Articles | Volume 8, issue 4
https://doi.org/10.5194/cp-8-1257-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-8-1257-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The relative roles of CO2 and palaeogeography in determining late Miocene climate: results from a terrestrial model–data comparison
C. D. Bradshaw
Bristol Research Initiative for the Dynamic Global Environment (BRIDGE), School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
D. J. Lunt
Bristol Research Initiative for the Dynamic Global Environment (BRIDGE), School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
R. Flecker
Bristol Research Initiative for the Dynamic Global Environment (BRIDGE), School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
U. Salzmann
School of the Built and Natural Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
M. J. Pound
British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG,UK
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
School of the Built and Natural Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
A. M. Haywood
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
J. T. Eronen
Department of Geosciences and Geography, P.O. Box 64, 00014, University of Helsinki, Finland
Biodiversity and Climate Research Centre LOEWE BiK-F, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Cenozoic
CO2-driven and orbitally driven oxygen isotope variability in the Early Eocene
The warm winter paradox in the Pliocene northern high latitudes
Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison
Impacts of Tibetan Plateau uplift on atmospheric dynamics and associated precipitation δ18O
Fallacies and fantasies: the theoretical underpinnings of the Coexistence Approach for palaeoclimate reconstruction
A model–model and data–model comparison for the early Eocene hydrological cycle
A massive input of coarse-grained siliciclastics in the Pyrenean Basin during the PETM: the missing ingredient in a coeval abrupt change in hydrological regime
Regional climate model experiments to investigate the Asian monsoon in the Late Miocene
The early Eocene equable climate problem revisited
High resolution climate and vegetation simulations of the Late Pliocene, a model-data comparison over western Europe and the Mediterranean region
Julia Campbell, Christopher J. Poulsen, Jiang Zhu, Jessica E. Tierney, and Jeremy Keeler
Clim. Past, 20, 495–522, https://doi.org/10.5194/cp-20-495-2024, https://doi.org/10.5194/cp-20-495-2024, 2024
Short summary
Short summary
In this study, we use climate modeling to investigate the relative impact of CO2 and orbit on Early Eocene (~ 55 million years ago) climate and compare our modeled results to fossil records to determine the context for the Paleocene–Eocene Thermal Maximum, the most extreme hyperthermal in the Cenozoic. Our conclusions consider limitations and illustrate the importance of climate models when interpreting paleoclimate records in times of extreme warmth.
Julia C. Tindall, Alan M. Haywood, Ulrich Salzmann, Aisling M. Dolan, and Tamara Fletcher
Clim. Past, 18, 1385–1405, https://doi.org/10.5194/cp-18-1385-2022, https://doi.org/10.5194/cp-18-1385-2022, 2022
Short summary
Short summary
The mid-Pliocene (MP; ∼3.0 Ma) had CO2 levels similar to today and average temperatures ∼3°C warmer. At terrestrial high latitudes, MP temperatures from climate models are much lower than those reconstructed from data. This mismatch occurs in the winter but not the summer. The winter model–data mismatch likely has multiple causes. One novel cause is that the MP climate may be outside the modern sample, and errors could occur when using information from the modern era to reconstruct climate.
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022, https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Short summary
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants describe its middle Eocene to early Oligocene increase in the Northern Hemisphere, but underlying mechanisms have not been studied in detail yet. Using climate simulations, we map global seasonality changes and show that major contemporary forcing – atmospheric CO2 lowering, Antarctic ice-sheet expansion and particularly related sea level drop – participated in this phenomenon and its spatial distribution.
Svetlana Botsyun, Pierre Sepulchre, Camille Risi, and Yannick Donnadieu
Clim. Past, 12, 1401–1420, https://doi.org/10.5194/cp-12-1401-2016, https://doi.org/10.5194/cp-12-1401-2016, 2016
Short summary
Short summary
We use an isotope-equipped GCM and develop original theoretical expression for the precipitation composition to assess δ18O of paleo-precipitation changes with the Tibetan Plateau uplift. We show that δ18O of precipitation is very sensitive to climate changes related to the growth of mountains, notably changes in relative humidity and precipitation amount. Topography is shown to be not an exclusive controlling factor δ18O in precipitation that have crucial consequences for paleoelevation studies
Guido W. Grimm and Alastair J. Potts
Clim. Past, 12, 611–622, https://doi.org/10.5194/cp-12-611-2016, https://doi.org/10.5194/cp-12-611-2016, 2016
Short summary
Short summary
We critically assess, for the first time since its inception in 1997, the theory behind the Coexistence Approach. This method has reconstructed purportedly accurate, often highly precise, palaeoclimates for a wide range of Cenozoic Eurasian localities. We argue that its basic assumptions clash with modern biological and statistical theory and that its modus operandi is fundamentally flawed. We provide guidelines on how to establish robust taxon-based palaeoclimate reconstruction methods.
Matthew J. Carmichael, Daniel J. Lunt, Matthew Huber, Malte Heinemann, Jeffrey Kiehl, Allegra LeGrande, Claire A. Loptson, Chris D. Roberts, Navjit Sagoo, Christine Shields, Paul J. Valdes, Arne Winguth, Cornelia Winguth, and Richard D. Pancost
Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, https://doi.org/10.5194/cp-12-455-2016, 2016
Short summary
Short summary
In this paper, we assess how well model-simulated precipitation rates compare to those indicated by geological data for the early Eocene, a warm interval 56–49 million years ago. Our results show that a number of models struggle to produce sufficient precipitation at high latitudes, which likely relates to cool simulated temperatures in these regions. However, calculating precipitation rates from plant fossils is highly uncertain, and further data are now required.
V. Pujalte, J. I. Baceta, and B. Schmitz
Clim. Past, 11, 1653–1672, https://doi.org/10.5194/cp-11-1653-2015, https://doi.org/10.5194/cp-11-1653-2015, 2015
Short summary
Short summary
An abrupt increase in seasonal precipitation during the PETM in the Pyrenean Gulf has been proposed, based on the occurrence of extensive fine-grained siliciclastic deposits. This paper provides evidence that coarse-grained siliciclastics were also delivered, indicative of episodes of intense rainy intervals in an otherwise semiarid PETM climate. Further, evidence is presented that PETM kaolinites were most likely resedimented from Cretaceous lateritic profiles developed in the basement.
H. Tang, A. Micheels, J. Eronen, and M. Fortelius
Clim. Past, 7, 847–868, https://doi.org/10.5194/cp-7-847-2011, https://doi.org/10.5194/cp-7-847-2011, 2011
M. Huber and R. Caballero
Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, https://doi.org/10.5194/cp-7-603-2011, 2011
A. Jost, S. Fauquette, M. Kageyama, G. Krinner, G. Ramstein, J.-P. Suc, and S. Violette
Clim. Past, 5, 585–606, https://doi.org/10.5194/cp-5-585-2009, https://doi.org/10.5194/cp-5-585-2009, 2009
Cited articles
Bailey, I. and Sinnott, E.: A botanical index of Cretaceous and Tertiary climates, Science, 41, 831–834, 1915.
Behrensmeyer, A. K., Kidwell, S. M., and Gastaldo, R. A.: Taphonomy and paleobiology, Paleobiology, 26, 103–147, https://doi.org/10.1666/0094-8373(2000)26[103:tap]2.0.co;2, 2000.
Bernor R. L., Mittmann H.-W., and Rögl F.: Systematics and Chronology of the Götzendorf "Hipparion" (Late Miocene, Pannonian F, Vienna Basin), Ann. Naturhist. Mus. Wien, 95, 101–120, 1993.
Betts, R. A., Cox, P. M., Collins, M., Harris, P. P., Huntingford, C., and Jones, C. D.: The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming, Theor. Appl. Climatol., 78, 157–175, https://doi.org/10.1007/s00704-004-0050-y, 2004.
Bohme, M., Ilg, A., and Winklhofer, M.: late Miocene "washhouse" climate in Europe, Earth Planet. Sc. Lett., 275, 393–401, https://doi.org/10.1016/j.epsl.2008.09.011, 2008.
Brandefelt, J. and Otto-Bliesner, B. L.: Equilibration and variability in a last glacial maximum climate simulation with CCSM3, Geophyis. Res. Lett., 36, L19712, https://doi.org/10.1029/2009GL040364, 2009.
Bradshaw, C. D., Flecker, R., Ravelo, A. C., Lunt, D., Galaasen, E. V., Spero, H., and Williams, M.: Paleoceanographic model-data comparisons: what exactly are we doing? A case study from the late Miocene, Paleoceanography, in preparation, 2012.
Bruch, A. A., Uhl, D., and Mosbrugger, V.: Miocene climate in Europe – Patterns and evolution – A first synthesis of NECLIME, Palaeogeogr. Palaeocl., 253, 1–7, https://doi.org/10.1016/j.palaeo.2007.03.030, 2007.
Bruch, A. A., Utescher, T., Mosbrugger, V., and NECLIME members: Precipitation pat-terns in the Miocene of Central Europe and the development of continentality, Palaeogeogr. Palaeocl., 304, 202–211, 2011.
Cane, M. A. and Molnar, P.: Closing of the Indonesian seaway as a precursor to east African aridircation around 3–4 million years ago, Nature, 411, 157–162, 2001.
Chase, C. G., Gregory-Wodzicki, K. M., Parrish-Jones, J. T., and DeCelles, P. G.: Topographic history of the western Cordillera of North America and controls on climate, in: Tectonic boundary conditions for climate model simulations, edited by: Crowley, T. J. and Burke, K., Oxford Monographs on Geology and Geophysics, Oxford University Press, Oxford UK, 39, 73–99, 1998.
CIESIN (Center for International Earth Science Information Network): Global Rural-Urban Mapping Project (GRUMP) Alpha Version: Urban Extents http://sedac.ciesin.columbia.edu/gpw, 2004
Clark, M. K., House, M. A., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., and Tang, W.: Late Cenozoic uplift of southeastern Tibet, Geology, 33, 525–528, https://doi.org/10.1130/G21265.1, 2005.
Collins, L. S., Coates, A. G., Berggren, W. A., Aubry, M. P., and Zhang, J. J.: The late Miocene Panama isthmian strait, Geology, 24, 687–690, 1996.
Cox, P.: Description on the TRIFFID Dynamic Global Vegetation Model, 2001.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184–187, 2000.
Crowley, T. J., and Baum, S. K.: Reconciling Late Ordovician (440 Ma) glaciation with very high (14X) CO2 levels, J. Geophys. Res., 100, 1093–1101, https://doi.org/10.1029/94jd02521, 1995.
Currie, B. S., Rowley, D. B., and Tabor, N. J.: Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen, Geology, 33, 181–184, 2005.
DeCelles, P. G., Kapp, P., Ding, L., and Gehrels, G. E.: Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain, Geol. Soc. Am. Bull., 119, 654–680, https://doi.org/10.1130/b26074.1, 2007.
DeConto, R. M., Pollard, D., Wilson, P. A., Palike, H., Lear, C. H., and Pagani, M.: Thresholds for Cenozoic bipolar glaciation, Nature, 455, 652-U652, https://doi.org/10.1038/Nature07337, 2008.
Demicco, R. V., Lowenstein, T. K., and Hardie, L. A.: Atmospheric pCO(2) since 60 Ma from records of seawater pH, calcium, and primary carbonate mineralogy, Geology, 31, 793–796, 2003.
Denk, T., Grimsson, F., and Kvacek, Z.: The Miocene floras of Iceland and their significance for late Cainozoic North Atlantic biogeography, Bot. J. Linn. Soc., 149, 369–417, 2005.
Denton, G. H. and Armstrong, R. L.: Miocene-Pliocene Glaciations in Southern Alaska, Am. J. Sci., 267, 1121–1142, 1969.
Droxler, A. W., Burke, K., Cunningham, A. D., Hine, A. C., Rosencrantz, D., and Duncan, D.: Caribbean constraints on circulation between Atlantic and Pacific oceans over the past 40 million years, in: Tectonic Boundary Conditions for Climate Reconstruction, edited by: Crowley, T. J. and Burke, K. C., Oxford Monographs Geology and Geophysics, 169–191, 1998.
Duque-Caro, H.: Neogene stratigraphy, paleocenography and paleobiogeography in northwest South-America and the evolution of the Panama Seaway, Palaeogeogr. Palaeocl., 77, 203–234, 1990.
Duringer, P., Schuster, M., Genise, J. F., Mackaye, H. T., Vignaud, P., and Brunet, M.: New termite trace fossils: Galleries, nests and fungus combs from the Chad basin of Africa (Upper Miocene-Lower Pliocene), Palaeogeogr. Palaeocl., 251, 323–353, https://doi.org/10.1016/j.palaeo.2007.03.029, 2007.
Edwards, A. R.: Southwest Pacific Cenozoic paleogeography and an integrated Neogene paleocirculation model, Initial. Rep. Deep Sea, 30, 667–684, 1975.
Edwards, J. M. and Slingo, A.: Studies with a flexible new radiation code 1, Choosing a configuration for a large-scale model, Q. J. Roy. Meteor. Soc., 122, 689-719, 1996.
Ehlers, T. A. and Poulsen, C. J.: Large paleoclimate influence the interpretation of Andean Plateau paleoaltimetry, Earth Planet. Sci. Lett., 281, 238–248, 2009.
England, P. and Searle, M. P.: The Cretaceous-Tertiary deformation of the Lhasa Block and its implications for crustal thickening in Tibet, Tectonics, 5, 1–14, 1986.
Eronen, J. T., Ataabadia, M. M., Micheelsb, A., Karme, A., Bernor, R. L., and Fortelius, M.: Distribution history and climatic controls of the late Miocene Pikermian chronofauna, P. Natl. Acad. Sci. USA, 106, 11867–11871, https://doi.org/10.1073/pnas.0902598106, 2009.
Eronen, J. T., Puolamäki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C., and Fortelius, M.: Precipitation and large herbivorous mammals, Part II: Application to fossil data, Evol. Ecol. Res., 12, 235–248, 2010.
Eronen, J. T., Micheels, A., and Utescher, T.: Comparison of estimates for Mean Annual Precipitation from different proxies, A Pilot Study for European Neogene, Evolutionary Ecology Research, available at: http://www.evolutionary-ecology.com/forthcoming.html, 2012.
Essery, R. and Clark, D. B.: Developments in the MOSES 2 land-surface model for PILPS 2e, Global Planet. Change, 38, 161–164, https://doi.org/10.1016/S0921-8181(03)00026-2, 2003.
Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J. M., and Morgan, V. I.: Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, J Geophys. Res.-Atmos., 101, 4115–4128, 1996.
Fang, X. M., Yan, M. D., Van der Voo, R., Rea, D. K., Song, C. H., Pares, J. M., Gao, J. P., Nie, J. S., and Dai, S.: Late Cenozoic deformation and uplift of the NE Tibetan plateau: Evidence from high-resolution magneto stratigraphy of the Guide Basin, Qinghai Province, China, Geol. Soc. Am. Bull., 117, 1208–1225, https://doi.org/10.1130/B25727.1, 2005.
Fauquette, S., Guiot, J., and Suc, J.-P.: A method for climatic reconstruction of the Mediterranean Pliocene using pollen data, Palaeogeogr. Palaeocl., 144, 183–201, https://doi.org/10.1016/S0031-0182(98)00083-2, 1998
Farrera, I., Harrison, S. P., Prentice, I. C., Ramstein, G., Guiot, J., Bartlein, P. J., Bonnefille, R., Bush, M., Cramer, W., von Grafenstein, U., Holmgren, K., Hooghiemstra, H., Hope, G., Jolly, D., Lauritzen, S.-E., Ono, Y., Pinot, S., Stute, M., and Yu, G.: Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data, I: Vegetation, lake-levels and geochemistry, Clim. Dynam., 15, 823–856, 1999.
Fauquette, S., Suc, J.-P., Bertini, A., Popescu, S.-M., Warny, S., Bachiri Taoufiq, N., Perez Villa, M.-J., Chikhi, H., Feddi, N., Subally, D., Clauzon, G., and Ferrier, J.: How much did climate force the Messinian salinity crisis?, Quantified climatic conditions from pollen records in the Mediterranean region, Palaeogeogr. Palaeocl., 238, 281–301, https://doi.org/10.1016/j.palaeo.2006.03.029, 2006.
Fluteau, F., Ramstein, G., and Besse, J.: Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model, J. Geophys. Res.-Atmos., 104, 11995–12018, 1999.
Fortelius, M.: Neogene of the Old World Database of Fossil Mammals (NOW), University of Helsinki, http://www.helsinki.fi/science/now/, 2012.
Foster, G. L., Lunt, D. J., and Parrish, R. R.: Mountain uplift and the glaciation of North America – a sensitivity study, Clim. Past, 6, 707–717, https://doi.org/10.5194/cp-6-707-2010, 2010.
Freeman, K. H. and Hayes, J. M.: Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels, Global Biogeochem. Cy., 6, 185–198, 1992.
Galeotti, S., von der Heydt, A., Huber, M., Bice, D., Dijkstra, H., Jilbert, T., Lanci, L., and Reichart, G.-J.: Evidence for active El Niño Southern Oscillation variability in the Late Miocene greenhouse climate, Geology, 38, 419–422, https://doi.org/10.1130/G30629.1, 2010.
Garzione, C. N., Dettman, D. L., Quade, J., DeCelles, P. G., and Butler, R. F.: High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal, Geology, 28, 339–342, 2000.
Garzione, C. N., Hoke, G. D., Libarkin, J. C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., and Mulch, A.: Rise of the Andes, Science, 320, 1304–1307, https://doi.org/10.1126/science.1148615, 2008.
Gent, P. R. and McWilliams, J. C.: Isopyncnal mixing in ocean circulation models, J. Phys. Oceanogr., 20, 150–155, 1990.
Gladstone, G., Flecker, R., Valdes, P., Lunt, D., and Markwick, P.: The Mediterranean hydrologic budget from a Late Miocene global climate simulation, Palaeogeogr. Palaeocl., 251, 254–267, 2007.
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam., 16, 147–168, 2000.
Gourlan, A. T., Meynadier, L. M., and Allègre, C. J.: Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: Neodymium isotope evidence, Earth Planet. Sci. Lett., 267, 353–364, 2008.
Gradstein, F. M., Ogg, J. G., Smith, A. G., Bleeker, W., Lourens, L. J.: A new Geological Time Scale, with special reference to Precambrian and Neogene, Episodes, 27, 83–100, 2004.
Gregory-Wodzicki, K. M.: Andean paleoelevation estimates: A review and critique, Geol. Soc. Am. Bull., 112, 1091–1105, 2000.
Gregory-Wodzicki, K. M.: A late Miocene subtropical-dry flora from the northern Altiplano, Bolivia, Palaeogeogr. Palaeocl., 180, 331–348, 2002.
Gregory, D. and Rowntree, P. R.: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure, Mon. Weather Rev., 118, 1483–1506, 1990.
Harrison, T. M., Copeland, P., Kidd, W. S. F., and Yin, A.: Raising Tibet, Science, 255, 1663–1670, 1992.
Haxeltine, A. and Prentice, I. C.: BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types, Global Biogeochem. Cy., 10, 693–709, 1996.
Henrot, A.-J., François, L., Favre, E., Butzin, M., Ouberdous, M., and Munhoven, G.: Effects of CO2, continental distribution, topography and vegetation changes on the climate at the Middle Miocene: a model study, Clim. Past, 6, 675–694, https://doi.org/10.5194/cp-6-675-2010, 2010.
Hilgen, F., Aziz, H. A., Bice, D., Iaccarino, S., Krijgsman, W., Kuiper, K., Montanari, A., Raffi, I., Turco4, E., and Zachariasse, W.-J.: The Global boundary Stratotype Section and Point (GSSP) of the Tortonian Stage (Upper Miocene) at Monte Dei Corvi, Episodes, 28, 6–17, 2005.
Holdridge, L. R.: Determination of world formations from simple climatic data, Science, 105, 367–368, 1947.
Hughes, J. K., Valdes, P. J., and Betts, R. A.: Dynamical properties of the TRIFFID dynamic global vegetation model, 2004.
Huybrechts, P.: Glaciological modeling of the late Cenozoic East Antarctic ice sheet: stability or dynamism?, Geogr. Anal., 75, 221–238, 1993.
IPCC: Climate Change 2007 – The Physical Science Basis, in: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007 edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, 2007.
Jacobs, B. F. and Deino, A. L.: Test of climate-leaf physiognomy regression models, their application to two Miocene floras from Kenya, and Ar-40/Ar-39 dating of the late Miocene Kapturo site, Palaeogeogr. Palaeocl., 123, 259–271, 1996.
Jimenez-Moreno, G., Fauquette, S., and Suc, J. P.: Vegetation, climate and palaeoaltitude reconstructions of the Eastern Alps during the Miocene based on pollen records from Austria, Central Europe, J. Biogeogr., 35, 1638–1649, https://doi.org/10.1111/j.1365-2699.2008.01911.x, 2008.
Jones, C.: A fast ocean GCM without flux adjustments, J. Atmos. Ocean. Tech., 20, 1857–1868, 2003.
Kameo, K. and Sato, T.: Biogeography of Neogene calcareous nannofossils in the Caribbean and the eastern equatorial Pacific – floral response to the emergence of the Isthmus of Panama, Mar. Micropaleontol., 39, 201–218, 2000.
Kamikuri, S.-i., Nishi, H., and Motoyama, I.: Effects of late Neogene climatic cooling on North Pacific radiolarian assemblages and oceanographic conditions, Palaeogeogr. Palaeocl., 249, 370–392, 2007.
Kaplan, J. O.: Geophysical Applications of Vegetation Modeling, Ph.D. Thesis, Lund University, Lund, 2001.
Kaplan, J. O., Bigelow, N. H., Bartlein, P. J., Christensen, T. R., Cramer, W., Harrison, S. P., Matveyeva, N. V., McGuire, A. D., Murray, D. F., Prentice, I. C., Razzhivin, V. Y., Smith, B. and Walker, D. A., Anderson, P. M., Andreev, A. A., Brubaker, L. B., Edwards, M. E., Lozhkin, A. V. and Ritchie, J.: Climate change and Arctic ecosystems II: Modeling, palaeodata-model comparisons, and future projections, J. Geophys. Res.-Atmos., 108, 8171, https://doi.org/10.1029/2002JD002559, 2003.
Keigwin, L.: Isotopic paleoceanography of the Caribbean and East Pacific: role of Panama uplift in late Neogene time, Science, 217, 350–353, 1982.
Keller, G. and Barron, J. A.: Paleoceanographic Implications of Miocene Deep-Sea Hiatuses, Geol. Soc. Am. Bull., 94, 590–613, 1983.
Kennett, J. P., Keller, G., and Srinivasan, M. S.: Miocene Planktonic Foraminiferal Biogeography and Paleoceanographic Development of the Indo-Pacific Region, Geol. Soc. Am. Mem., 163, 197–236, 1985.
Kingston, J. D. and Hill, A.: late Miocene palaeoenvironments in Arabia: A synthesis., in: Fossil vertebrates of Arabia, edited by: Whybrow, P. J. and Hill, A., Yale University Press, 1999.
Knorr, G., Butzin, M., Micheels, A., and Lohmann, G.: A warm Miocene climate at low atmospheric CO2 levels, Geophys. Res. Lett., 38, L20701, https://doi.org/10.1029/2011gl048873, 2011.
Krapp, M. and Jungclaus, J. H.: The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model, Clim. Past, 7, 1169–1188, https://doi.org/10.5194/cp-7-1169-2011, 2011.
Kuhlemann, J.: Paleogeographic and paleotopographic evolution of the Swiss and Eastern Alps since the Oligocene, Global Planet. Change, 58, 224–236, https://doi.org/10.1016/j.gloplacha.2007.03.007, 2007.
Kürschner, W. M., vanderBurgh, J., Visscher, H., and Dilcher, D. L.: Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations, Mar. Micropaleontol., 27, 299–312, 1996.
Kürschner, W. M., Kvacek, Z., and Dilcher, D. L.: The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems, P. Natl. Acad. Sci. USA, 105, 449–453, https://doi.org/10.1073/pnas.0708588105, 2008.
Kutzbach, J. E. and Behling, P.: Comparison of simulated changes of climate in Asia for two scenarios: Early Miocene to present, and present to future enhanced greenhouse, Global Planet. Change, 41, 157–165, https://doi.org/10.1016/j.gloplacha.2004.01.015, 2004.
Lear, C. H., Elderfield, H., and Wilson, P. A.: Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite, Science, 287, 269–272, 2000.
Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hedenas, L., Hemming, S. R., Johnson, J. V., Leng, M. J., Machlus, M. L., Newton, A. E., Raine, J. I., Willenbring, J. K., Williams, M., and Wolfe, A. P.: Mid-Miocene cooling and the extinction of tundra in continental Antarctica, P. Natl. Acad. Sci. USA, 105, 10676–10680, https://doi.org/10.1073/pnas.0802501105, 2008.
Lohmann, G., Butzin, M., Micheels, A., Bickert, T., and Mosbrugger, V.: Effect of vegetation on the Late Miocene ocean circulation, Clim. Past Discuss., 2, 605–631, https://doi.org/10.5194/cpd-2-605-2006, 2006.
Loveland, T. R. and Belward, A. S.: The IGBP-DIS global 1 km land cover data set, DISCover: First results, Int. J. Remote Sens., 18, 3289–3295, 1997.
Lunt, D. J., de Noblet-Ducoudre, N., and Charbit, S.: Effects of a melted Greenland ice sheet on climate, vegetation, and the cryosphere., Clim. Dynam., 23, 679–694, 2004.
Lunt, D. J., Ross, I., Hopley, P. J., and Valdes, P. J.: Modelling late Oligocene C-4 grasses and climate, Palaeogeogr. Palaeocl., 251, 239–253, https://doi.org/10.1016/j.palaeo.2007.04.004, 2007.
Lunt, D. J., Flecker, R., Valdes, P. J., Salzmann, U., Gladstone, R., and Haywood, A. M.: A methodology for targeting palaeo proxy data acquisition: A case study for the terrestrial late Miocene, Earth Planet. Sci. Lett., 271, 53–62, https://doi.org/10.1016/j.epsl.2008.03.035, 2008a.
Lunt, D. J., Valdes, P. J., Haywood, A., and Rutt, I. C.: Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation, Clim. Dynam., 30, 1–18, https://doi.org/10.1007/s00382-007-0265-6, 2008b.
Lunt, D. J., Flecker, R., and Clift, P. D.: The impacts of Tibetan uplift on palaeoclimate proxies, J. Geol. Soc. London, Special Publications, 342, 279–291, 2010.
Marchant, D. R., Denton, G. H., Swisher, C. C., and Potter, N.: Late Cenozoic Antarctic paleoclimate reconstructed from volcanic ashes in the Dry Valleys region of southern Victoria Land, Geol. Soc. Am. Bull., 108, 181–194, 1996.
Markwick, P. J.: The palaeogeographic and palaeoclimatic significance of climate proxies for data-model comparisons, Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, 251–312, 2007.
Markwick, P. J. and Valdes, P. J.: Palaeo-digital elevation models for use as boundary conditions in coupled ocean-atmo sphere GCM experiments: a Maastrichtian (late Cretaceous) example, Palaeogeogr. Palaeocl., 213, 37–63, https://doi.org/10.1016/j.palaeo.2004.06.015, 2004.
Martin, R. E.: Taphonomy. A Process Approach, Cambridge University Press, Cambridge, 508 pp., 1999.
Matthews, E.: Global vegetation and land use: New high-resolution data bases for climate studies, J. Clim. Appl. Meteorol., 22, 474–487, 1983.
McGowran, B., Holdgate, G. R., Li, Q., and Gallagher, S. J.: Cenozoic stratigraphic succession in southeastern Australia, Aust. J. Earth Sci., 51, 459–496, 2004.
Meehl, G. A., Covey, C., Taylor, K. E., Delworth, T., Stouffer, R. J., Latif, M., McAvaney, B., and Mitchell, J. F. B.: The WCRP CMIP3 multimodel dataset: a new era in climate change research, B. Am. Meterol. Soc., 88, 1383–1394, 2007.
Micheels, A., Bruch, A. A., Uhl, D., Utescher, T., and Mosbrugger, V.: A late Miocene climate model simulation with ECHAM4/ML and its quantitative validation with terrestrial proxy data, Palaeogeogr. Palaeocl., 253, 251–270, https://doi.org/10.1016/j.palaeo.2007.03.042, 2007.
Micheels, A., Bruch, A., and Mosbrugger, V.: Miocene Climate Modelling Sensitivity Experiments for Different CO${2}$ Concentrations, Palaeontol. Electron., 12, Artno. 12.2.5A, 2009a.
Micheels, A., Eronen, J., and Mosbrugger, V.: The late Miocene climate response to a modern Sahara desert, Global Planet. Change, 67, 193–204, https://doi.org/10.1016/j.gloplacha.2009.02.005, 2009b.
Micheels, A., Bruch, A. A., Eronen, J., Fortelius, M., Harzhauser, M., Utescher, T., and Mosbrugger, V.: Analysis of heat transport mechanisms from a late Miocene model experiment with a fully-coupled atmosphere-ocean general circulation model, Palaeogeogr. Palaeocl., 304, 337–350 2011.
Mitchell, T. D. and Jones, P. D.: An improved method of constructing a database of monthly climate observations and associated high-resolution grids, Int. J. Climatol., 25, 693–712, 2005.
Molnar, P., England, P., and Martinod, J.: Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon, Rev. Geophys., 31, 357–396, 1993.
Montuire, S., Maridet, O., and Legendre, S.: late Miocene-Early Pliocene temperature estimates in Europe using rodents, Palaeogeogr. Palaeocl., 238, 247–262, https://doi.org/10.1016/j.palaeo.2006.03.026, 2006.
Moran, K., Backman, J., Brinkhuis, H., Clemens, S. C., Cronin, T., Dickens, G. R., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R. W., Kaminski, M., King, J., Koc, N., Krylov, A., Martinez, N., Matthiessen, J., McInroy, D., Moore, T. C., Onodera, J., O'Regan, M., Palike, H., Rea, B., Rio, D., Sakamoto, T., Smith, D. C., Stein, R., St. John, K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M., Yamamoto, M., Farrell, J., Frank, M., Kubik, P., Jokat, W., and Kristoffersen, Y.: The Cenozoic palaeoenvironment of the Arctic Ocean, Nature, 441, 601–605, https://doi.org/10.1038/Nature04800, 2006.
Morgan, P. and Swanberg, C. A.: On the Cenozoic Uplift and Tectonic Stability of the Colorado Plateau, J. Geodyn., 3, 39–63, 1985.
Mosbrugger, V. and Utescher, T.: The coexistence approach – a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils, Palaeogeogr. Palaeocl., 134, 61–86, https://doi.org/10.1016/s0031-0182(96)00154-x, 1997.
Nisancioglu, K. H., Raymo, M. E., and Stone, P. H.: Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway, Paleoceanography, 18, 1006, https://doi.org/10.1029/2002pa000767, 2003.
NOAA: Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth, National Geophysical Data Center, Boulder, Colorado, 1988.
Olson, J. S., Watts, J. A., and Allison, L. J.: Carbon in live vegetation of major world ecosystems, Oak Ridge National Laboratory, Oak Ridge, 1983.
Osborne, T. M., Lawrence, D. M., Slingo, J. M., Challinor, A. J., and Wheeler, T. R.: Influence of vegetation on the local climate and hydrology in the Tropics: Sensitivity to soil parameters, Clim. Dynam., 23, 45–61, 2004.
Pagani, M., Arthur, M. A., and Freeman, K. H.: Miocene evolution of atmospheric carbon dioxide, Paleoceanography, 14, 273–292, 1999a.
Pagani, M., Freeman, K. H., and Arthur, M. A.: late Miocene atmospheric CO2 concentrations and the expansion of C-4 grasses, Science, 285, 876–879, 1999b.
Pearson, P. N. and Palmer, M. R.: Atmospheric carbon dioxide concentrations over the past 60 million years, Nature, 406, 695–699, 2000.
Pekar, S. F. and DeConto, R. M.: High-resolution ice-volume estimates for the early Miocene: Evidence for a dynamic ice sheet in Antarctica, Palaeogeogr. Palaeocl., 231, 101–109, https://doi.org/10.1016/j.palaeo.2005.07.027, 2006.
Pound, M. J., Haywood, A. M., Salzmann, U., Riding, J. B., Lunt, D. J., and Hunter, S. J.: A Tortonian (late Miocene, 11.61–7.25 Ma) global vegetation reconstruction, Palaeogeogr. Palaeocl., 300, 29–45, 2011.
Pound, M. J., Haywood, A. M., Salzmann, U., Riding, J. B. Global vegetation dynamics and latitudinal temperature gradients during the mid to Late Miocene (15.97–5.33 Ma), Earth Sci. Rev., 112, 1–22, 2012 Prell, W. L. and Kutzbach, J. E.: Sensitivity of the Indian Monsoon to Forcing Parameters and Implications for Its Evolution, Nature, 360, 647–652, 1992.
Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M.: A global biome model based on plant physiology and dominance, soil properties and climate, J. Biogeogr., 19, 117–134, https://doi.org/10.2307/2845499, 1992.
Ramankutty, N. and Foley, J. A.: Estimating historical changes in global land cover: Croplands from 1700 to 1992, Global Biogeochem. Cy., 13, 997–1027, 1999.
Ramstein, G., Fluteau, F., Besse, J., and Joussaume, S.: Effect of orogeny, plate motion and land sea distribution on Eurasian climate change over the past 30 million years, Nature, 386, 788–795, 1997.
Retallack, G. J.: A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles, Nature, 411, 287–290, https://doi.org/10.1038/35077041, 2001.
Retallack, G. J.: Late Oligocene bunch grassland and early Miocene sod grassland paleosols from central Oregon, USA, Palaeogeogr. Palaeocl., 207, 203–237, https://doi.org/10.1016/j.palaeo.2003.09.027, 2004.
Retallack, G. J., Dugas, D. P., and Bestland, E. A.: Fossil Soils and Grasses of a Middle Miocene East-African Grassland, Science, 247, 1325–1328, 1990.
Retallack, G. J., Bestland, E. A., and Dugas, D. P.: Miocene Paleosols and Habitats of Proconsul on Rusinga Island, Kenya, J. Hum. Evol., 29, 53–91, 1995.
Retallack, G. J., Tanaka, S., and Tate, T.: late Miocene advent of tall grassland paleosols in Oregon, Palaeogeogr. Palaeocl., 183, 329–354, Pii S0031-0182(02)00250-X, 2002a.
Retallack, G. J., Wynn, J. G., Benefit, B. R., and McCrossin, M. L.: Paleosols and paleoenvironments of the middle Miocene, Maboko Formation, Kenya, J. Hum. Evol., 42, 659–703, https://doi.org/10.1006/jhev.2002.0553, 2002b.
Robinson, M. M., Valdes, P. J., Haywood, A. M., Dowsett, H. J., Hill, D. J., and Jones, S. M.: Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production, Palaeogeogr. Palaeocl., 309, 92–97, https://doi.org/10.1016/j.palaeo.2011.01.004, 2011.
Rowley, D. B. and Currie, B. S.: Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet, Nature, 439, 677–681, https://doi.org/10.1038/Nature04506, 2006.
Rowley, D. B. and Garzione, C. N.: Stable isotope-based paleoaltimetry, Annu. Rev. Earth. Pl. Sc., 35, 463–508, 2007.
Rowley, D. B., Pierrehumbert, R. T., and Currie, B. S.: A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the late Miocene, Earth Planet. Sci. Lett., 188, 253–268, 2001.
Ruddiman, W. F., Kutzbach, J. E., and Prentice, I. C.: Testing the climatic effects of orography and CO2 with general circulation and biome models., Tectonic Uplift and Climate Change, edited by: Ruddiman, W. F., Plenum Publishing Corporation, New York, 1997.
Saggerson, E. P. and Baker, B. H.: Post-Jurassic erosion-surfaces in eastern Kenya and their deformation in relation to rift structure, Quarterly J. Geol. Soc. London, 121, 51–72, 1965.
Salzmann, U., Haywood, A. M., and Lunt, D. J.: The past is a guide to the future? Comparing Middle Pliocene vegetation with predicted biome distributions for the twenty-first century, Philos. T. R. Soc. A, 367, 189–204, 2009.
Schneider, B. and Schmittner, A.: Simulating the impact of the Panamanian seaway closure on ocean circulation, marine productivity and nutrient cycling, Earth Planet. Sci. Lett., 246, 367–380, 2006.
Schneider, A., Friedl, M. A., and Potere, D.: A new map of global urban extent from MODIS satellite data., Environ. Res. Lett., 4, 044003, https://doi.org/10.1088/1748-9326/4/4/044003, 2009.
Seager, R., Battisti, D. S., Yin, J., Naik, N., Gordon, N., Clement, A. C., and Cane, M. A.: Is the Gulf Stream responsible for Europe's mild winters?, Q. J. Roy. Meteor. Soc., 128, 2563–2586, 2002.
Shackleton, N. J. and Kennett, J. P.: Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281, p. 743–755, US Government Printing Office, Washington, 743–755, 1975.
Sjostrom, D. J., Hren, M. T., Horton, T. W., Waldbauer, J. R., and Chamberlain, C. P.: Stable isotopic evidence for a pre-late Miocene elevation gradient in the Great Plains-Rocky Mountain region, USA, Geol. S. Am. S., 398, 309–319, 2006.
Smith, R. N. B.: Experience and developments with the layer cloud and boundary layer mixing schemes in the UK Meterological Office Unified Model, ECMWF/GCSS workshop on parameterisation of the cloud-topped boundary layer, Reading, England, 1993.
Spicer, R. A.: Recent and Future Developments of CLAMP: Building on the Lagacy of Jack A. Wolfe, Cour. For. Senkenbg., 258, 109–118, 2007.
Spicer, R. A., Harris, N. B. W., Widdowson, M., Herman, A. B., Guo, S. X., Valdes, P. J., Wolfe, J. A., and Kelley, S. P.: Constant elevation of southern Tibet over the past 15 million years, Nature, 421, 622–624, https://doi.org/10.1038/nature01356, 2003.
Spicer, R. A., Valdes, P. J., Spicer, T. E. V., Craggs, H. J., Srivastava, G., Mehrotra, R. C., and Yang, J.: New Developments in CLAMP: Calibration using global gridded mteorological data., Palaeogeogr. Palaeocl., 283, 91–98, 2009.
Spiegel, C., Kuhlemann, J., Dunkl, I., and Frisch, W.: Paleogeography and catchment evolution in a mobile orogenic belt: the Central Alps in Oligo-Miocene times, Tectonophysics, 341, 33–47, 2001.
Srinivasan, M. S. and Sinha, D. K.: Early Pliocene closing of the Indonesian Seaway: evidence from north-east Indian Ocean and tropical Pacific deep sea cores, J. Asian Earth Sci., 16, 29–44, 1998.
Steininger, F. F.: Chronostratigraphy, Geochronology and Biochronology of the Miocene European Land Mammal Mega-Zones (ELMMZ) and the Miocene Mammal-Zones, In:The Miocene Land Mammals of Europe, edited by: Rössner, G. E. and Heissig, K., Verlag Dr. Friedrich Pfeil, 9–24, 1999.
Steppuhn, A., Micheels, A., Geiger, G., and Mosbrugger, V.: Reconstructing the late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed–layer ocean model with adjusted flux correction, Palaeogeogr. Palaeocl., 238, 399–423, https://doi.org/10.1016/j.palaeo.2006.03.037, 2006.
Steppuhn, A., Micheels, A., Bruch, A. A., Uhl, D., Utescher, T., and Mosbrugger, V.: The sensitivity of ECHAM4/ML to a double CO2 scenario for the late Miocene and the comparison to terrestrial proxy data, Global Planet. Change, 57, 189–212, https://doi.org/10.1016/j.gloplacha.2006.09.003, 2007.
Takahashi, K. and Battisti, D. S.: Processes controlling the mean tropical Pacific Precipitation Pattern: I. The Andes and the Eastern Pacific ITCZ., J. Climate, 20, 3434–3451, 2007.
Talwani, M. and Udintsev, G. (Eds.): in: Initial Reports Deep Sea Drilling Project US Government Printing Office, Washington, DC, 1976.
Texier, D., de Noblet, N., Harrison, S. P., Haxeltine, A., Jolly, D., Joussaume, S., Laarif, F., Prentice, I. C., and Tarasov, P.: Quantifying the role of biosphere-atmosphere feedbacks in climate change: coupled model simulations for 6000 years BP and comparison with palaeodata for northern Eurasia and northern Africa, Clim. Dynam., 13, 865–882, 1997.
Thiede, J. and Myhre, A. M.: Non-steady behaviour in the Cenozoic Polar North atlantic System: The Onset and Variability of Northern Hemisphere Glaciations, Philosophical Transactions: Physical Sciences and Engineering, 352, 373–385, 1995.
Thiel, C., Klotz, S., and Uhl, D.: Palaeoclimate estimates for selected leaf-floras from the Middle Pliocene (Reuverian) of Central Europe based on different palaeobotanical techniques, Turk. J. Earth Sci., 21, 263–287, 2012.
Tonazzio, T., Gregory, J. M., and Huybrechts, P.: Climatic Impact of a Greenland Deglaciation and its Possible Irreversibility', J. Climate, 17, 21–33, 2004.
Tripati, A., Roberts, C., and Eagle, R.: Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years, Science, 326, 1394–1397, 2009.
Truswell, E. M.: Vegetation changes in the Australian tertiary in response to climatic and phytogeographic forcing factors, Aust. Syst. Bot., 6, 533–557, https://doi.org/10.1071/sb9930533, 1993.
Uhl, D., Mosbrugger, V., Bruch, A., and Utescher, T.: Reconstructing palaeotemperatures using leaf floras – case studies for a comparison of leaf margin analysis and the coexistence approach, Rev. Palaeobot. Palynology, 126, 49–64, 2003.
Uhl, D., Bruch, A. A., Traiser, C., and Klotz, S.: Palaeoclimate estimates for the Middle Miocene Schrotzburg flora (S-Germany) – a multi-method approach, Int. J. Earth Sci., 95, 1071–1085, 2006.
Uhl, D., Klotz, S., Traiser, C., Thiel, C., Utescher, T., Kowalski, E. A., and Dilcher, D. L.: Paleotemperatures from fossil leaves – a European perspective. Palaeogeogr. Palaeocl., 248, 24–31, 2007.
Utescher, T., Böhme, M., and Mosbrugger, V.: The Neogene of Eurasia: Spatial gradients and temporal trends – The second synthesis of NECLIME, Palaeogeogr. Palaeocl., 304, 196–201, https://doi.org/10.1016/j.palaeo.2011.03.012, 2011.
van Andel, T. H., Heath, G. R., and Moore Jr., T. C.: Cenozoic history and paleoceanography of the Central Equatorial Pacific Ocean, Geol. Soc. Am. Mem., 143, 134 pp., 1975.
van Dam, J. A.: Geographic and temporal patterns in the late Neogene (12–3 Ma) aridification of Europe: The use of small mammals paleoprecipitation proxies, Palaeogeogr. Palaeocl., 238, 190–218, https://doi.org/10.1016/j.palaeo.2006.03.025, 2006.
Vignaud, P., Duringer, P., Mackaye, H. T., Likius, A., Blondel, C., Boisserie, J. R., de Bonis, L., Eisenmann, V., Etienne, M. E., Geraads, D., Guy, F., Lehmann, T., Lihoreau, F., Lopez-Martinez, N., Mourer-Chauvire, C., Otero, O., Rage, J. C., Schuster, M., Viriot, L., Zazzo, A., and Brunet, M.: Geology and palaeontology of the Upper Miocene Toros-Menalla hominid locality, Chad, Nature, 418, 152–155, https://doi.org/10.1038/Nature00880, 2002.
Warnke, D. A. and Hansen, M. E.: Sediments of glacial origins in the area of DSDP leg 38 (Norwegian Greenland seas): Preliminary results from Sites 336 and 344, Naturforsch. Ges. Freib. Breisgau Ber., 67, 371–392, 1977.
Webb, P. N. and Harwood, D. M.: Late Cenozoic Glacial History of the Ross Embayment, Antarctica, Quaternary Sci. Rev., 10, 215–223, 1991.
Western, D. and Behrensmeyer, A. K.: Bones track community structure over four decades of ecological change, Science, 324, 1061–1064, 2009.
Wilson, T. J.: Cenozoic Transtension Along the Transantarctic Mountains West Antarctic Rift Boundary, Southern Victoria-Land, Antarctica, Tectonics, 14, 531–545, 1995.
Wilson, M. F. and Henderson-Sellers, A.: A global archive of land cover and soils data for use in general-circulation climate models, J. Climatol., 5, 119–143, 1985.
Wolfe, J. A.: A method of obtaining climatic parameters from leaf assemblages., US Geological Survey Bulletin, 2040, 73 pp., 1993.
Wolfe, J. A.: Tertiary climatic changes at middle latitudes of western North America, Palaeogeogr. Palaeocl., 108, 195–205, 1994.
Wolfe, J. A., Schorn, H. E., Forest, C. E., and Molnar, P.: Paleobotanical evidence for high altitudes in Nevada during the Miocene, Science, 276, 1672–1675, 1997.
Worobiec, G. and Lesiak, M. A.: Plant megafossils from the Neogene deposits of Stawek-1A (Belchatow, Middle Poland), Rev. Palaeobot. Palyno., 101, 179–208, 1998.
Yang, J., Spicer, R., Spicer, T., Li, C.-S.: "CLAMP Online": a new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America, Palaeobiodiversity and Palaeoenvironments 91, 163–183, 2011.
Yemane, K., Bonnefille, R., and Faure, H.: Paleoclimatic and Tectonic Implications of Neogene Microflora from the Northwestern Ethiopian Highlands, Nature, 318, 653–656, 1985.
Zhang, Z., Huijun, W., Zhengtang, G., and Dabang, J.: Impacts of tectonic changes on the reorganization of the Cenozoic paleoclimatic patterns in China, Earth Planet. Sci. Lett., 257, 622–634, 2007a.
Zhang, Z., Wang, H., Guo, Z., and Jiang, D.: What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?, Palaeogeogr. Palaeocl., 245, 317–331, 2007b.
Zhang, Z., Nisancioglu, K. H., Flatøy, F., Bentsen, M., Bethke, I., and Wang, H.: Tropical seaways played a more important role than high latitude seaways in Cenozoic cooling, Clim. Past, 7, 801–813, https://doi.org/10.5194/cp-7-801-2011, 2011.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(7968 KB) - Metadata XML
- Corrigendum
-
Supplement
(10782 KB) - BibTeX
- EndNote