratigraphic position of key ash layers +19 and −17, Earth Planet. Sci. Lett., 287, 412–419, 2009.
Young, J. R.: Functions of coccoliths, in: Coccolithophores, edited by: Winter, A. and Sissler, W., 63–82, Cambridge University Press, Cambridge, UK, 1994.
Young, J. R. and Ziveri, P.: Calculation of coccolith volume and its use in carbonate flux estimates, Deep-Sea Res. Part II, Topical Studies in Oceanography, 47, 1679–1700, 2000.
Zachos, J.C., Kroon, D., Blum, p., et al.: Proc. ODP Init. Rep., 208, available at: http://www-odp.tamu.edu/publications/208_IR/208ir.htm, 2004.
Zachos, J. C., Rohl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L., McCarren, H., and Kroon, D.: Rapid acidification of the ocean during the Paleocene- Eocene Thermal Maximum, Science, 308, 1611–1615, 2005.
Zachos, J. C., McCarren, H., Murphy, B., Rohl, U., and Westerhold, T.: Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals, Earth Planet. Sci. Lett., 299, 242–249, 2010.
Ziveri, P. and Thunell, R.: Coccolithophore export production in Guaymas Basin, Gulf of California: Response to climate forcing, Deep-Sea Res., 47, 2073–2100, 2000.
Ziveri, P., Thunell, R., and Rio, D.: Export production of coccolithophores in an upwelling region: results from San Pedro Basin, Southern California Bight, Mar. Micropaleontol., 24, 335–358, 1995
Ziveri, P., De Bernardi, B., Baumann, K.-H., Stoll, H. M., and Mortyn, P. G.: Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean, Deep-Sea Res. II, 54, 659–675, 2007.