Articles | Volume 7, issue 2
https://doi.org/10.5194/cp-7-603-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-7-603-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The early Eocene equable climate problem revisited
M. Huber
Earth and Atmospheric Sciences Department, Purdue University, West Lafayette, Indiana, USA
R. Caballero
Department of Meteorology and Bert Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Cenozoic
CO2-driven and orbitally driven oxygen isotope variability in the Early Eocene
The warm winter paradox in the Pliocene northern high latitudes
Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison
Impacts of Tibetan Plateau uplift on atmospheric dynamics and associated precipitation δ18O
Fallacies and fantasies: the theoretical underpinnings of the Coexistence Approach for palaeoclimate reconstruction
A model–model and data–model comparison for the early Eocene hydrological cycle
A massive input of coarse-grained siliciclastics in the Pyrenean Basin during the PETM: the missing ingredient in a coeval abrupt change in hydrological regime
The relative roles of CO2 and palaeogeography in determining late Miocene climate: results from a terrestrial model–data comparison
Regional climate model experiments to investigate the Asian monsoon in the Late Miocene
High resolution climate and vegetation simulations of the Late Pliocene, a model-data comparison over western Europe and the Mediterranean region
Julia Campbell, Christopher J. Poulsen, Jiang Zhu, Jessica E. Tierney, and Jeremy Keeler
Clim. Past, 20, 495–522, https://doi.org/10.5194/cp-20-495-2024, https://doi.org/10.5194/cp-20-495-2024, 2024
Short summary
Short summary
In this study, we use climate modeling to investigate the relative impact of CO2 and orbit on Early Eocene (~ 55 million years ago) climate and compare our modeled results to fossil records to determine the context for the Paleocene–Eocene Thermal Maximum, the most extreme hyperthermal in the Cenozoic. Our conclusions consider limitations and illustrate the importance of climate models when interpreting paleoclimate records in times of extreme warmth.
Julia C. Tindall, Alan M. Haywood, Ulrich Salzmann, Aisling M. Dolan, and Tamara Fletcher
Clim. Past, 18, 1385–1405, https://doi.org/10.5194/cp-18-1385-2022, https://doi.org/10.5194/cp-18-1385-2022, 2022
Short summary
Short summary
The mid-Pliocene (MP; ∼3.0 Ma) had CO2 levels similar to today and average temperatures ∼3°C warmer. At terrestrial high latitudes, MP temperatures from climate models are much lower than those reconstructed from data. This mismatch occurs in the winter but not the summer. The winter model–data mismatch likely has multiple causes. One novel cause is that the MP climate may be outside the modern sample, and errors could occur when using information from the modern era to reconstruct climate.
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022, https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Short summary
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants describe its middle Eocene to early Oligocene increase in the Northern Hemisphere, but underlying mechanisms have not been studied in detail yet. Using climate simulations, we map global seasonality changes and show that major contemporary forcing – atmospheric CO2 lowering, Antarctic ice-sheet expansion and particularly related sea level drop – participated in this phenomenon and its spatial distribution.
Svetlana Botsyun, Pierre Sepulchre, Camille Risi, and Yannick Donnadieu
Clim. Past, 12, 1401–1420, https://doi.org/10.5194/cp-12-1401-2016, https://doi.org/10.5194/cp-12-1401-2016, 2016
Short summary
Short summary
We use an isotope-equipped GCM and develop original theoretical expression for the precipitation composition to assess δ18O of paleo-precipitation changes with the Tibetan Plateau uplift. We show that δ18O of precipitation is very sensitive to climate changes related to the growth of mountains, notably changes in relative humidity and precipitation amount. Topography is shown to be not an exclusive controlling factor δ18O in precipitation that have crucial consequences for paleoelevation studies
Guido W. Grimm and Alastair J. Potts
Clim. Past, 12, 611–622, https://doi.org/10.5194/cp-12-611-2016, https://doi.org/10.5194/cp-12-611-2016, 2016
Short summary
Short summary
We critically assess, for the first time since its inception in 1997, the theory behind the Coexistence Approach. This method has reconstructed purportedly accurate, often highly precise, palaeoclimates for a wide range of Cenozoic Eurasian localities. We argue that its basic assumptions clash with modern biological and statistical theory and that its modus operandi is fundamentally flawed. We provide guidelines on how to establish robust taxon-based palaeoclimate reconstruction methods.
Matthew J. Carmichael, Daniel J. Lunt, Matthew Huber, Malte Heinemann, Jeffrey Kiehl, Allegra LeGrande, Claire A. Loptson, Chris D. Roberts, Navjit Sagoo, Christine Shields, Paul J. Valdes, Arne Winguth, Cornelia Winguth, and Richard D. Pancost
Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, https://doi.org/10.5194/cp-12-455-2016, 2016
Short summary
Short summary
In this paper, we assess how well model-simulated precipitation rates compare to those indicated by geological data for the early Eocene, a warm interval 56–49 million years ago. Our results show that a number of models struggle to produce sufficient precipitation at high latitudes, which likely relates to cool simulated temperatures in these regions. However, calculating precipitation rates from plant fossils is highly uncertain, and further data are now required.
V. Pujalte, J. I. Baceta, and B. Schmitz
Clim. Past, 11, 1653–1672, https://doi.org/10.5194/cp-11-1653-2015, https://doi.org/10.5194/cp-11-1653-2015, 2015
Short summary
Short summary
An abrupt increase in seasonal precipitation during the PETM in the Pyrenean Gulf has been proposed, based on the occurrence of extensive fine-grained siliciclastic deposits. This paper provides evidence that coarse-grained siliciclastics were also delivered, indicative of episodes of intense rainy intervals in an otherwise semiarid PETM climate. Further, evidence is presented that PETM kaolinites were most likely resedimented from Cretaceous lateritic profiles developed in the basement.
C. D. Bradshaw, D. J. Lunt, R. Flecker, U. Salzmann, M. J. Pound, A. M. Haywood, and J. T. Eronen
Clim. Past, 8, 1257–1285, https://doi.org/10.5194/cp-8-1257-2012, https://doi.org/10.5194/cp-8-1257-2012, 2012
H. Tang, A. Micheels, J. Eronen, and M. Fortelius
Clim. Past, 7, 847–868, https://doi.org/10.5194/cp-7-847-2011, https://doi.org/10.5194/cp-7-847-2011, 2011
A. Jost, S. Fauquette, M. Kageyama, G. Krinner, G. Ramstein, J.-P. Suc, and S. Violette
Clim. Past, 5, 585–606, https://doi.org/10.5194/cp-5-585-2009, https://doi.org/10.5194/cp-5-585-2009, 2009
Cited articles
Abbot, D. S., Huber, M., Bousquet, G., and Walker, C. C.: High-CO2 cloud radiative forcing feedback over both land and ocean in a global climate model, Geophys. Res. Lett., 36, L05702, https://doi.org/10.1029/2008GL036703, 2009a.
Abbot, D. S., Walker, C. C., and Tziperman, E.: Can a Convective Cloud Feedback Help to Eliminate Winter Sea Ice at High CO2 Concentrations?, J. Climate, 22, 5719–5731, https://doi.org/10.1175/2009JCLI2854.1, 2009b.
Adams, C., Lee, D., and Rosen, B.: Conflicting isotopic and biotic evidence for tropical sea surface temperatures during the Tertiary, Palaeogeogr. Palaeocl., 77, 289–313, 1990.
Adams, J. M., Green, W. A., and Zhang, Y.: Leaf margins and temperature in the North American flora: Recalibrating the paleoclimatic thermometer, Global Planet. Change, 60, 523–534, https://doi.org/10.1016/j.gloplacha.2007.07.001, 2008.
Akmetiev, M. A.: Paleocene and Eocene floras of Russia and adjacent regions: Climatic conditions of their development, Paleontolog. J., 41, 1032–1039, 2007.
Akmetiev, M. A.: Paleocene and Eocene floristic and climatic change in Russia and Northern Kazakhstan, Bull. Geosci., 85, 77–94, https://doi.org/10.3140/bull.geosci.1145, 2010.
Ali, J. R. and Huber, M.: Mammalian biodiversity on Madagascar controlled by ocean currents, Nature, 463, 653–656, https://doi.org/10.1038/nature08706, 2010.
Bao, H., Koch, P. L., and Rumble, D.: Paleocene-Eocene climatic variation in western North America: Evidence from the delta O18 of pedogenic hematite, Geol. Soc. Am. Bull., 111, 1405–1415, 1999.
Barron, E.: Eocene equator-to-pole surface ocean temperatures: A significant climate problem?, Paleoceanography, 2, 729–739, 1987.
Beerling, D. J. and Royer, D. L.: Fossil plants as indicators of the phanerozoic global carbon cycle, Annu. Rev. Earth Planet. Sci., 30, 527–556, 2002a.
Beerling, D. J. and Royer, D. L.: Reading a CO2 signal from fossil stomata, New Phytol., 153, 387–397, 2002b.
Beerling, D. J., Berner, R. A., Mackenzie, F. T., Harfoot, M. B., and Pyle, J. A.: Methane and the CH4-related greenhoues effect over the past 400 million years, Am. J. Sci., 309, 97–113, https://doi.org/10.2475/02.2009.01, 2009a.
Beerling, D. J., Fox, A., and Anderson, C. W.: Quantitative uncertainty analyses of ancient atmospheric CO2 estimates from fossil leaves, Am. J. Sci., 309, 775–787, https://doi.org/10.2475/09.2009.01, 2009b.
Berry, E.: A Possible Explanation of Upper Eocene Climates, Proceedings of the American Philosophical Society, 61, 1–14, 1922.
Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G.-J., Zachos, J. C., and Brinkhuis, H.: Early Palaeogene temperature evolution of the southwest Pacific Ocean, Nature, 461, 776–779, https://doi.org/10.1038/nature08399, 2009.
Bonan, G. B.: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, https://doi.org/10.1126/science.1155121, 2008.
Boyce, C. K. and Lee, J.-E.: An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity, P. Roy. Soc. B.-Biol. Sci., 277, 3437–3443, https://doi.org/10.1098/rspb.2010.0485, 2010.
Boyd, A.: The Thyra Ø Flora: Toward and understanding of climate and vegetation during the Early Tertiary in the High Arctic, Rev. Palaeobot. Palyno., 62, 189–203, 1990.
Boyd, A.: Some limitations in using leaf physiognomic data as a precise method for determining paleoclimates with an exampe from the Late Cretaceous Pautut Flora of West Greenland, Palaeogeogr. Palaeocl., 112, 261–278, 1994.
Brinkhuis, H., Schouten, S., Collinson, M. E., Sluijs, A., Damst{é}, J. S. S., Dickens, G. R., Huber, M., Cronin, T. M., Onodera, J., Takahashi, K., Bujak, J., Stein, R., van der Burgh, J., Eldrett, J. S., Harding, I. C., Lotter, A., Sangiorgi, F., Cittert, H., de Leeuw, J., Matthiessen, J., Backman, J., and Moran, K.: Episodic fresh surface waters in the Eocene Arctic Ocean, Nature, 441, 606–609, https://doi.org/10.1038/nature04692, 2006.
Burnham, R. J.: Relationships between standing vegetation and leaf littter in a paratropical forest: implications for paleobotany, Rev. Palaeobot. Palyno., 58, 5–32, 1989.
Burnham, R. J. and Johnson, K.: South American palaeobotany and the origins of neotropical rainforests, Philos. T. Roy. Soc. B, 359, 1595–1610, https://doi.org/10.1098/rstb.2004.1531, 2004.
Burnham, R. J., Pitman, N., Johnson, K., and Wilf, P.: Habitat-related error in estimating temperatures from leaf margins in a humid tropical forest, Am. J. Bot., 88, 1096–1102, 2001.
Burnham, R. J., Ellis, B., and Johnson, K.: Modern tropical forest taphonomy: Does high biodiversity affect paleoclimatic interpretations?, Palaios, 20, 439–451, https://doi.org/10.2110/palo.2004.P04-60, 2005.
Caballero, R. and Huber, M.: Spontaneous transition to superrotation in warm climates simulated by CAM3, Geophys. Res. Lett., 37, L11701, https://doi.org/10.1029/2010GL043468, 2010.
Caballero, R. and Langen, P.: The dynamic range of poleward energy transport in an atmospheric general circulation model, Geophys. Res. Lett., 32, L02705, https://doi.org/10.1029/2004GL021581, 2005.
Collins, W., Rasch, P., Boville, B., Hack, J., McCaa, J., Williamson, D., Briegleb, B., Bitz, C., Lin, S., and Zhang, M.: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3), J. Climate, 19, 2144–2161, https://doi.org/10.1175/JCLI3761.1, 2006.
Collinson, M. E. and Hooker, J.: Paleogene vegetation of Eurasia: framework for mammalian faunas, in: Distribution and migration of tertiary mammals in Eurasia, A volume in honour of Hans de Bruijn, edited by: Reumer, J. and Wessels, W., DEINSEA, vol. 10, 41–83, 2003.
Covey, C. and Barron, E.: The role of ocean heat transport in climatic change, Earth-Sci. Rev., 24, 429–445, 1988.
Covey, C., Sloan, L. C., and Hoffert, M.: Paleoclimate data constraints on climate sensitivity: The paleocalibration method, Climatic Change, 32, 165–184, 1996.
Creech, J., Baker, J., Hollis, C., Morgans, H., and Smith, E.: Eocene sea temperatures for the mid-latitude southwest Pacific from Mg/Ca ratios in planktonic and benthic foraminifera, Earth Planet. Sc. Lett., 299, 483–295, https://doi.org/10.1016/j.epsl.2010.09.039, 2010.
Crowley, T. J. and Zachos, J. C.: Comparison of zonal temperature profiles for past warm time periods, in: Warm Climates in Earth History, edited by: Huber, B., MacLeod, K., and Wing, S., Cambridge University Press, Cambridge, UK, 50–76, 2000.
Davis, S. J., Mulch, A., Carroll, A. R., Horton, T. W., and Chamberlain, C. P.: Paleogene landscape evolution of the central North American Cordillera: Developing topography and hydrology in the Laramide foreland, Geol. Soc. Am. Bull., 121, 100–116, https://doi.org/10.1130/B26308.1, 2009.
DeConto, R. M., Hay, W., Thompson, S., and Bergengren, J.: Late Cretaceous climate and vegetation interactions: Cold continental interior paradox, in: Evolution of the Cretaceous ocean-climate system, edited by: Barrera, E. and Johnson, C., vol. 332, Geological Society of America Special Paper, Boulder, Colorado, 391–406, https://doi.org/10.1130/0-8137-2332-9.391, 1999.
Donnadieu, Y., Pierrehumbert, R. T., Jacob, R., and Fluteau, F.: Modelling the primary control of paleogeography on Cretaceous climate, Earth Planet. Sc. Lett., 248, 426–437, https://doi.org/10.1016/j.epsl.2006.06.007, 2006.
Doria, G., Royer, D. L., Wolfe, A. P., Fox, A., Westgate, J. A., and Beerling, D. J.: Declining atmospheric CO2 during the late middle Eocene climate transition, Am. J. Sci., 311, 63–75, https://doi.org/10.2475/01.2011.03, 2011.
Duffy, P., Doutriaux, C., Fodor, I., and Santer, B.: Effect of missing data on estimates of near-surface temperature change since 1900, J. Climate, 14, 2809–2814, 2001.
Eberle, J. J., Fricke, H. C., Humphrey, J. D., Hackett, L., Newbrey, M. G., and Hutchison, J. H.: Seasonal variability in Arctic temperatures during early Eocene time, Earth Planet. Sc. Lett., 296, 481–486, https://doi.org/10.1016/j.epsl.2010.06.005, 2010.
Eiler, J.: "Clumped-isotope" geochemistry – The study of naturally-occurring, multiply-substituted isotopologues, Eart Planet. Sc. Lett., 262, 309–327, https://doi.org/10.1016/j.epsl.2007.08.020, 2007.
Eldrett, J. S., Greenwood, D. R., Harding, I. C., and Huber, M.: Increased seasonality through the Eocene to Oligocene transition in northern high latitudes, Nature, 459, 969–973, https://doi.org/10.1038/nature08069, 2009.
Emanuel, K. A.: A simple model of multiple climate regimes, J. Geophys. Res.-Atmos., 107, 4077, https://doi.org/10.1029/2001JD001002, 2002.
Fletcher, B. J., Brentnall, S. J., Anderson, C. W., Berner, R. A., and Beerling, D. J.: Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change, Nat. Geosci., 1, 43–48, https://doi.org/10.1038/ngeo.2007.29, 2008.
Forest, C. E.: Paleoaltimetry: A review of thermodynamic methods, Rev. Mineral Geochem., 66, 173–193, https://doi.org/10.2138/rmg.2007.66.7, 2007.
Franks, P. J. and Beerling, D. J.: Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time, P. Natl. Acad. Sci. USA, 106, 10 343–10 347, https://doi.org/10.1073/pnas.0904209106, 2009.
Fricke, H. C. and Wing, S. L.: Oxygen isotope and paleobotanical estimates of temperature and δ18O-latitude gradients over North America during the early Eocene, Am. J. Sci., 304, 612–635, https://doi.org/10.2475/ajs.304.7.612, 2004.
Garric, G. and Huber, M.: Quasi-decadal variability in paleoclimate records: Sunspot cycles or intrinsic oscillations?, Paleoceanography, 18, 1068, https://doi.org/10.1029/2002PA000869, 2003.
Greenwood, D. R.: Leaf margin analysis: Taphonomic constraints, Palaios, 20, 498–505, https://doi.org/10.2110/palo.2004.P04-58, 2005.
Greenwood, D. R.: North American Leaves and Climates: From Wolfe and Dilcher to Burnham and Wilf, in: Advances in Mesozoic and Cenozoic Paleobotany: Studies in celebration of David L. Dilcher and Jack A. Wolfe, edited by: Jarzen, D., Retallack, G., Jarzen, S., and Manchester, S., vol. 258, Courier Forschungsinstitut, Senckenberg, 95–108, 2007.
Greenwood, D. R. and Wing, S. L.: Eocene continental climates and latitudinal temperature gradients, Geology, 23, 1044–1048, 1995.
Greenwood, D. R., Moss, P., Rowett, A., Vadala, A., and Keefe, R.: Plant communities and climate change in southeastern Australia during the early Paleogene, in: Causes and Consequences of Globally Warm Climates in the Early Paleogene, edited by: Wing, S., Gingerich, P., Schmitz, B., and Thomas, E., vol. 369, Geological Society of America Special Paper, Boulder, Colorado, https://doi.org/10.1130/0-8137-2369-8.365, 365–390, 2003.
Greenwood, D. R., Wilf, P., Wing, S. L., and Christophel, D.: Paleotemperature estimation using leaf-margin analysis: Is Australia different?, Palaios, 19, 129–142, 2004.
Greenwood, D. R., Archibald, S. B., Mathewes, R., and Moss, P.: Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape, Can. J. Earth Sci., 42, 167–185, https://doi.org/10.1139/E04-100, 2005.
Greenwood, D. R., Basinger, J. F., and Smith, R. Y.: How wet was the Arctic Eocene rain forest? Estimates of precipitation from Paleogene Arctic macrofloras, Geology, 38, 15–18, https://doi.org/10.1130/G30218.1, 2010.
Harrison, T., Msuya, C., Murray, A., Jacobs, B., Báz, A., Mundil, R., and Ludwig, K.: Paleontological investigations at the Eocene locality of Mahenge in north-central Tanzania, East Africa, in: Eocene Biodiversity: Unusual Occurrences and Rarely Sampled Habitats, edited by: Gunnell, G., Plenum Press, New York, 39–74, 2001.
Head, J. J., Bloch, J. I., Hastings, A. K., Bourque, J. R., Cadena, E. A., Herrera, F. A., Polly, P., and Jaramillo, C. A.: Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures, Nature, 457, 715–717, https://doi.org/10.1038/nature07671, 2009.
Heinemann, M., Jungclaus, J. H., and Marotzke, J.: Warm Paleocene/Eocene climate as simulated in ECHAM5/MPI-OM, Clim. Past, 5, 785–802, https://doi.org/10.5194/cp-5-785-2009, 2009.
Henderiks, J. and Pagani, M.: Coccolithophore cell size and the Paleogene decline in atmospheric CO2, Earth Planet. Sc. Lett., 269, 575–583, https://doi.org/10.1016/j.epsl.2008.03.016, 2008.
Herfort, L., Schouten, S., Boon, J. P., and Damste, J. S. S.: Application of the TEX86 temperature proxy to the southern North Sea, Org. Geochem., 37, 1715–1726, https://doi.org/10.1016/j.orggeochem.2006.07.021, 2006.
Hickey, L.: Stratigraphy and paleobotany of the Golden Valley Formation (Early Tertiary) of western North Dakota, GSA Memoir, 150, MB037, 1977.
Holland, M. and Bitz, C.: Polar amplification of climate change in coupled models, Clim. Dynam., 21, 221–232, https://doi.org/10.1007/s00382-003-0332-6, 2003.
Hollis, C. J., Handley, L., Crouch, E. M., Morgans, H. E. G., Baker, J. A., Creech, J., Collins, K. S., Gibbs, S. J., Huber, M., Schouten, S., Zachos, J. C., and Pancost, R. D.: Tropical sea temperatures in the high-latitude South Pacific during the Eocene, Geology, 37, 99–102, https://doi.org/10.1130/G25200A.1, 2009.
Hollis, C. J., Taylor, K. W. R., Pancost, R. D., Creech, J. B., Kennedy, E. M., Strong, C. P., Morgans, H. E. G., Crouch, E. M., Neil, H., Ackerley, D., and Huber, M.: An update on paleoclimate data-model comparisonsfor the Southwest Pacific, Berichte Geol. B.-A., 85, 92, 2011.
Hren, M. T., Pagani, M., Erwin, D. M., and Brandon, M.: Biomarker reconstruction of the early Eocene paleotopography and paleoclimate of the northern Sierra Nevada, Geology, 38, 7–10, https://doi.org/10.1130/G30215.1, 2010.
Huber, M.: A hotter greenhouse?, Science, 321, 353–354, https://doi.org/10.1126/science.1161170, 2008.
Huber, M.: CLIMATE CHANGE Snakes tell a torrid tale, Nature, 457, 669–671, https://doi.org/10.1038/457669a, 2009.
Huber, M. and Caballero, R.: Eocene El Nino: Evidence for robust tropical dynamics in the "hothouse", Science, 299, 877–881, https://doi.org/10.1126/science.1078766, 2003.
Huber, M. and Sloan, L. C.: Warm climate transitions: A general circulation modeling study of the Late Paleocene thermal maximum (about 56 Ma), J. Geophys. Res.-Atmos., 104, 16633–16655, https://doi.org/10.1029/1999JD900272, 1999.
Huber, M. and Sloan, L. C.: Climatic responses to tropical sea surface temperature changes on a "greenhouse" Earth, Paleoceanography, 15, 443–450, https://doi.org/10.1029/1999PA000455, 2000.
Huber, M. and Sloan, L. C.: Heat transport, deep waters, and thermal gradients: Coupled simulation of an Eocene Greenhouse Climate, Geophys. Res. Lett., 28, 3481–3484, https://doi.org/10.1029/2001GL012943, 2001.
Huber, M., Sloan, L. C., and Shellito, C.: Early Paleogene oceans and climate: A fully coupled modeling approach using the NCAR CCSM, in: Causes and Consequences of Globally Warm Climates in the Early Paleogene, edited by: Wing, S., Gingerich, P., Schmitz, B., and Thomas, E., vol. 369, Geological Society of America Special Paper, Boulder, Colorado, 25–47, https://doi.org/10.1130/0-8137-2369-8.25, 2003.
Huguet, C., Cartes, J. E., Damste, J. S. S., and Schouten, S.: Marine crenarchaeotal membrane lipids in decapods: Implications for the TEX86 paleothermometer, Geochemistry Geophysics Geosystems, 7, Q11010, https://doi.org/10.1029/2006GC001305, 2006.
Huguet, C., Schimmelmann, A., Thunell, R., Lourens, L. J., Damste, J. S. S., and Schouten, S.: A study of the TEX86 paleothermometer in the water column and sediments of the Santa Barbara Basin, California, Paleoceanography, 22, PA3203, https://doi.org/10.1029/2006PA001310, 2007.
Huguet, C., Kim, J.-H., de Lange, G. J., Damste, J. S. S., and Schouten, S.: Effects of long term oxic degradation on the U-37(K'), TEX86 and BIT organic proxies, Org. Geochem., 40, 1188–1194, https://doi.org/10.1016/j.orggeochem.2009.09.003, 2009.
Hunt, R. J. and Poole, I.: Paleogene West Antarctic climate and vegetation history in light of new data from King George Island, edited by: Wing, S., Gingerich, P., Schmitz, B., and Thomas, E., vol. 369, Geological Society of America Special Paper, Boulder, Colorado, 395–412, https://doi.org/10.1130/0-8137-2369-8.395, 2003.
Hutchison, J. H.: Turtle, crocodilian, and champsosaur diversity changes in the Cenozoic of the north-central region of western United States, Palaeogeogr. Palaeocl., 37, 149–164, 1982.
Ingalls, A., Shah, S., Hansman, R., Aluwihare, L., Santos, G., Druffel, E., and Pearson, A.: Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon, P. Natl. Acad. Sci. USA, 103, 6442–6447, https://doi.org/10.1073/pnas.0510157103, 2006.
Ivany, L. C., Lohmann, K. C., Hasiuk, F., Blake, D. B., Glass, A., Aronson, R. B., and Moody, R. M.: Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica, Geol. Soc. Am. Bull., 120, 659–678, https://doi.org/10.1130/B26269.1, 2008.
Jacobs, B. and Herendeen, P.: Eocene dry climate and woodland vegetation in tropical Africa reconstructed from fossil leaves from northern Tanzania, Palaeogeogr. Palaeocl., 213, 115–123, https://doi.org/10.1016/j.palaeo.2004.07.007, 2004.
Jacobs, B. F.: Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes, Philos. T. Roy. Soc. B, 359, 1573–1583, https://doi.org/10.1098/rstb.2004.1533, 2004.
Jahren, A. H.: The Arctic Forest of the Middle Eocene, Annu. Rev. Earth Planet. Sci., 35, 509–540, https://doi.org/10.1146/annurev.earth.35.031306.140125, 2007.
Jahren, A. H. and Sternberg, L.: Humidity estimate for the middle Eocene Arctic rain forest, Geology, 31, 463–466, 2003.
Jahren, A. H. and Sternberg, L. S. L.: Annual patterns within tree rings of the Arctic middle Eocene (ca. 45 Ma): Isotopic signatures of precipitation, relative humidity, and deciduousness, Geology, 36, 99–102, https://doi.org/10.1130/G23876A.1, 2008.
Jahren, A. H., Byrne, M. C., Graham, H. V., Sternberg, L. S. L., and Summons, R. E.: The environmental water of the middle Eocene Arctic: Evidence from $\delta{D}$, δO18 and δC13 within specific compounds, Palaeogeogr. Palaeocl., 271, 96–103, https://doi.org/10.1016/j.palaeo.2008.09.016, 2009.
Jaramillo, C. A., Ochoa, D., Contreras, L., Pagani, M., Carvajal-Ortiz, H., Pratt, L. M., Krishnan, S., Cardona, A., Romero, M., Quiroz, L., Rodriguez, G., Rueda, M. J., de la Parra, F., Mor{ó}n, S., Green, W., Bayona, G., Montes, C., Quintero, O., Ramirez, R., Mora, G., Schouten, S., Bermudez, H., Navarrete, R., Parra, F., Alvar{á}n, M., Osorno, J., Crowley, J. L., Valencia, V., and Vervoort, J.: Effects of rapid global warming at the Paleocene-Eocene boundary on neotropical vegetation, Science, 330, 957–961, https://doi.org/10.1126/science.1193833, 2010.
Jones, T. D., Ridgwell, A., Lunt, D. J., Maslin, M., Schmidt, D. N., and Valdes, P. J.: A Palaeogene perspective on climate sensitivity and methane hydrate instability, Philos. T. Roy. Soc. A, 368, 2395–2415, https://doi.org/10.1098/rsta.2010.0053, 2010.
Kaiser, T., Ansorge, J., Arratia, G., Bullwinkel, V., Gunnell, G. F., Herendeen, P., Jacobs, B. F., Mingram, J., Msuya, C., and Musolff, A.: The maar lake of Mahenge (Tanzania) unique evidence of Eocene terrestrial environments in sub-Sahara Africa, Z. Dtsch. Ges. Geowiss., 157, 411–431, https://doi.org/10.1127/1860-1804/2006/0157-0411, 2006.
Kiehl, J., Shields, C., Hack, J., and Collins, W.: The climate sensitivity of the Community Climate System Model version 3 (CCSM3), J. Climate, 19, 2584–2596, https://doi.org/10.1175/JCLI3747.1, 2006.
Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koc, N., Hopmans, E. C., and Damste, J. S. S.: New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions, Geochim. Cosmochim. Acta, 74, 4639–4654, https://doi.org/10.1016/j.gca.2010.05.027, 2010.
Kirk-Davidoff, D. B. and Lamarque, J.-F.: Maintenance of polar stratospheric clouds in a moist stratosphere, Clim. Past, 4, 69–78, https://doi.org/10.5194/cp-4-69-2008, 2008.
Kirk-Davidoff, D. B., Schrag, D., and Anderson, J.: On the feedback of stratospheric clouds on polar climate, Geophys. Res. Lett., 29, 1556, https://doi.org/10.1029/2002GL014659, 2002.
Kobashi, T., Grossman, E., Dockery, D., and Ivany, L.: Water mass stability reconstructions from greenhouse (Eocene) to icehouse (Oligocene) for the northern Gulf Coast continental shelf (USA), Paleoceanography, 19, PA1022, https://doi.org/10.1029/2003PA000934, 2004.
Koch, P. L.: Isotopic reconstruction of past continental environments, Annu. Rev. Earth Planet. Sci., 26, 573–613, https://doi.org/10.1146/annurev.earth.26.1.573, 1998.
Korty, R., Emanuel, K. A., and Scott, J.: Tropical cyclone-induced upper-ocean mixing and climate: Application to equable climates, J. Climate, 21, 638–654, https://doi.org/10.1175/2007JCLI1659.1, 2008.
Kothavala, Z., Oglesby, R., and Saltzman, B.: Sensitivity of equilibrium surface temperature of CCM3 to systematic changes in atmospheric CO2, Geophys. Res. Lett., 26, 209–212, https://doi.org/10.1029/1998GL900275, 1999.
Kowalski, E. A.: Mean annual temperature estimation based on leaf morphology: a test from tropical South America, Palaeogeogr. Palaeocl., 188, 141–165, https://doi.org/10.1016/S0031-0182(02)00550-3, 2002.
Kowalski, E. A. and Dilcher, D. L.: Warmer paleotemperatures for terrestrial ecosystems, P. Natl. Acad. Sci. USA, 100, 167–170, https://doi.org/10.1073/pnas.232693599, 2003.
Kump, L. R. and Pollard, D.: Amplification of cretaceous warmth by biological cloud feedbacks, Science, 320, 195–195, https://doi.org/10.1126/science.1153883, 2008.
Kvacek, Z.: Forest flora and vegetation of the European early Palaeogene – a review, Bull. Geosci., 85, 63–76, https://doi.org/10.3140/bull.geosci.1146, 2010.
Langen, P. and Alexeev, V.: Polar amplification as a preferred response in an idealized aquaplanet GCM, Clim. Dynam., 29, 305–317, https://doi.org/10.1007/s00382-006-0221-x, 2007.
Lawrence, K. T., Sloan, L. C., and Sewall, J. O.: Terrestrial climatic response to precessional orbital forcing in the Eocene, in: Causes and Consequences of Globally Warm Climates in the Early Paleogene, edited by: Wing, S., Gingerich, P., Schmitz, B., and Thomas, E., vol. 369, Geological Society of America Special Paper, Boulder, Colorado, 65–77, https://doi.org/10.1130/0-8137-2369-8.65, 2003.
Lear, C., Elderfield, H., and Wilson, P.: Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite, Science, 287, 269–272, https://doi.org/10.1126/science.287.5451.269, 2000.
Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K., and Rosenthal, Y.: Cooling and ice growth across the Eocene-Oligocene transition, Geology, 36, 251–254, https://doi.org/10.1130/G24584A.1, 2008.
Li, H. M.: Early Tertiary paleoclimate of King George Island, Antarctica – evidence from the Fossil Hill Flora, in: Recent Progress in Antarctic Earth Science, edited by: Yoshida, Y., Kaminuma, K., and Shiraishi, K., Terra Scientific Publishing Company, Tokyo, Japan, 371–375, 1992.
Lindzen, R.: Climate dynamics and global change, Annu. Rev. Fluid Mech., 26, 353–378, 1994.
Liu, Z., Pagani, M., Zinniker, D., DeConto, R. M., Huber, M., Brinkhuis, H., Shah, S. R., Leckie, R. M., and Pearson, A.: Global Cooling During the Eocene-Oligocene Climate Transition, Science, 323, 1187–1190, https://doi.org/10.1126/science.1166368, 2009.
Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thompson, E., Roehl, U., Bowles, J., and Raffi, I.: Astronomical pacing of late Palaeocene to early Eocene global warming events, Nature, 435, 1083–1087, https://doi.org/10.1038/nature03814, 2005.
Lowenstein, T. K. and Demicco, R. V.: Elevated eocene atmospheric CO2 and its subsequent decline, Science, 313, 1928, https://doi.org/10.1126/science.1129555, 2006.
Lunt, D. J., Valdes, P. J., Jones, T. D., Ridgwell, A., Haywood, A. M., Schmidt, D. N., Marsh, R., and Maslin, M.: CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization, Geology, 38, 875–878, https://doi.org/10.1130/G31184.1, 2010.
Markwick, P. J.: "Equability", continentality, and Tertiary "Climate": The crodililian perspective, Geology, 22, 613–616, 1994.
Markwick, P. J.: Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing palaeoclimate, Palaeogeogr. Palaeocl., 137, 205–271, 1998.
Markwick, P. J.: The palaeogeographic and palaeoclimatic significance of climate proxies for data-model comparisons, in: Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, edited by: Williams, M., Haywood, A., Gregory, F., and Schmidt, D., The Micropalaeontology Society, Special Publication, The Geological Society of London, London, 251–312, 2007.
Markwick, P. J. and Valdes, P.: Palaeo-digital elevation models for use as boundary conditions in coupled ocean-atmo sphere GCM experiments: a Maastrichtian (late Cretaceous) example, Palaeogeogr. Palaeocl., 213, 37–63, https://doi.org/10.1016/j.palaeo.2004.06.015, 2004.
McIver, E. and Basinger, J. F.: Early Tertiary floral evolution in the Canadian high arctic, Ann. Mo. Bot. Gard., 86, 523–545, 1999.
Meyer, H. W.: A review of paleotemperature – Lapse rate methods for estimating paleoelevation from fossil floras, Rev. Mineral Geochem., 66, 155–171, https://doi.org/10.2138/rmg.2007.66.6, 2007.
Miller, G., Alley, R., Brigham-Grette, J., Fitzpatrick, J., Polyak, L., Serreze, M., and White, J.: Arctic amplification: can the past constrain the future?, Quaternary Sci., 29, 1779–1790, https://doi.org/10.1016/j.quascirev.2010.02.008, 2010.
Miller, K. G., Fairbanks, R., and Mountain, G.: Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion, Paleoceanography, 2, 1–19, 1987.
Molnar, P.: Deuterium and oxygen isotopes, paleoelevations of the Sierra Nevada, and Cenozoic climate, Geol. Soc. Am. Bull., 122, 1106–1115, https://doi.org/10.1130/B30001.1, 2010.
Morrill, C., Small, E., and Sloan, L. C.: Modeling orbital forcing of lake level change: Lake Gosiute (Eocene), North America, Global Planet. Change, 29, 57–76, https://doi.org/10.1016/S0921-8181(00)00084-9, 2001.
Mosbrugger, V., Utescher, T., and Dilcher, D. L.: Cenozoic continental climatic evolution of Central Europe, P. Natl. Acad. Sci. USA, 102, 14964–14969, https://doi.org/10.1073/pnas.0505267102, 2005.
Mueller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., and Heine, C.: Long-term sea-level fluctuations driven by ocean basin dynamics, Science, 319, 1357–1362, https://doi.org/10.1126/science.1151540, 2008.
Mulch, A., Teyssier, C., Cosca, M. A., and Chamberlain, C. P.: Stable isotope paleoaltimetry of Eocene core complexes in the North American Cordillera, Tectonics, 26, TC4001, https://doi.org/10.1029/2006TC001995, 2007.
Mustoe, G. E., Dillhoff, R. M., and Dillhoff, T. A.: Geology and paleontology of the early Tertiary Chuckanut Formation, in: Floods, Faults, and Fire: Geological Field Trips in Washington State and Southwest British Columbia, edited by: Stelling, P. and Tucker, D. S., Geological Society of America Field Guide, 9, 121–135, https://doi.org/10.1130/2007.fld009(06), 2007.
Nicolo, M. J., Dickens, G. R., Hollis, C. J., and Zachos, J. C.: Multiple early Eocene hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea, Geology, 35, 699, https://doi.org/10.1130/G23648A.1, 2007.
Otto-Bliesner, B. L. and Upchurch, G.: Vegetation-induced warming of high-latitude regions during the late Cretaceous period, Nature, 385, 804–807, 1997.
Otto-Bliesner, B. L., Tomas, R., Brady, E., Ammann, C., Kothavala, Z., and Clauzet, G.: Climate sensitivity of moderate- and low-resolution versions of CCSM3 to preindustrial forcings, J. Climate, 19, 2567–2583, https://doi.org/10.1175/JCLI3754.1, 2006.
Pagani, M.: The alkenone-CO2 proxy and ancient atmospheric carbon dioxide, Philos. T. Roy. Soc. A, 360, 609–632, https://doi.org/10.1098/rsta.2001.0959, 2002.
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S. M.: Marked decline in atmospheric carbon dioxide concentrations during the Paleogene, Science, 309, 600–603, https://doi.org/10.1126/science.1110063, 2005.
Panchuk, K., Ridgwell, A., and Kump, L. R.: Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: A model-data comparison, Geology, 36, 315–318 https://doi.org/10.1130/G24474A.1, 2008.
Pearson, A., McNichol, A., Benitez-Nelson, B., Hayes, J., and Eglinton, T.: Origins of lipid biomarkers in Santa Monica Basin surface sediment: A case study using compound-specific Delta C-14 analysis, Geochim. Cosmochim. Acta, 65, 3123–3137, https://doi.org/10.1016/S0016-7037(01)00657-3, 2001a.
Pearson, P. N. and Palmer, M.: Atmospheric carbon dioxide concentrations over the past 60 million years, Nature, 406, 695–699, https://doi.org/10.1038/35021000, 2000.
Pearson, P. N., Ditchfield, P., Singano, J., Harcourt-Brown, K., Nicholas, C., Olsson, R., Shackleton, N. J., and Hall, M.: Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs, Nature, 413, 481–487, https://doi.org/10.1038/35097000, 2001b.
Pearson, P. N., van Dongen, B. E., Nicholas, C. J., Pancost, R. D., Schouten, S., Singano, J. M., and Wade, B. S.: Stable warm tropical climate through the Eocene Epoch, Geology, 35, 211–214, https://doi.org/10.1130/G23175A.1, 2007.
Pearson, P. N., McMillan, I. K., Wade, B. S., Jones, T. D., Coxall, H. K., Bown, P. R., and Lear, C. H.: Extinction and environmental change across the Eocene-Oligocene boundary in Tanzania, Geology, 36, 179–182, https://doi.org/10.1130/G24308A.1, 2008.
Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide through the Eocene-Oligocene climate transition, Nature, 461, 1110–113, https://doi.org/10.1038/nature08447, 2009.
Peppe, D. J., Royer, D. L., Wilf, P., and Kowalski, E. A.: Quantification of large uncertainties in fossil leaf paleoaltimetry, Tectonics, 29, TC3015, https://doi.org/10.1029/2009TC002549, 2010.
Peppe, D. J., Royer, D. L., Cariglino, B., Oliver, S. Y., Newman, S., Leight, E., Enikolopov, G., Fernandez-Burgos, M., Herrera, F., Adams, J. M., Correa, E., Currano, E. D., Erickson, J. M., Hinojosa, L. F., Hoganson, J. W., Iglesias, A., Jaramillo, C. A., Johnson, K. R., Jordan, G. J., Kraft, N. J. B., Lovelock, E. C., Lusk, C. H., Niinemets, Ü., Pe{ñ}uelas, J., Rapson, G., Wing, S. L., and Wright, I. J.: Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications, New Phytol., 190, 724–739, https://doi.org/10.1111/j.1469-8137.2010.03615.x, 2011.
Peterse, F., Kim, J.-H., Schouten, S., Kristensen, D. K., Koc, N., and Damst{é}, J. S. S.: Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway), Org. Geochem., 40, 692–699, https://doi.org/10.1016/j.orggeochem.2009.03.004, 2009.
Pierrehumbert, R. T.: Thermostats, radiator fins, and the local runaway greenhouse, J. Atmos. Sci., 52, 1784–1806, 1995.
Pigg, K. B. and Devore, M. L.: Floristic composition and variation in late Paleocene to early Eocene floras in North America, Bull. Geosci., 85, 135–154, https://doi.org/10.3140/bull.geosci.1136, 2010.
Poole, I., Cantrill, D., and Utescher, T.: A multi-proxy approach to determine Antarctic terrestrial palaeoclimate during the Late Cretaceous and Early Tertiary, Palaeogeogr. Palaeocl., 222, 95–121, https://doi.org/10.1016/j.palaeo.2005.03.011, 2005.
Robert, C. and Chamley, H.: Development of early Eocene warm climates, as inferred from clay mineral variations in oceanic sediments, Global Planet. Change, 89, 315–331, 1991.
Roberts, C. D., Legrande, A. N., and Tripati, A. K.: Climate sensitivity to Arctic seaway restriction during the early Paleogene, Earth Planet. Sc. Lett., 286, 576–585, https://doi.org/10.1016/j.epsl.2009.07.026, 2009.
Rowley, D. B.: Stable isotope-based paleoaltimetry: Theory and validation, Rev. Mineral Geochem., 66, 23–52, https://doi.org/10.2138/rmg.2007.66.2, 2007.
Royer, D. L., Wing, S. L., Beerling, D. J., Jolley, D. W., Koch, P. L., Hickey, L. J., and Berner, R. A.: Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the tertiary, Science, 292, 2310–2313, https://doi.org/10.1126/science.292.5525.2310, 2001.
Royer, D. L., Osborne, C. P., and Beerling, D. J.: High CO2 increases the freezing sensitivity of plants: Implications for paleoclimatic reconstructions from fossil floras, Geology, 30, 963–966, 2002.
Schouten, S., Hopmans, E., Schefu{ß}, E., and Damst{é}, J. S.: Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?, Earth Planet. Sc. Lett., 204, 265–274, https://doi.org/10.1016/S0012-821X(02)00979-2, 2002.
Schouten, S., Hopmans, E., Forster, A., van Breugel, Y., Kuypers, M., and Damste, J.: Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids, Geology, 31, 1069–1072, https://doi.org/10.1130/G19876.1, 2003.
Schouten, S., Forster, A., Panoto, F. E., and Damst{é}, J. S. S.: Towards calibration of the TEX86 palaeothermometer for tropical sea surface temperatures in ancient greenhouse worlds, Org. Geochem., 38, 1537–1546, https://doi.org/10.1016/j.orggeochem.2007.05.014, 2007.
Schrag, D.: Effects of diagenesis on the isotopic record of late paleogene tropical sea surface temperatures, Chem. Geol., 161, 215–224, 1999.
Schrag, D., Depaolo, D. J., and Richter, F.: Reconstructing past sea surface temperatures: correcting for diagenesis of bulk marine carbonate, Geochim. Cosmochim. Acta, 59, 2265–2278, 1995.
Sellwood, B. and Valdes, P. J.: Mesozoic climates: General circulation models and the rock record, Sediment Geol., 190, 269–287, https://doi.org/10.1016/j.sedgeo.2006.05.013, 2006.
Sewall, J. and Sloan, L. C.: Less ice, less tilt, less chill: The influence of a seasonally ice-free Arctic Ocean and reduced obliquity on early Paleogene climate, Geology, 32, 477–480, https://doi.org/10.1130/g20295.1, 2004.
Sewall, J. and Sloan, L. C.: Come a little bit closer: A high-resolution climate study of the early Paleogene Laramide foreland, Geology, 34, 81–84, https://doi.org/10.1130/G22177.1, 2006.
Sewall, J. O. and Sloan, L. C.: Equable Paleogene climates: The result of a stable, positive Arctic Oscillation?, Geophys. Res. Lett., 28, 3693–3695, https://doi.org/10.1029/2001GL013776, 2001.
Sewall, J. O., Sloan, L. C., Huber, M., and Wing, S.: Climate sensitivity to changes in land surface characteristics, Global Planet. Change, 26, 445–465, https://doi.org/10.1016/S0921-8181(00)00056-4, 2000.
Sewall, J. O., Huber, M., and Sloan, L. C.: A method for using a fully coupled climate system model to generate detailed surface boundary conditions for paleoclimate modeling investigations: an early Paleogene example, Global Planet. Change, 43, 173–182, https://doi.org/10.1016/j.gloplacha.2004.03.004, 2004.
Sexton, P. F., Wilson, P. A., and Pearson, P. N.: Microstructural and geochemical perspectives on planktic foraminiferal preservation: "Glassy" versus "Frosty", Geochem. Geophy. Geosy., 7, Q12P19, https://doi.org/10.1029/2006GC001291, 2006.
Shah, S. R., Mollenhauer, G., Ohkouchi, N., Eglinton, T. I., and Pearson, A.: Origins of archaeal tetraether lipids in sediments: Insights from radiocarbon analysis, Geochim. Cosmochim. Acta, 72, 4577–4594, https://doi.org/10.1016/j.gca.2008.06.021, 2008.
Sheldon, N. D. and Tabor, N. J.: Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols, Earth-Sci. Rev., 95, 1–52, https://doi.org/10.1016/j.earscirev.2009.03.004, 2009.
Shellito, C. and Sloan, L. C.: Reconstructing a lost Eocene Paradise, Part II: On the utility of dynamic global vegetation models in pre-Quaternary climate studies, Global Planet. Change, 50, 18–32, https://doi.org/10.1016/j.gloplacha.2005.08.002, 2006a.
Shellito, C. and Sloan, L. C.: Reconstructing a lost Eocene paradise: Part I. Simulating the change in global floral distribution at the initial Eocene thermal maximum, Global Planet. Change, 50, 1–17, https://doi.org/10.1016/j.gloplacha.2005.08.001, 2006b.
Shellito, C. J., Sloan, L. C., and Huber, M.: Climate model sensitivity to atmospheric CO2 levels in the Early-Middle Paleogene, Palaeogeogr. Palaeocl., 193, 113–123, https://doi.org/10.1016/S0031-0182(02)00718-6, 2003.
Shellito, C. J., Lamarque, J.-F., and Sloan, L. C.: Early Eocene Arctic climate sensitivity to pCO2 and basin geography, Geophys. Res. Lett., 36, L09707, https://doi.org/10.1029/2009GL037248, 2009.
Sherwood, S. C. and Huber, M.: An adaptability limit to climate change due to heat stress, P. Natl. Acad. Sci., 107, 9552–9555, https://doi.org/10.1073/pnas.0913352107, 2010.
Sijp, W., England, M., and Toggweiler, J.: Effect of ocean gateway changes under greenhouse warmth, J. Climate, 22, 6639–6652, https://doi.org/10.1175/2009JCLI3003.1, 2009.
Sloan, L. C.: Equable climates during the early Eocene: Significance of regional paleogeography for North American climate, Geology, 22, 881–884, 1994.
Sloan, L. C.: A framework for regional modeling of past climates, Theor. Appl. Climatol., 86, 271–279, https://doi.org/10.1007/s00704-005-0207-3, 2006.
Sloan, L. C. and Barron, E.: "Equable" climates during Earth history, Geology, 18, 489–492, 1990.
Sloan, L. C. and Barron, E.: A comparison of Eocene climate model results to quantify paleoclimatic interpretations, Palaeogeogr. Palaeocl., 93, 183–202, https://doi.org/10.1016/0031-0182(92)90096-N, 1992.
Sloan, L. C. and Morrill, C.: Orbital forcing and Eocene continental temperatures, Palaeogeogr. Palaeocl., 144, 21–35, https://doi.org/10.1016/S0031-0182(98)00091-1, 1998.
Sloan, L. C. and Pollard, D.: Polar stratospheric clouds: A high latitude warming mechanism in an ancient greenhouse world, Geophys. Res. Lett., 25, 3517–3520, https://doi.org/10.1029/98GL02492, 1998.
Sloan, L. C., Walker, J., Moore, T. C., Rea, D., and Zachos, J. C.: Possible methane-induced polar warming in the early Eocene, Nature, 357, 320–322, https://doi.org/10.1038/357320a0, 1992.
Sloan, L. C., Walker, J., and Moore, T. C.: Possible role of oceanic heat transport in early Eocene climate, Paleoceanography, 10, 347–356, https://doi.org/10.1029/94PA02928, 1995.
Sloan, L. C., Huber, M., and Ewing, A.: Polar stratospheric cloud forcing in a greenhouse world, in: Reconstructing Ocean History: A Window Into the Future, edited by Abrantes, F., and Mix, A. C., Kluwer Academic, New York, New York, 273–293, 1999.
Sloan, L. C., Huber, M., Crowley, T., Sewall, J. O., and Baum, S.: Effect of sea surface temperature configuration on model simulations of "equable" climate in the Early Eocene, Palaeogeogr. Palaeocl., 167, 321–335, https://doi.org/10.1016/S0031-0182(00)00245-5, 2001.
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Damste, J., Dickens, G., Huber, M., Reichart, G., Stein, R., Matthiessen, J., Lourens, L., Pedentchouk, N., Backman, J., and Moran, K.: Subtropical arctic ocean temperatures during the Palaeocene/Eocene thermal maximum, Nature, 441, 610–613, https://doi.org/10.1038/nature04668, 2006.
Sluijs, A., Bowen, G., Brinkhuis, H., Lourens, L., and Thomas, E.: The Palaeocene-Eocene Thermal Maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of global change, in: Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, edited by: Williams, M., Haywood, A., Gregory, F., and Schmidt, D., The Micropalaeontology Society, Special Publication, The Geological Society of London, London, UK, 323–349, 2007.
Sluijs, A., Roehl, U., Schouten, S., Brumsack, H.-J., Sangiorgi, F., Damste, J. S. S., and Brinkhuis, H.: Arctic late Paleocene-early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302), Paleoceanography, 23, PA1S11, https://doi.org/10.1029/2007PA001495, 2008.
Sluijs, A., Schouten, S., Donders, T. H., Schoon, P. L., Roehl, U., Reichart, G.-J., Sangiorgi, F., Kim, J.-H., Damst{é}, J. S. S., and Brinkhuis, H.: Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2, Nat. Geosci., 2, 777–780, https://doi.org/10.1038/NGEO668, 2009.
Smith, R. Y., Basinger, J. F., and Greenwood, D. R.: Depositional setting, fossil flora, and paleoenvironment of the Early Eocene Falkland site, Okanagan Highlands, British Columbia, Can. J. Earth Sci., 46, 811–822, https://doi.org/10.1139/E09-053, 2009.
Smith, R. Y., Greenwood, D. R., and Basinger, J. F.: Estimating paleoatmospheric pCO(2) during the Early Eocene Climatic Optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada, Palaeogeogr. Palaeocl., 293, 120–131, https://doi.org/10.1016/j.palaeo.2010.05.006, 2010.
Spicer, R. A. and Parrish, J.: Late Cretaceous-early Tertiary palaeoclimates of northern high latitudes: a quantitative view, J. Geol. Soc., 147, 329–341, 1990.
Spicer, R. A., Herman, A., and Kennedy, E.: The sensitivity of CLAMP to taphonomic loss of foliar physiognomic characters, Palaios, 20, 429–438, https://doi.org/10.2110/palo.2004.P04-63, 2005.
Spicer, R. A., Ahlberg, A., Herfort, A. B., Hofmann, C.-C., Raikevich, M., Valdes, P. J., and Markwick, P. J.: The Late Cretaceous continental interior of Siberia: A challenge for climate models, Earth Planet. Sc. Lett., 267, 228–235, https://doi.org/10.1016/j.epsl.2007.11.049, 2008.
Spicer, R. A., Valdes, P. J., Spicer, T. E. V., Craggs, H. J., Srivastava, G., Mehrotra, R. C., and Yang, J.: New developments in CLAMP: Calibration using global gridded meteorological data, Palaeogeogr. Palaeocl., 283, 91–98, https://doi.org/10.1016/j.palaeo.2009.09.009, 2009.
Stickley, C. E., John, K. S., Koc, N., Jordan, R. W., Passchier, S., Pearce, R. B., and Kearns, L. E.: Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris, Nature, 460, 376–379, https://doi.org/10.1038/nature08163, 2009.
Thrasher, B. L. and Sloan, L. C.: Carbon dioxide and the early Eocene climate of western North America, Geology, 37, 807–810, https://doi.org/10.1130/G30090A.1, 2009.
Thrasher, B. L. and Sloan, L. C.: Land cover influences on the regional climate of western North America during the early Eocene, Global Planet. Change, 72, 25–31, https://doi.org/10.1016/j.gloplacha.2010.02.002, 2010.
Tindall, J., Flecker, R., Valdes, P. J., Schmidt, D. N., Markwick, P. J., and Harris, J.: Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean-atmosphere GCM: Implications for reconstructing early Eocene climate, Earth Planet. Sc. Lett., 292, 265–273, https://doi.org/10.1016/j.epsl.2009.12.049, 2010.
Tripati, A. and Elderfield, H.: Abrupt hydrographic changes in the equatorial Pacific and subtropical Atlantic from foraminiferal Mg/Ca indicate greenhouse origin for the thermal maximum at the Paleocene-Eocene Boundary, Geochem. Geophy. Geosy., 5, Q02006, https://doi.org/10.1029/2003GC000631, 2004.
Tripati, A. K., Delaney, M., Zachos, J. C., Anderson, L., Kelly, D., and Elderfield, H.: Tropical sea-surface temperature reconstruction for the early Paleogene using Mg/Ca ratios of planktonic foraminifera, Paleoceanography, 18, 1–13, https://doi.org/10.1029/2003PA000937, 2003.
Trommer, G., Siccha, M., van der Meer, M. T. J., Schouten, S., Damste, J. S. S., Schulz, H., Hemleben, C., and Kucera, M.: Distribution of Crenarchaeota tetraether membrane lipids in surface sediments from the Red Sea, Org. Geochem., 40, 724–731, https://doi.org/10.1016/j.orggeochem.2009.03.001, 2009.
Turich, C., Freeman, K. H., Bruns, M. A., Conte, M., Jones, A. D., and Wakeham, S. G.: Lipids of marine Archaea: Patterns and provenance in the water-column and sediments, Geochim. Cosmochim. Acta, 71, 3272–3291, https://doi.org/10.1016/j.gca.2007.04.013, 2007.
Uhl, D., Klotz, S., Traiser, C., Thiel, C., Utescher, T., Kowalski, E. A., and Dilcher, D. L.: Cenozoic paleotemperatures and leaf physiognomy – A European perspective, Palaeogeogr. Palaeocl., 248, 24–31, https://doi.org/10.1016/j.palaeo.2006.11.005, 2007.
Upchurch, G., Otto-Bliesner, B., and Scotese, C.: Terrestrial vegetation and its effects on climate during the latest Cretaceous, in: Evolution of the Cretaceous ocean-climate system, edited by: Barrera, E. and Johnson, C., vol. 332, Geological Society of America Special Paper, Boulder, Colorado, 407–426, 1999.
Utescher, T. and Mosbrugger, V.: Eocene vegetation patterns reconstructed from plant diversity – A global perspective, Palaeogeogr. Palaeocl., 247, 243–271, https://doi.org/10.1016/j.palaeo.2006.10.022, 2007.
Utescher, T., Mosbrugger, V., Ivanov, D., and Dilcher, D. L.: Present-day climatic equivalents of European Cenozoic climates, Earth Planet. Sc. Lett., 284, 544–552, https://doi.org/10.1016/j.epsl.2009.05.021, 2009.
Valdes, P. J.: Warm climate forcing mechanisms, in: Warm Climates in Earth History, edited by: Huber, B., MacLeod, K., and Wing, S., Cambridge University Press, Cambridge, UK, 3–20, 2000.
van Itterbeeck, J., Bolotsky, Y., Bultynck, P., and Godefroit, P.: Stratigraphy, sedimentology and palaeoecology of the dinosaur-bearing Kundur section (Zeya-Bureya Basin, Amur Region, Far Eastern Russia), Geol. Mag., 142, 735–750, https://doi.org/10.1017/S0016756805001226, 2005.
van Roij, L.: The Paleocene Eocene Thermal Maximum in the Gulf of Mexico: a low latitude paleoenvironmental reconstruction, Master's thesis, University of Utrecht, http://igitur-archive.library.uu.nl/student-theses/2010-0107-200136/UUindex.html (last access: 6 June 2011), 2009.
Wang, Q., Ferguson, D. K., Feng, G.-P., Ablaev, A. G., Wang, Y.-F., Yang, J., Li, Y.-L., and Li, C.-S.: Climatic change during the Palaeocene to Eocene based on fossil plants from Fushun, China, Palaeogeogr. Palaeocl., 295, 323–331, https://doi.org/10.1016/j.palaeo.2010.06.010, 2010.
Weijers, J. W. H., Schouten, S., den Donker, J. V., Hopmans, E., and Damst{é}, J. S.: Environmental controls on bacterial tetraether membrane lipid distribution in soils, Geochim. Cosmochim. Acta, 71, 703–713, https://doi.org/10.1016/j.gca.2006.10.003, 2007a.
Weijers, J. W. H., Schouten, S., Sluijs, A., Brinkhuis, H., and Damst{é}, J. S. S.: Warm arctic continents during the Palaeocene-Eocene thermal maximum, Earth Planet. Sc. Lett., 261, 230–238, https://doi.org/10.1016/j.epsl.2007.06.033, 2007b.
Wilf, P.: When are leaves good thermometers? A new case for leaf margin analysis, Paleobiology, 23, 373–390, 1997.
Wilf, P.: Late Paleocene-early Eocene climate changes in southwestern Wyoming: Paleobotanical analysis, Geol. Soc. Am. Bull., 112, 292–307, 2000.
Wilf, P., Beard, K. C., Davies-Vollum, K., and Norejko, J.: Portrait of a late Paleocene (early Clarkforkian) terrestrial ecosystem: Big Multi Quarry and associated strata, Washakie Basin, Southwestern Wyoming, Palaios, 13, 514–532, 1998.
Wilf, P., Labandeira, C. C., Kress, W. J., Staines, C. L., Windsor, D. M., Allen, A. L., and Johnson, K. R.: Timing the radiations of leaf beetles: hispines on gingers from latest Cretaceous to recent, Science, 289, 291–4, https://doi.org/10.1126/science.289.5477.291, 2000.
Wilf, P., Cuneo, N., Johnson, K., Hicks, J., Wing, S. L., and Obradovich, J.: High plant diversity in Eocene South America: Evidence from Patagonia, Science, 300, 122–125, https://doi.org/10.1126/science.1080475, 2003.
Wilf, P., Labandeira, C. C., Johnson, K. R., and Cuneo, N. R.: Richness of plant-insect associations in Eocene Patagonia: A legacy for South American biodiversity, P. Natl. Acad. Sci. USA, 102, 8944–8948, https://doi.org/10.1073/pnas.0500516102, 2005.
Williams, I. N., Pierrehumbert, R. T., and Huber, M.: Global warming, convective threshold and false thermostats, Geophys. Res. Lett., 36, L21805, https://doi.org/10.1029/2009GL039849, 2009.
Wing, S., Bao, H., and Koch, P. L.: An early Eocene cool period? Evidence for continental cooling during the warmest part of the Cenozoic, in: Warm Climates in Earth History, edited by: Huber, B., MacLeod, K., and Wing, S., Cambridge University Press, Cambridge, UK, 197–237, 2000.
Wing, S., Harrington, G., Smith, F., Bloch, J., Boyer, D., and Freeman, K.: Transient floral change and rapid global warming at the Paleocene-Eocene boundary, Science, 310, 993–996, https://doi.org/10.1126/science.1116913, 2005.
Wing, S. L.: Eocene and Oligocene floras and vegetation of the Rocky Mountains, Annals of the Missouri Botanical Garden, 74, 748–784, 1987.
Wing, S. L. and Greenwood, D. R.: Fossils and fossil climate: The case for equable continental interiors in the Eocene, Philos. T. Roy. Soc. B, 341, 243–252, 1993.
Winguth, A. M. E., Shellito, C. J., Shields, C., and Winguth, C.: Climate Response at the Paleocene-Eocene Thermal Maximum to Greenhouse Gas Forcing-A Model Study with CCSM3, J. Climate, 23, 2562–2584, https://doi.org/10.1175/2009JCLI3113.1, 2010.
Wolfe, J.: Paleoclimatic estimates from Tertiary leaf assemblages, Annu. Rev. Earth Planet. Sci., 23, 119–142, 1995.
Wolfe, J., Forest, C. E., and Molnar, P.: Paleobotanical evidence of Eocene and Oligocene paleoaltitudes in midlatitude western North America, Geol. Soc. Am. Bull., 110, 664–678, 1998.
Wuchter, C., Schouten, S., Coolen, M., and Damste, J.: Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry, Paleoceanography, 19, PA4028, https://doi.org/10.1029/2004PA001041, 2004.
Wuchter, C., Schouten, S., Wakeham, S., and Damste, J.: Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: Implications for TEX86 paleothermometry, Paleoceanography, 20, PA3013, https://doi.org/10.1029/2004PA001110, 2005.
Zachos, J. C., Stott, L., and Lohmann, K. C.: Evolution of early Cenozoic marine temperatures, Paleoceanography, 9, 353–387, 1994.
Zachos, J. C., Pagani, M., Sloan, L. C., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J. C., Wara, M., Bohaty, S. M., Delaney, M. L., Petrizzo, M., Brill, A., Bralower, T., and Premoli-Silva, I.: A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum, Science, 302, 1551–1554, https://doi.org/10.1126/science.1090110, 2003.
Zachos, J. C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S. J., and Bralower, T. J.: Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and isotope data, Geology, 34, 737–740, https://doi.org/10.1130/G22522.1, 2006.
Zeebe, R. E., Zachos, J. C., and Dickens, G.: Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming, Nat. Geosci., 2, 576–580, https://doi.org/10.1038/ngeo578, 2009.
Ziegler, A., Eshel, G., Rees, P., Rothfus, T., Rowley, D., and Sunderlin, D.: Tracing the tropics across land and sea: Permian to present, Lethaia, 36, 227–254, https://doi.org/10.1080/00241160310004657, 2003.