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Abstract. The early Eocene “equable climate problem”,
i.e. warm extratropical annual mean and above-freezing win-
ter temperatures evidenced by proxy records, has remained
as one of the great unsolved problems in paleoclimate. Re-
cent progress in modeling and in paleoclimate proxy devel-
opment provides an opportunity to revisit this problem to as-
certain if the current generation of models can reproduce the
past climate features without extensive modification. Here
we have compiled early Eocene terrestrial temperature data
and compared with climate model results using a consis-
tent and rigorous methodology. We test the hypothesis that
equable climates can be explained simply as a response to
increased greenhouse gas forcing within the framework of
the atmospheric component of the Community Climate Sys-
tem Model (version 3), a climate model in common use for
predicting future climate change. We find that, with suit-
ably large radiative forcing, the model and data are in gen-
eral agreement for annual mean and cold month mean tem-
peratures, and that the pattern of high latitude amplification
recorded by proxies can be largely, but not perfectly, repro-
duced.

1 Introduction

The early Eocene (∼56–48 Ma) encompasses the warmest
climates of the past 65 million years. Annual-mean and cold-
season continental temperatures were substantially warmer
than modern, while meridional temperature gradients were
greatly reduced (Wolfe, 1995; Greenwood and Wing, 1995;
Barron, 1987). Reconstructions of warm climates on land
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are confirmed in the marine realm, with bottom water tem-
peratures∼10◦ C higher than modern values (Miller et al.,
1987; Zachos et al., 2001; Lear et al., 2000). This implies
that early Eocene winter temperatures in deep water forma-
tion regions, located at the surface in high latitudes, could not
have dropped much below 10◦ C, consistent with the high-
latitude occurrence of frost-intolerant flora and fauna (Green-
wood and Wing, 1995; Spicer and Parrish, 1990; Hutchison,
1982; Wing and Greenwood, 1993; Markwick, 1994, 1998).

Modelling studies of the early Eocene over the past
decades have consistently failed to reproduce the warm conti-
nental interior temperatures inferred from paleoclimate prox-
ies, an issue that has come to be known as the “equable cli-
mate problem” (Sloan and Barron, 1990, 1992; Sloan, 1994).
The model-data mismatch is typically∼20◦C for winter
temperatures; for mean annual temperature (MAT) the er-
ror is typically less, but reaches 10–20◦C near the poles
(Shellito et al., 2003; Huber et al., 2003; Winguth et al.,
2010; Roberts et al., 2009; Shellito et al., 2009). An ap-
parently similar model-data discrepancy exists for the Cre-
taceous (Spicer et al., 2008; Donnadieu et al., 2006), but we
restrict ourselves here to the early Eocene. On the other hand,
models have had reasonable success at simulating the cooler
intervals of the early Paleogene, such as the middle-to-late
Eocene (Roberts et al., 2009; Liu et al., 2009; Eldrett et al.,
2009) and Paleocene (Huber, 2009).

The early Eocene equable climate problem, with its sug-
gestion that climate models may lack or misrepresent cru-
cial processes responsible for the warm continental temper-
atures, has stimulated much innovative thinking in climate
modelling (Valdes, 2000). Routes to generating warm early
Eocene winter continental interior and polar temperatures
that have been explored include: large lakes (Sloan, 1994;
Morrill et al., 2001); polar stratospheric clouds (Sloan et al.,
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1992, 1999; Sloan and Pollard, 1998; Kirk-Davidoff et al.,
2002; Kirk-Davidoff and Lamarque, 2008); increased ocean
heat transport (Berry, 1922; Covey and Barron, 1988; Sloan
et al., 1995); finer resolution simulations of continental inte-
riors (Sewall and Sloan, 2006; Thrasher and Sloan, 2009); a
permanent, positive phase of the Arctic Oscillation (Sewall
and Sloan, 2001); altered orbital parameters (Sloan and Mor-
rill , 1998; Lawrence et al., 2003; Sewall et al., 2004); al-
tered topography and ocean gateways (Sewall et al., 2000);
radiative convective feedbacks (Abbot et al., 2009a); altered
vegetation (Sewall et al., 2000; Shellito and Sloan, 2006a,b),
and changes in sea surface temperature (SST) distributions
(Sloan et al., 2001; Huber and Sloan, 1999; Sewall and Sloan,
2004).

Recent work includes interactive ocean-atmosphere cou-
pling; these studies have either failed to reproduce warm win-
ter season temperatures (Roberts et al., 2009; Huber et al.,
2003; Shellito et al., 2009) or not presented a comparison
of these terrestrial winter temperatures (Tindall et al., 2010;
Lunt et al., 2010; Huber and Sloan, 2001; Heinemann et al.,
2009; Winguth et al., 2010) with proxies, so it seems im-
portant at this point to revisit the current status of the early
Eocene equable climate problem.

While the studies described in the previous paragraphs
have shown regional improvement in the model-data mis-
match, the general outcome of the investigations cited above
has been a failure to provide a single, parsimonious, global
solution to the equable climate problem. One mechanism
(e.g. cloud feedbacks or ocean gateway opening) might ex-
plain warmth at polar latitudes but leave temperatures in the
western interior of North America unexplained, or vice versa.
The failure of these various hypothesized resolutions to the
equable climate problem – whether tested individually or in
concert – has fostered a sense that they are not the leading
order solution and that something major is missing from our
understanding of the climate system and its representation in
conventional climate models (Zeebe et al., 2009). It is, there-
fore, important to revisit this problem with the latest gener-
ation of models and with an up-to-date proxy data compila-
tion.

One ostensibly straightforward route to resolving the
equable climate problem that has not been fully explored to
date is simply to raise greenhouse gas forcing sufficiently to
yield above-freezing continental temperatures year round. It
is known that CO2 concentrations were above modern during
the Eocene (Pearson and Palmer, 2000; Pearson et al., 2009;
Pagani et al., 2005; Henderiks and Pagani, 2008; Lowenstein
and Demicco, 2006; Doria et al., 2011), and estimates are as
high as∼4700 ppmv (Fletcher et al., 2008). In addition to
its direct warming effect, increasedpCO2 may have primed
the climate system to be sensitive to forcing by alterations
in other boundary conditions, such as ocean gateways (Sijp
et al., 2009) or insolation, or it may have enhanced nonlinear
sensitivity through feedbacks, e.g. due to wetland methane
emissions (Sloan et al., 1992; Beerling et al., 2009a).

The reluctance to pursue the avenue of enhanced green-
house gas forcing has clear origins: it is very difficult to
simultaneously achieve warm continental interiors without
overheating the tropics. Until recently, tropical surface tem-
perature reconstructions indicated early Eocene tropical sur-
face temperatures comparable or even lower than modern
(Zachos et al., 1994; Crowley and Zachos, 2000), and cli-
mate models easily exceed these temperatures even at CO2
levels insuficient to give the required mid- to high-latitude
terrestrial warming (e.g.Shellito et al., 2003). Thus, the
equable climate problem is intimately related to – though
distinct from – the “cool tropics paradox” or “low gradient
problem” (Barron, 1987; Adams et al., 1990; Huber et al.,
2003).

However, the strictures imposed by the low gradient prob-
lem have been considerably relaxed recently by the realiza-
tion that older tropical temperature reconstructions were sub-
ject to diagenetic cold bias, and more recent reconstructions
using a range of proxies indicate that tropical temperatures
may actually have been as high as∼35◦C (see discussion in
Sect.2.1). As suggested byHuber et al.(2003), polar annual
mean temperatures of∼15◦C could potentially exist in equi-
librium with such warm tropical temperatures without invok-
ing novel climate mechanisms. This opens up the possibility
of resolving the equable climate problem by simply rasing
greenhouse forcing, without recourse to novel mechanisms.

In this paper, we test the hypothesis that the equable
climate problem, i.e. warm extratropical annual mean and
above-freezing winter temperatures, can be explained simply
as a response to increased greenhouse gas forcing within the
framework of the Community Climate System Model ver-
sion 3 (CCSM3). CCSM3 is a climate model in common
use for predicting future climate change, used here with with
standard physics (Collins et al., 2006). The focus is on vali-
dation of the model through model-data comparison.

The study is structured as follows. First, Sect.2 reviews
the relevant temperature and CO2 reconstructions, which
guide decisions on the methodology presented in Sect.3.
In Sect.4, we present a set of Eocene atmospheric general
circulation model experiments compared with early Eocene
proxy records. We discuss the robustness and limitations of
this study in Sect.5. Finally, Sect.6 summarizes our con-
clusions and discusses some implications of the model-data
agreement.

2 Interpreting proxy data constraints

Some preliminary considerations must be dealt with before
the model-data comparison can be carried out, because proxy
records are unavoidably subject to varying intepretations.
While there may not be universal agreement on the best in-
terpretative approach, we aim here to at least be clear what
our framework is. In this section, we review characteriza-
tions of the early Eocene paleotemperature and greenhouse
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gas records, with an emphasis on uncertainties and potential
biases. Since “Early” and “Middle” have yet to be officially
defined for the Eocene, and because some of our data fall
just outside of strict stage boundaries, we use “early” and
“middle” Eocene. We use early generally to mean Ypresian
and include occasionally records that are potentially lower-
most Lutetian, but exclude the Paleocene-Eocene Thermal
Maximum (PETM) and other identified transient “hyperther-
mal records” (Nicolo et al., 2007; Lourens et al., 2005; Sluijs
et al., 2008). Middle for us generally means Lutetian and its
equivalents. All the existing data point to the early Eocene as
being a variable world, subject to – and responsive too – or-
bital forcing, as well as marked by internal variability (hav-
ing a red-noise like spectrum), distinct transitions (Zachos
et al., 2001; Brinkhuis et al., 2006), and persistent modes of
variability down to quasi-decadal (Garric and Huber, 2003)
and El Nino (Huber et al., 2003) time scales. Consequently,
aliasing and undersampling are likely to be important to the
analysis we attempt here and also very difficult to avoid or
quantify, especially for the terrestrial paleoclimate records
that are our focus here. Some attempt is made by utiliz-
ing full time series of records for comparison where such
are available, but this is a crude and ultimately unsatisfying
approach which should eventually be improved upon.

Since this paper focuses on terrestrial records, the discus-
sion of ocean proxies is brief, but it is important for con-
text because SSTs are being interpreted by many to much
warmer values than previously thought. We briefly discuss
the ocean temperature proxy record in the next section, but
given the uncertainties that remain in proxy calibrations and
assumptions that go into those proxies, they deserve their
own comprehensive treatment and model-data comparison.
As described in Sect.2.2, a factor that has been poorly ap-
preciated by the modelling community is that it is now well
acknowledged in the paleobotanical literature that most pub-
lished terrestrial paleoclimate records have been significantly
biased to overly cool values. In this study we focus on an-
nual mean and winter season terrestrial temperatures in order
to assess progress in the early Eocene equable climate prob-
lemsensu stricto.

2.1 Sea surface temperature records

A new characterization of Eocene temperature has recently
developed as the product of both a better understanding of di-
agenetic contamination of older tropical SST records (Schrag
et al., 1995; Schrag, 1999; Huber and Sloan, 2000; Pearson
et al., 2001b, 2007, 2008) and the development of new prox-
ies such as TEX86 and Mg/Ca (Schouten et al., 2002, 2003;
Pearson et al., 2007; Lear et al., 2008; Sexton et al., 2006;
Sluijs et al., 2006, 2007, 2008; Liu et al., 2009) for ocean
near-surface temperatures. As summarized inHuber(2008),
SSTs of∼35◦C are now reconstructed in the early Eocene
tropics (Pearson et al., 2001b, 2007; Tripati et al., 2003; Tri-
pati and Elderfield, 2004; Zachos et al., 2003). Extratropical

SSTs are also reconstructed to values hotter than previously
thought (Bijl et al., 2009; Sluijs et al., 2006, 2009; Zachos
et al., 2006; Hollis et al., 2009; Creech et al., 2010; Liu et al.,
2009; Eldrett et al., 2009). These hot temperatures have ma-
jor implications for our understanding of past climate dynam-
ics and of the equable climate problem in particular.

One outgrowth of increasing study of the paleotempera-
ture proxies and improved understanding of the myriad pro-
cesses and mechanisms that affect proxies has been the un-
fortunate realization that large and difficult-to-quantify un-
certainties persist in proxy interpretations (Shah et al., 2008;
Ingalls et al., 2006; Herfort et al., 2006; Kim et al., 2010; Liu
et al., 2009; Pearson et al., 2001a; Huguet et al., 2006, 2007,
2009; Wuchter et al., 2004, 2005; Trommer et al., 2009;
Turich et al., 2007; Eberle et al., 2010). Of particular concern
is the need to extrapolate calibrations out to temperatures and
environmental conditions far beyond modern values. This
can be a special difficulty in the tropics in which conditions
likely were much warmer than the warmest range of core-
top calibrations, 30◦C. This either requires extrapolating be-
yond the core-top calibration or using mesocosm calibrations
that extend up to 40◦ C. For the Tanzanian TEX86 records of
Pearson et al.(2007), peak early Eocene temperatures are
either 35.1◦C when extrapolating from the coreptop TEX86
(GDGT2-index) calibration or 39.4◦C using the mesocosm
based TEX86 (GDGT2-index) calibration (Kim et al., 2010).
The warmest values recorded byδ18O in planktonic foram-
ifera of the same age (∼49.5 mya) is∼31.5◦C. So at one
time and one locality, from what some might consider the
best records, reasonable arguments might be made to inter-
pret tropical near-surface temperatures to be 31.5 to 39.4◦C.

On the other hand, sometimes different proxies in a region
show a remarkable level of congruence and temporal consis-
tency, for example in the southwest Pacific Ocean (Bijl et al.,
2009; Hollis et al., 2009; Liu et al., 2009). But even the con-
gruence of these records may not prove their accuracy, given
their arguable lack of consistency with other records. For
example, the presence of 11◦C South Atlantic temperatures
(Ivany et al., 2008) in the same latitude band as 30◦C tem-
peratures in the South Pacific (Bijl et al., 2009; Hollis et al.,
2009) raises questions about the proxy interpretations. The
occurence of∼10◦C deep ocean temperatures (Zachos et al.,
2001) requires that some regions see temperatures fall to this
value at least in winter, in agreement with the results ofIvany
et al.(2008), but South Pacific records seem to preclude tem-
peratures this cold. As recognized in many studies, seasonal-
ity and regional variation due to ocean heat transport are im-
portant considerations that may help reconcile the different
proxies at high latitudes (Hollis et al., 2009), but serious dis-
crepancies persist unexplained at low latitudes (Huber, 2008;
Liu et al., 2009).

Reconciling the different approaches and narrowing uncer-
tainty in SSTs is beyond the scope of this paper. Indeed, we
believe that focusing on terrestrial temperatures will create a
solid benchmark for comparison with SST records in future
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work. Furthermore, the terrestrial climate problem is in some
senses a better posed one. Fewer mechanisms govern terres-
trial temperature, especially in winter. Unlike in the ocean,
where mixed layer depth and ocean heat transport changes
provide additional complications to the surface energy bud-
get, the terrestrial energy budget – especially in high latitude
winter in continental interiors – is more straightforward and
well representable in climate models. Since the land surface
does not transport heat horizontally and the thermal inertia is
negligible, the surface energy budget in winter in high lati-
tude continental interiors reduces to simply atmospheric ad-
vection and dominantly longwave radiative processes (since
in winter the shortwave processes are neglible).

Prior work has already demonstrated that the advection
of heat inland in Eocene simulations is not nearly enough
to maintain continental winter warmth, regardless of the im-
posed warmth of high latitude sea surface temperatures (Se-
wall et al., 2004; Sloan et al., 2001; Huber and Sloan, 1999).
Consequently, the winter season aspect of the equable cli-
mate problem is more circumscribed than many of the other
interesting problems in Eocene climate since it highlights pri-
marily the role of one mechanism – longwave radiation –
which reduces the possible mechanisms to consider relative
to, e.g. explaining ocean temperature distributions.

2.2 Terrestrial temperature records

Prior studies have discussed ways in which existing method-
ologies and sampling approaches introduce warm biases.
These include undersampling large regions that were likely
cooler than the mean, such as Antarctica, Siberia and north-
eastern North America, as well as preferential temporal sam-
pling, e.g. clipping seasonal or orbital scale cycles (Sloan
and Barron, 1990; Sloan, 1994; Valdes, 2000). These factors
are probably important considerations for developing a bet-
ter understanding of regional scale climate patterns, but are
unlikely to undermine the widespread evidence of continu-
ous warmth in the early Eocene or overwhelm the large cool
biases in existing terrestrial reconstructions. On the contrary,
many factors conspire to introduce an overall cool bias in the
terrestrial paleotemperature record.

Firstly, almost no terrestrial records from the Eocene have
been obtained for 30◦ N to 30◦ S band, effectively clipping
the warmest climatic end-member. Second, where records
have been derived, various other factors contribute toward a
cool bias. Taphonomic and ecological factors in leaf phys-
iognomic techniques have been shown to lead to systematic
cold biases of 2–8◦C (Burnham, 1989; Burnham et al., 2001;
Boyd, 1994; Greenwood, 2005, 2007; Spicer et al., 2005;
Kowalski, 2002; Kowalski and Dilcher, 2003; Peppe et al.,
2010). Further cool biases are introduced by under-sampling
the flora, particularly in the early, pioneering studies (Wilf ,
1997; Burnham et al., 2005; Wilf et al., 2003). Third, at
high latitudes, polar deciduous habits skew high latitude
“toothiness” based MAT interpretations to low values (Boyd,

1990, 1994). Fourth, at low latitudes, floral physiognomic
techniques are biased to cool values because the proxy be-
comes insensitive at temperatures much warmer than modern
(Head et al., 2009). And finally, many records come from re-
gions with significant paleo-elevation (Wyoming, Okanagan
HighlandsWolfe et al., 1998; Smith et al., 2009) and hence
may record temperatures cooler than sparsely-sampled low
elevation, low relief areas, though this effect may be par-
tially offset by the fact that records are frequently derived
from basins within these high-relief regions (Sewall et al.,
2000).

If the early Eocene was even warmer than previously
thought – as this review of terrestrial and ocean proxies sug-
gests (their large uncertainties notwithstanding) – the mys-
tery of Eocene equable climate deepens unless either the ra-
diative forcing or climate sensitivity were greater than has
been typically explored. It also implies that it is very diffi-
cult to achieve early Eocene conditions in models and that
studies purporting to simulate the early Eocene may instead
only be warm enough to match late or middle Eocene condi-
tions. From this perspective, the approach that we utilize in
this study, in which various efforts are made to overcome the
cold bias of previous proxy compilations, makes the goal of
reproducing equable climates harder to reach.

2.3 Greenhouse gases and radiative forcing

Increased radiative forcing, usually ascribed to greenhouse
gases, is part of every feasible solution to the equable cli-
mate problem tried so far. But, the upper range of plausi-
ble greenhouse gas forcing has expanded from prior work.
Modeling studies have predominantly explored the low end
(520–2000 ppm) of paleo-CO2 proxy estimates even though
the range extends easily up to 4400 ppm in the early Eocene
(Pearson and Palmer, 2000). This partly reflects attention to
the lower end of CO2 estimates typically derived from leaf
stomatal indices (Royer et al., 2001; Beerling and Royer,
2002a). Yet the calibration of this proxy at high CO2 is
weakly constrained (Beerling and Royer, 2002b; Beerling
et al., 2009b) and recent evidence that leaves adapt the size of
the stomata and in addition their density at high CO2 values
(Franks and Beerling, 2009) raises questions about the valid-
ity of the proxy at high CO2. Indeed, as recently affirmed by
Smith et al.(2010) the stomatal methods should probably be
considered semi-quantitative under high CO2 conditions and
may represent CO2 minima.

Boron and alkenone approaches also have increasing error
bars at high CO2, because their calibrations lose sensitivity at
high values (Pagani, 2002; Pearson and Palmer, 2000). The
nahcolite approach ofLowenstein and Demicco(2006) only
constrains the minimum early Eocene CO2, and any value
above 1125–2985 ppm is possible from that proxy record.

Overall, existing proxy records have much greater accu-
racy at low CO2 and once values are significantly higher than
modern (somewhere above 560 to 1220 ppm, depending on
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the proxy), there is little certainty in the actual value although
constraints can be inferred from carbon mass balance models
(Zeebe et al., 2009; Panchuk et al., 2008). These constraints
currently allow for a wide range of potential early Eocene
CO2 values.

Carbon dioxide is also not the only important source of ra-
diative forcing. Methane concentrations, for example, could
have been much higher in the early Eocene (Sloan and Bar-
ron, 1992; Sloan et al., 1999; Beerling et al., 2009a). Alter-
natively, clouds may have functioned differently (Sloan and
Pollard, 1998; Kump and Pollard, 2008). We have no proxies
for either of these factors, which is one reason why relatively
few studies have incorporated them. They represent arguably
reasonable, but unconstrained conjectures.

Furthermore, strong radiative forcing in simulations (Shel-
lito et al., 2003; Kump and Pollard, 2008) produces tropical
SSTs warmer than traditional reconstructions (Zachos et al.,
1994; Crowley and Zachos, 2000) and hotter even than re-
vised reconstructions (Pearson et al., 2007; Huber, 2008). So
while it is understood that stronger radiative forcing in mod-
els warms extratropical continental interiors, Eocene tropical
sea surface temperature constraints provided a primary mo-
tivation for not forcing models with greenhouse gas forcing
sufficient to maintain extratropical winter warmth (Barron,
1987; Huber and Sloan, 2000).

Finally, it is perhaps an accident of history that much of
the Eocene modelling work was performed with the NCAR
atmospheric models (CCM, CAM, GENESIS), which have
consistently had relatively weak sensitivity of global mean
temperature to increased greenhouse gas concentrations (2–
3◦C warming per doubling ofpCO2) (Kothavala et al., 1999;
Otto-Bliesner et al., 2006; Kiehl et al., 2006). Other models,
such as the UK models (e.g. HadCM3 and its variants) and
ECHAM5/MPI models, have higher sensitivities and have
consistently produced temperatures as warm as high-CO2
CAM simulations with lower radiative forcing (Heinemann
et al., 2009; Jones et al., 2010). These more sensitive models
run into the same problems with tropical SSTs, though, be-
cause climate models have similar (Holland and Bitz, 2003),
although not identical (Abbot et al., 2009a), amounts of high-
latitude amplification of global warming after normalizing by
climate sensitivity. These Eocene studies in models with high
sensitivity have not quantitatively examined the issue of con-
tinental winter temperatures, which leaves an important gap
in evaluating how close we are to solving this long-standing
climate problem.

3 Methods

3.1 Proxy records

Various factors must be considered in interpreting climate
from proxy records and ambiguity exists in any paleoclimate
model-data comparison. Here we describe the methodolo-
gies we developed for the model data comparison and the

inclusion of random and biased sources of uncertainty and
error. The details of the proxy data used in this study, in-
cluding original references and calibration information, are
summarized in Table 1.

3.1.1 MAT

Macrofloral assemblage data provide many of the quantita-
tive paleotemperature estimates for the Eocene. Different
approaches to estimating paleotemperature with macroflora,
such as CLAMP (Climate-Leaf Analysis Multivariate Pro-
gram) (Wolfe, 1995) and LMA (Leaf Margin Analysis)
(Wilf , 1997), usually lead to qualitatively similar but quanti-
tatively different MAT estimates. Even within these method-
ologies, the impacts of differing calibration data sets and ap-
proaches can lead to significantly different estimates (Green-
wood et al., 2003, 2004; Adams et al., 2008; Spicer et al.,
2009). Comparison of different approaches often leads to es-
timates that differ beyond the stated error estimates of the
underlying calibration studies (Uhl et al., 2007). Trends are
normally more robust, but since model-data comparison re-
quires aggregating data into “snapshots”, uncertainty in ab-
solute values, rather than trends, is crucial to this study.

For these reasons, it is more important for the purposes
of this study to properly account for systematic biases and
spatio-temporal sampling uncertainty in proxy records rather
than be primarily concerned with the stated random accuracy
of the methodologies, which likely substantially underesti-
mate the true uncertainty. Wherever possible in this study,
we have chosen to minimize systematic errors while main-
taining as consistent an approach in estimating temperature
as possible.

To that end, we primarily rely on LMA to estimate MAT,
as this approach has a long history and widespread usage in
the literature, and it is arguably less sensitive to subjectivity
in scoring, sampling, and calibration than other approaches
such as CLAMP (Wilf , 1997; Peppe et al., 2010). To offset
the well established cool biases in the LMA approach we use
theKowalski and Dilcher(2003) calibration wherever possi-
ble unless a compelling reason exists not to. Recently,Peppe
et al.(2011) have generated a much more complete and ob-
jective calibration study for LMA, which is likely to be the
new standard for this field. Yet, as the authors of that study
acknowledge, the temperatures generated from that calibra-
tion appear to be biased by about 5◦C too cold in Eocene
and Cretaceous midlatitude sites and consequently, we be-
lieve it is in keeping with the goals of this study to retain a
calibration that accounts for this bias as much as possible.
In some cases, the only published data available are from
taxon-derived transfer functions (such as the coexistence ap-
proach,Utescher et al., 2009) or CLAMP-derived tempera-
tures. In another important special case, e.g. Australian flora,
there are well-established systematic differences in the rela-
tionship between toothiness and temperature that arise from
the long isolation of Australia’s flora. Consequently, we use
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the Australian calibration (Greenwood et al., 2004) for Aus-
tralian and New Zealand flora. See Table 1 for more details.

More fundamentally, it is unclear how to apply this proxy,
or any proxy, outside of its calibration regime, in particular
at temperatures much hotter – and with higherpCO2 and
potentially greater rainfall – than those observed in modern
vegetated regions (Utescher et al., 2009). Today, MAT above
28◦C does not occur in well-vegetated regions and such tech-
niques are suspect and likely underestimate MAT in regions
that are likely to be above that range (Head et al., 2009). For-
mally a limit exists, since leaves can not be more than 100 %
entire-margined. But, more fundamentally, hot (MAT much
above 28◦C), wet conditions, with vegetation, have no mod-
ern analogue and empirical relationships may break down.
We have every reason to think that mean MAT in the tropics
was above 30◦ C in the early Eocene, but just how much hot-
ter is an unanswered question (Huber, 2008; Jaramillo et al.,
2010; Kobashi et al., 2004). We will not be able to address
the true warmth of the tropical to subtropical regions with
great rigor in this study because of a paucity of terrestrial
proxies and the ambiguity of interpreting such records under
non-analogue conditions. The only relevant tropical terres-
trial MAT constraint we were able to identify from published
records was middle Eocene in age (Jacobs, 2004), but we in-
clude it in this study for lack of any other available data (see
Table 1).

In some regions, where few macrofloral records exist or
where LMA or CLAMP have not been applied, other proxies
are available and so we rely on them to fill in the large spatial
gaps. Especially crucial to constrain are high and low lat-
itude temperatures. Such additional sources of quantitative
information include: Nearest Living Relative (NLR) trans-
fer functions, isotopic estimates, and organic geochemical
indicators. MAT can be estimated from palynoflora (Eldrett
et al., 2009; Greenwood et al., 2010) and from various Near-
est Living Relative based empirical correlations with MAT
(Utescher and Mosbrugger, 2007; Utescher et al., 2009; Mos-
brugger et al., 2005; Poole et al., 2005) and allometric con-
siderations (Head et al., 2009). Oxygen and hydrogen iso-
topes provide paleotemperature estimates provided certain
parameters are well constrained (Eberle et al., 2010; Koch,
1998; Fricke and Wing, 2004; Jahren and Sternberg, 2003,
2008; Jahren, 2007; Jahren et al., 2009).

The MBT-CBT proxy is an organic geochemical proxy
for annual mean air temperature derived ultimately from soil
bacteria (Weijers et al., 2007b). We use this proxy to pro-
vide additional information in the early Eocene, although it
is possible that the proxy is biased to summer temperatures
at extreme high latitudes (Weijers et al., 2007a; Eberle et al.,
2010), or worse, under unusual but difficult-to-rule-out con-
ditions, may not reflect surface temperature at all (Peterse
et al., 2009). Attempts to include other information from
kaolinite-isotope MAT proxy records (Sheldon and Tabor,
2009) were unsuccessful because suitable age constraints
were not available.

3.1.2 Seasonal temperatures

MAT proxies are not the only or even most relevant vari-
able to consider, given that seasonality, or the lack thereof,
is the defining characteristic of the equable climate problem
(Sloan and Barron, 1990, 1992). The most vexing difficulty
in prior work has been in explaining warm winter temper-
atures. Various approaches to constraining winter tempera-
tures exist. These include using: CLAMP-based cold month
mean (CMM) estimates (Wolfe, 1995; Spicer et al., 2009),
coldest quarter temp estimates for Australian Eocene flo-
ras from nearest living relative transfer functions, which are
nearly the same as CCM estimates (Greenwood et al., 2003),
the palm/cycad line (Greenwood and Wing, 1995; Wing and
Greenwood, 1993; Eldrett et al., 2009), crown crocodilian
presence (Hutchison, 1982; Markwick, 1994, 1998, 2007), or
isotopic analysis (Eberle et al., 2010). These methodologies
provide different kinds of information, e.g., CLAMP pro-
vides quantitative, explicit estimates of CMM, whereas the
palm/cycad line and crocodilian indicators constrain temper-
atures to be higher than a threshold value. Differing com-
parison methodologies are required by the complementary
information provided by these different proxies.

The abovementioned studies and others demonstrate that
the early Eocene did not experience below freezing tem-
peratures over a huge expanse of the land’s surface, except
perhaps in the intermontane Canadian Rockies (Wing, 1987;
Spicer and Parrish, 1990; McIver and Basinger, 1999; Green-
wood et al., 2005; Smith et al., 2009). For some regions
(central Antarctica, north central Canada and parts of Eura-
sia), data coverage is too sparse to state this definitively, but
the existing high latitude data indicate temperatures were so
warm that it is difficult to physically justify large zones sub-
stantially cooler than freezing even in most of the regions
with missing data. This is especially true given that inclusion
of other potential factors such as higherpCO2 decreases the
tolerance of frost-sensitive flora to cold temperatures (Royer
et al., 2002). The presence of crown crocodilians in Kazak-
stan and Mongolia also fills in the gaps and argues against
temperatures below freezing in the regions we might expect
to be the coldest (Markwick, 1998, 2007). The important
exceptions to this are in inland Antarctica and at high pale-
oelevations, where proxy data to constrain temperatures are
sparse to non-existent and physical considerations indicate
that temperatures may have been cold.

This interpretation does not rely overly on any one proxy
being correct as they are independently corroborated by lack
of sea ice diatomsStickley et al.(2009), high latitude oc-
curence of tropical clays (Robert and Chamley, 1991), warm
polar SSTs (Bijl et al., 2009; Sluijs et al., 2006), and∼10◦C
bottom water temperatures (Zachos et al., 2001; Lear et al.,
2000). These disparate lines of evidence all argue for tem-
peratures remaining above freezing year-round in the regions
and seasons expected to be cold, if modern relationships are
a guide.
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Table 1. Description of Proxy Data Sources and Treatment.

Locality 55 mya Mean upper lower CMM cmm Primary Reference Notes
(adjusted) paleo- MAT error error error
latitude

Kisinger Lakes 47.5◦ N 90.6◦ W 22.90 3.60 3.60 6.70 Fricke and Wing (2004)

Chalk Bluffs 44.1◦ N 102.7◦ W 20.13 4.57 4.08 Hren et al. (2010) LMA data from Hren et al. (2010),
recalculated with Kowalski and
Dilcher calibration.

Chalk Bluffs 44.1◦ N 102.7◦ W 20.00 3.60 3.60 5.60 Fricke and Wing (2004) Values recomputed using Kowalski
and Dilcher calibration

Green 45.6◦ N 88.7◦ W 24.50 7.20 7.70 7.30 1.5 Fricke and Wing (2004) Using Kowalski and Dilcher

River/Wind calibration
River

BHB Polecat 47.5◦ N 88.4◦ W 21.73 9.05 6.35 4.00 2.5 Wing et al. (2005)/ LMA-8 through LMA-4 from Wing
Bench Wing et al. (2000) et al. (2000). Values recalculated

with Kowalski and Dilcher
calibration.

Kulthieth 57.8◦ N 103.8◦ W 19.40 1.00 1.00 12.60 Wolfe (2004) This is an old CLAMP number.

Camel’s Butte 49.5◦ N 82.3◦ W 17.8 3.60 3.60 3.50 Hickey (1977) This flora with very few specimens,
which leads to anomalously low
LMA temperatures, instead using
the temperature derived in Hickey
(1977), which is the preferred
number used by later work, such as
Wilf et al. (2000).

Yellowstone- 48.8◦ N 90.8◦ W 13.10 3.60 3.60 1.90 Fricke and Wing (2004) Values recalculated using Kowalski
Sepulcher and Dilcher calibration.

Republic 53.2◦ N 98.4◦ W 11.30 3.60 3.60 4.10 4 Greenwood et al. (2005) Percent entire margins from
Greenwood et al. (2003) (used 8.8◦

from LMA 1) and used Kowalski
and Dilcher calibration.

Princeton 54.6◦ N 99.8◦ W 5.00 3.60 3.60 5.30 2.8 Greenwood et al. (2005) Percent entire margins from
Greenwood et al. (2003) and
applied Kowalski and Dilcher
calibration.

Quilchena 55.1◦ N 99.8◦ W 19.03 3.60 3.60 5.80 2 Greenwood et al. (2005) Percent entire margins from
Greenwood et al. (2003) and
applied Kowalski and Dilcher
calibration. Age from 52 to 51 Mya.

Falkland 55.2◦ N 98.5◦ W 8.9 3.60 3.60 5.20 3 Smith et al. (2009) Percent entire margins from
Greenwood et al. (2003) and
applied Kowalski and Dilcher
calibration gives 11.9 but using the
later, better collection of
Smith et al. (2009).

McAbee 55.5◦ N 100.0◦ W 12.80 3.60 3.60 3.50 4.4 Fricke and Wing As above.
(2004)/Greenwood (2005)

Horsefly 57.5◦ N 100.0◦ W 12.86 3.60 3.60 5.30 2.8 Greenwood et al. (2005) As above.

Driftwood 60.6◦ N 105.3◦ W 8.25 3.60 3.60 2.70 5.6 Greenwood et al. (2005) As above.
Canyon

Site 913 64.8◦ N 5.2◦ E 14.46 5.22 5.16 7.00 3 Eldrett et al. (2009) Longitude should be adjusted to 0
for site to be from Greenland. MAT
values from 48 to 50 Ma. Error bars
are maximum in time series (plus 1
stated error on that value) and the
minimum of the time series (minus
1 stated error on that value).

Laguna del 46.9◦ S 57.3◦ W 20.72 5.76 6.63 10.80 3.8 Wilf et al. (2005) Location adjusted 3◦ east. Based on
Hunco the analysis of Wilf et al. (2005),

using the Kowalski and Dilcher
calibration and using floral data
from all the Laguna del Hunco sites.
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Table 1.Continued.

Locality 55 mya Mean upper lower CMM cmm Primary Reference Notes
(adjusted) paleo- MAT error error error
latitude

Brandy Creek 60.0◦ S 148.7◦ E 18.20 2.21 2.21 15.70 2.8 Greenwood et al. (2003, Position adjusted 2◦ N and 3◦ E.
2004) Percent entire margined from

Greenwood et al. (2003, 2004), using
Australian calibration.

Hotham 58.7◦ S 149.9◦ E 17.90 2.33 2.33 15.70 2.6 Greenwood et al. (2003, As above.
Heights 2004)

Dean’s 60.7◦ S 145.7◦ E 18.8 2.90 2.90 15.70 2.4 Greenwood et al. (2003, As described by Greenwood et al. Dean’s
Marsh 2004) Marsh LMA is anomalously low and based

on personal communication with Greenwood the
“bioclimatic method” MAT derived in those
papers is preferred as the the macrofloral
collection was poorly characterized and has
been subsequently lost in a fire, whereas the
bioclimatic estimate is robust and can be verified.

Puryear- 37.1◦ N 70.7◦ W 35.30 3.60 3.60 16.10 Fricke and Wing (2004) Values recalculated using the
Buchanan Kowalski and Dilcher calibration.

Paleolocation assumes location is
near Puryear, TN.

Axel Heiberg 77.5◦ N 35.3◦ W 14.70 0.70 0.70 3.70 3.30 Greenwood et al. (2010) Values directly from Greenwood et
al. (2010). These may be middle
Eocene (Lutetian).

Axel Heiberg – 77.5◦ N 35.3◦ W 12.80 4.30 4.30 Greenwood et al. (2010) As above.
US 188

Ellesmere 75.5◦ N 28.0◦ W 8.00 7.00 7.00 0.00 7.00 Eberle et al. (2010) Values directly from Eberle et al.
Island (2010), derived fromδ18O in

biogenic phosphate. Early Eocene
in age.

ACEX IODP 83.58◦ N 27.23◦ E 18.30 1.20 1.90 Weijers et al. (2007) No land in model near core
302 location, so using nearest land at

around 75◦ N 64◦ E. GPLATES
reconstruction at 55 Ma for the
ACEX core is adjusted to paleo-shoreline
which is further south than stated. Values
taken from Weijers et al. (2007), using Core 29,
early Eocene. No meaningful error bars
stated in that paper.

Chuckanut, 53.6◦ N 102.4◦ W 15.50 0.50 0.50 11.50 1.50 Mustoe et al. (2007) CLAMP MAT from Mustoe et al.
WA (2007).

Harrell Core, 33.0◦ N 71.7◦ W 32.00 2.00 2.00 van Roij(2009) Location may be adjusted north
Meridian, MS to match land mask, error around

±2◦. Bashi/Hatchetigbee from van
Roij Masters thesis. MBT/CBT
temperature is approximate.

Geiseltal, 46.9◦ N 7.3◦ E 23.95 1.05 1.05 19.00 2.00 Mosbrugger et al. (2005) Basal Lutetian age (as old as∼49
Germany Ma). MAT based on CA approach.

Fushun, China 46.8◦ N 122.2◦ E 15.85 0.45 0.45 5.00 3.00 Wang et al.(2010) Values based on macrofloral data,
Table 4 ofWang et al.(2010).

Mahenge, 18.3◦ S 30.8◦ E 36.50 3.60 3.60 Harrison et al. (2001) Location adjusted by 6◦ E. Age is
Tanzania ∼45 Ma, included for lack of other data.

Flora is probably not completely counted and
this number is not likely to be robust,
but 17 out of 18 members of the flora were entire
margined. Kowalski and Dilcher calibration used.

Chermurnaut 68.0◦ N 166.7◦ E 18.20 3.96 3.97 Collinson and Hooker Based on Collinson and Hooker
Bay, Kamchatka (2003) summary, based on the work of

Budantsev (as cited in Akhmetiev) GPLATES
67.7◦ N 171.0◦ E.

Raichikha 54.7◦ N 127.5◦ E 18.40 3.60 3.60 Akhmetiev (2010) Further information on modern
location and age/stratigraphy
based on van Itterbeeck (2005) and
Akhmetiev (2007). MAT computed
from percent entire margin data in
text.
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Table 1.Continued.

Locality 55 mya Mean upper lower CMM cmm Primary Reference Notes
(adjusted) paleo- MAT error error error
latitude

Fossil Hill 62.9◦ S 62.3◦ W 16.74 3.60 3.60 7.60 Li (1992) Percent entire margins is from
Flora, King Li (1992). Calculated with Kowalski
George Island, and Dilcher calibration. Age is
Antarctica considered 49–42 Ma but is subject

to varying considerations.

James Ross 64.9◦ S 61.1◦ W 16.10 4.00 4.00 7.60 Poole et al. (2005) JRB averages from Poole et al.
Basin, (2005) using co-existence approach.
Antarctica Values from Table 3. Age is listed

as early Eocene.

Dragon 62.8◦ S 61.7◦ W 12.90 3.60 3.60 10.00 0.80 Hunt and Poole (2003) Values recalculated with Kowalski
Glacier, King and Dilcher calibration.
George Island,
Antarctica

China Gulch 43.3◦ N 103.38◦ W 24.51 1.50 1.50 Hren et al. (2010) 5.3◦C km−1 lapse rate correction
applied to MBT/CBT numbers of
Hren et al. (2010), with 1.5
“reproducibility” errors.

Camanche 43.3◦ N 103.4◦ W 25.98 1.50 1.50 Hren et al. (2010) As above.
Bridge

Pentz 44.8◦ N 103.8◦ W 24.00 1.50 1.50 Hren et al. (2010) As above.

Cherokee Site 1 44.8◦ N 103.8◦ W 16.59 1.50 1.50 Hren et al. (2010) As above.

Fiona Hill 44.1◦ N 103.1◦ W 16.70 1.50 1.50 Hren et al. (2010) As above.

Council Hill 44.7◦ N 103.2◦ W 21.63 1.50 1.50 Hren et al. (2010) As above.

Iowa Hill 44.2◦ N 103.2◦ W 22.96 1.50 1.50 Hren et al. (2010) As above.

You Bet 2 44.3◦ N 103.1◦ W 23.80 1.50 1.50 Hren et al. (2010) As above.

Chalk Bluffs – 44.3◦ N 103.2◦ W 26.75 1.50 1.50 Hren et al. (2010) As above.
E

Scotts Flat 44.4◦ N 103.2◦ W 24.91 1.50 1.50 Hren et al. (2010) As above.

Gold Bug 44.5◦ N 103.2◦ W 25.08 1.50 1.50 Hren et al. (2010) As above.

Hidden Gold 44.2◦ N 103.2◦ W 18.38 1.50 1.50 Hren et al. (2010) As above.
Camp
Woolsey Flat 44.5◦ N 103.1◦ W 24.84 1.50 1.50 Hren et al. (2010) As above.

Mountain Boy 44.7◦ N 103.2◦ W 19.84 1.50 1.50 Hren et al. (2010) As above.

Pine Grove 1 44.8◦ N 103.1◦ W 22.82 1.50 1.50 Hren et al. (2010) As above.

Otaio 56.1◦ S 163.7◦ W 15.97 2.99 2.99 11.00 3.76 Hollis et al. (2011) Early Eocene of New Zealand,
using Australian LMA calibration.
Provided by Liz Kennedy.

The published error bars around winter season temperature
reconstructions are non-negligible and those around summer
temperatures are even larger. More concerning are the con-
ceptual issues involved in using modern floral/climate re-
lationships to estimate past climate regimes with no clear
analogue (Utescher et al., 2009), such as subtropical cli-
mates in polar night. When strongly restrictive and con-
served biophysical-derived traits are involved, such as is
clearly the case with freezing temperatures and palm trees
and crocodiles, the proxy data provide a stronger constraint
than in regions of climate regime space where no clear strong
biological constraints exist or which no flora currently oc-
cupy. Our approach is that constraints on summer terrestrial

temperatures from paleofloral and faunal records are much
weaker than on winter temperature. CLAMP and other mul-
tivariate techniques provide some indications but the bio-
physical constraints on plants on the warm side are poorly
understood and probably less strict that those on the cool
side. In other words, there is currently no equivalent of a
“palm line” for summer temperature and published attempts
to estimate summer temps based on assemblages are un-
likely to have the same kind of durability as more biophys-
ically constrained numbers. Currently we have no natural
ecosystems that persist under temperatures much warmer
than∼30◦C, with several meters of rainfall, and with higher
than modernpCO2, so transfer function approaches that
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implicitly can only explore climate parameter spaces experi-
enced by modern vegetation are likely to be of limited value.
Because of a lack of modern analogue in climate-ecosystem
space for these hot,wet conditions, a strong asymmetry ex-
ists between the ability to constrain increases in CMM and
increases in warm month mean (WMM), except perhaps at
high latitudes where WMM conditions may lie within the
modern climate envelop (of low latitude conditions). On the
other hand, light limitation, in the form of short, but 24-
hour growing seasons almost certainly introduces a layer of
complexity in interpreting growing season, and hence WMM
temperatures at high latitudes.

Based on these considerations, we focus attention on the
winter season aspect of the equable climate problem and do
not make a quantitative comparison with summer tempera-
ture proxy reconstructions. In this study, we find that win-
ter temperatures were above freezing everywhere except for
interior Antarctic and small regions of high paleoelevation,
primarily restricted to western North America. We adopt a
two-pronged approach to model-data comparison for winter
temperatures.

First, we show that seasonal-mean modelled temperatures
everywhere (with the exceptions mentioned) were above
freezing. This broad-strokes approach enables comparison
with many of the crucial but qualitative indicators and char-
acterizations of warm winters that are ubiquitous in the early
Eocene geological record, including inferences from floral
and faunal assemblages and soil and clay types, (Greenwood
and Wing, 1995; Markwick, 2007; Pigg and Devore, 2010;
Collinson and Hooker, 2003; Valdes, 2000). Such indica-
tors provide important constraints but are difficult to directly
compare quantitatively with model output (although seeSell-
wood and Valdes, 2006for one excellent approach).

The second approach we employ is to compare CMM tem-
peratures predicted by the models, point by point, with those
inferred from paleoclimate proxies. This approach is quan-
titative and provides explicit error bars, but estimates may
not be altogether accurate for all the reasons described pre-
viously for MAT. Furthermore, when considering the error
bars on CMM estimates, it is important to consider that lower
bounds on CMM are more likely to be accurate because those
involve strong biological/physical constraints (i.e. palms do
not tolerate freezing). The upper error bound on CMM is
probably less constrained. Such CMM estimates are not as
broadly available as the qualitative records but are as roughly
comparable in their extent as the MAT records and often
derive from the same analyses. In this study we compile
CMM estimates primarily derived from CLAMP but supple-
mented by other sources, such as isotopic analysis and the
co-existence approach. The error estimates are derived from
the primary sources and do not account for temporal varia-
tion, unlike the MAT error bars. The CMM estimate sources
are detailed in Table 1.

3.1.3 Uncertainties in topography, timing, and
paleolocation

A major source of ambiguity in model-data comparison is
the difference between the modelled elevation and the ac-
tual elevation of the proxy locality. Errors of∼6◦C can
be introduced by a 1 km difference in elevation between
model and data (Sewall et al., 2000). Every effort has been
made to minimize this error by making the most accurate
reconstruction of paleoelevation utilizing the available in-
formation at the time (Sewall et al., 2000). But, such esti-
mates are controversial and have uncertainty associated with
them of at least±500 meters in mountainous regions where
much of the proxy data are found (Peppe et al., 2010; Hren
et al., 2010; Rowley, 2007; Forest, 2007; Meyer, 2007; Mol-
nar, 2010). Paleoelevation scholarship has progressed in the
decade since our topography dataset was created and many
important details have changed. Nevertheless, little consen-
sus exists on those details (Davis et al., 2009; Mulch et al.,
2007; Molnar, 2010) so it is difficult to meaningfully improve
the situation at the moment.

Even if the mean elevation of a region was correctly repre-
sented by the elevation of a given model grid cell, error can
be introduced by the fact that many proxy records are found
within basins in high relief regions. This bias in preservation
can introduce large errors even when the gross features of to-
pography are fully correct in the model (Sewall et al., 2000).
Thus the real errors are probably closer to±1000 m in high
elevation, high relief regions such as intermontane western
North America.

We quantify that uncertainty here by calculating the stan-
dard deviation of topography averaged over all elevations
greater than 1500 m in a modern high-resolution digital el-
evation model. Utilizing the average 2-σ topographic vari-
ation in modern topography (450 m) as an estimate of relief
in regions of high mean elevation in the Eocene, we find a
±2.4◦C uncertainty in temperature introduced as a result of
relief, assuming a 5.3◦C km−1 lapse rate based on the work
of Hren et al.(2010).

Temporal sampling uncertainty is also a concern since a
modelled time slice represents millions of years, whereas
substantial evidence exists for climate fluctuations of±5◦C
at a single location over that time scale (Wilf et al., 1998;
Wilf , 2000; Bao et al., 1999; Wing et al., 2000, 2005). Con-
sequently, wherever a time series is available at a locality, we
compare the mean as well as the maximum and minimum of
the series with the stated random calibration error of the indi-
vidual proxy data points superimposed. Where a single data
point is available, we utilize the stated methodological error
although these certainly underestimate the true error range.

Errors are also introduced by various sources of geo-
graphic uncertainty, including: uncertainty in the true paleo-
latitude and longitude of the fossil locality; uncertainty in-
troduced by differences between the true location of the pa-
leolocality and the location of the paleolocality’s position on
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the model grid (i.e. differences in reference frame). This
is exacerbated by uncertainty in true paleotopography and
sea level and the differences between these and the mod-
elled representation of these real-world features. The uncer-
tainty in temperature assignable purely to uncertainty in a
locality’s true paleolatitude and longitude is relatively small
(<2◦C), both because the position errors themselves are
rather small (∼ ±2◦ latitude, ±5◦ longitude) and because
early Eocene temperature gradients were quite small (Green-
wood and Wing, 1995). More important is the fact that there
can be large differences in absolute paleoposition between
two reconstructions, and specifically between the reconstruc-
tion that was the basis for the model grid (Sewall et al., 2000)
and more recent reconstructions (Markwick, 2007; Mueller
et al., 2008).

If, for example, recent reconstructions indicate that North
America was 5◦ further south than the reconstruction in the
model, should the model-data comparison be performed at
the true paleolatitude and longitude, or at the appropriate
model grid paleolatitude and longitude? Or should the tem-
perature estimate from the model grid be corrected back to
its correct latitude using an empirical correction? Provided
temperature gradients are weak, this is not a large source of
uncertainty, introducing perhaps 2.5◦C error in the example
given, but it has the potential to be a systematic bias.

This can be a more substantial problem in an occasional
situation, such as the MBT-CBT record ofWeijers et al.
(2007a) or the palynological record ofEldrett et al.(2009)
which are derived from marine cores and the location of ter-
restrial source region is primarily conjectural and reflects ei-
ther a localized source or an integrated signal from regions
that are not tightly constrained. As shown below, the poten-
tial error associated with this is not estimated to be large.

Further ambiguity and room for error arises when there is
a large mismatch between the classification of a locality as
land or ocean between the model and reality. For example,
near the Gulf Coast of North America or in New Zealand,
the true paleolocation of a terrestrial site places it solidly in
the ocean on the coarse-resolution model grid. This intro-
duces the problem of deciding to use the nearest available
terrestrial grid cell or the nearest grid cell for comparison re-
gardless of whether it is land or ocean. In the case of New
Zealand, the South Island was small and barely sub-areal, so
it is simple to consider the nearest ocean grid cell as being a
reasonable estimator to the terrestrial temperature, but with
difficult to quantify error associated with the approximation.
For the Gulf Coast data a better approach, given the weak
temperature gradients, is to use the nearest land surface grid
cell which is more likely to properly account for land-sea
temperature contrasts.

It is for these reasons that it is common in model-data com-
parison studies to compare zonal mean model-derived tem-
peratures with proxy data (Huber and Sloan, 2001; Shellito
et al., 2003). It is hoped that many of these errors will can-
cel out when the data are aggregated and averaged. Whether

or not comparing sparsely-sampled data with zonal means
actually leads to a robust characterization of model-data dif-
ference has never been quantitatively answered. Pointwise
comparison of models and data has been shown to be im-
portant in establishing model fidelity in reproducing climate
trends in the recent observational record (Duffy et al., 2001)
and it seems likely to be a better approach, albeit more chal-
lenging, because it requires accounting for random errors and
bias in geographic assignment.

3.2 Modelling

As described in previous work, Eocene conditions have been
simulated with a fully-coupled general circulation model,
the National Center for Atmospheric Research (NCAR)
Community Climate System Model version 3 (CCSM3).
These simulations span a range ofpCO2 from 560 ppm to
4480 ppm. After synchronous, coupled integration of 2000–
5000 years (some simulations equilibrate faster than others),
all the simulations equilibrated in terms of surface and global
mean ocean temperature and ocean “ideal age” tracers. As-
pects of the coupled simulations with a focus on the ocean
circulation are described inLiu et al.(2009) andAli and Hu-
ber(2010). The ocean-atmosphere circulation of these simu-
lations are similar to those ofWinguth et al.(2010) andShel-
lito et al. (2009), who utilized the same model with nearly
identical boundary conditions, although the simulations were
not integrated as long and the solar constant and aerosol treat-
ments were somewhat different.Winguth et al.(2010) pro-
vide a good overview of the ocean-atmospheric dynamics
simulated by CCSM3 for Eocene conditions that are repre-
sentative of those in the simulations described here.

The mixed layer depth, sea surface temperature (SST),
sea ice fraction, and ocean heat convergence patterns de-
rived from these coupled simulations were utilized to create
mixed-layer “slab” oceans for coupling to the atmospheric
component of CCSM3, the CAM3. Interesting aspects of
the atmospheric dynamics produced in the simulations were
described elsewhere (Caballero and Huber, 2010; Williams
et al., 2009; Sherwood and Huber, 2010; Eldrett et al., 2009).
Of specific importance to this study, an important high lati-
tude feedback in CAM3 was shown to enhance warming near
the poles in the Eocene (Abbot et al., 2009b).

Within the context of this large suite of simulations we
chose two fixed-SST simulations to provide the first rigor-
ous model-data comparison appropriate to early Eocene con-
tinental climates in CAM3/CCSM3. These SSTS are repeat-
ing 12-month climatologies derived from the last hundred
years of two different fully coupled simulations. Two sim-
ulations utilizing the CAM, version 3.1 (Collins et al., 2006)
coupled to the standard Community Land Model (CLM3) at
T42 spectral resolution (∼2.5◦

× 2.5◦ resolution) incorpo-
rating the Eulerian dynamical core, atpCO2 of 4480 and
2240 ppmv were analyzed. The solar constant was set at
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1365 W m−2, aerosol radiative effects were set to zero, and
other trace gas concentrations and orbital parameters were
set to pre-industrial conditions. The land surface boundary
conditions used were the same as described inSewall et al.
(2000) although they have been reinterpolated from the orig-
inal 2◦

× 2◦ data to T42 resolution as opposed to the T31 res-
olution version that was used in much of the previously de-
scribed work (Huber and Sloan, 2001; Huber and Caballero,
2003; Shellito et al., 2003, 2009; Winguth et al., 2010).
Shorter simulations at resolutions up to T170 (0.7◦

× 0.7◦)
were carried out and the results discussed here are robust at
higher resolution.

Here we present results of simulations from the
NCAR CAM3.1 at T42 resolution driven by these speci-
fied SSTs derived from coupled simulations. The fixed SST
simulations were carried out for>50 years to ensure equi-
librated climatologies and means were calculated over the
last 25 years. The main simulation, referred to as EOCENE-
4480, was carried out with 4480 ppmv CO2 and is meant to
represent the early Eocene. As described previously, this
does not imply that 4480 ppmv is the actual value for the
early Eocene; it is merely the radiative forcing necessary for
a climate model with a weak sensitivity to achieve climate
conditions close to those of the early Eocene. For context
and to give an indication of the robustness of these results
we, have included results from another case, EOCENE-2240,
carried out with 2240 ppm CO2 and which we have previ-
ously shown is a better fit to mid-to-late Eocene climate (El-
drett et al., 2009).

In Sect.4 we present a comparison of zonal mean model
results for modern and Eocene conditions, maps of mod-
elled Eocene surface temperatures, and pointwise compari-
son of proxy data and model results. For this comparison,
all proxy records were rotated back to their paleo-locations
at approximately 55 mya utilizing the GPLATES software
(www.gplates.org) and plate model ofMueller et al.(2008)
with some slight adjustments made to accomodate georefer-
encing differences between the model plate locations and the
GPLATES reconstruction.

First, the modern location of the paleo-localities was in-
troduced into GPLATES and then the localities were rotated
back to their positions at 55 mya (Fig.1a). The plate lo-
cations determined by GPLATES (http://www.gplates.org)
were then compared with the paleogeography utilized in
the modelling, derived originally fromSewall et al.(2000)
in order to determine that they were generally compara-
ble (Fig. 1b−c, 1d−e). In almost all cases, the paleo-
geography in the model was consistent with the GPLATES
55 mya reconstruction and where adjustments were neces-
sary, they were objectively determined by comparing con-
tinental boundaries and making uniform, small adjustments
to GPLATES reconstructed latitude and longitude to align
correctly with geographic features in the model paleogeogra-
phy. When this was done, model predictions were compared
with proxies at these adjusted locations and inspection of the

results was used to evaluate that the potential errors intro-
duced by differences in true and modelled paleo-location are
small (Fig.1d−e).

Furthermore, a comparison of the model paleogeography
we used and the early Eocene paleotopography indepen-
dently derived by Paul Markwick (Markwick, 2007) revealed
that our reconstructions were in general agreement, indicat-
ing robustness of general features but differing in important
details, for example in intermontane western North America
(Fig. 1d−e, 1f). In the subsequent model-data comparison,
we accounted for uncertainty in the true paleolocation, its
temporal variation over the early Eocene, and the discretiza-
tion introduced by the model grid by including error bars
of ±2.5◦ latitude on both proxy records and the model re-
sults. A spreadsheet including the references and values used
in the paleotemperature reconstruction has been included as
supplemental material. The GPLATES Markup Language
(GPML) file used to rotate modern localities is also available
as supplemental material.

4 Results

4.1 Modeled zonal-mean surface temperatures

As an overview of the climate changes occurring in the
Eocene simulation, Fig.2 compares modeled zonal-mean
surface temperatures from the EOCENE-4480 run with a
CAM3 simulation using modern boundary conditions as
specified by the Atmopheric Model Intercomparison Project
(AMIP). In AMIP simulations, modern, observed SSTs (and
other boundary conditions) are specified. The zonal mean
includes averaging over both land and ocean. At high lati-
tudes, the Eocene case is 30–50◦C warmer than modern in
both MAT and seasonal means. Differences are more muted
in the tropics,ranging from 6–10◦C in all seasons. These
results qualitatively capture the salient features noted in the
proxy temperature record (Barron, 1987): annual mean tem-
peratures much warmer than modern, especially at high lat-
itudes, winter season temperatures generally above freezing,
and a much reduced equator-to-pole temperature gradient.
The hemispheric asymmetry in temperature increase is con-
sistent with the removal of the Antarctic Ice Sheet and the
associated 15–20◦C change associated with the decrease in
elevation.

4.2 Maps of modeled surface temperatures

To evaluate the robustness of these climate change patterns
to the chosen level of greenhous gas forcing, we compare the
EOCENE-2240 and EOCENE-4480 simulations in Fig. 3.
MAT in the EOCENE-4480 case (Fig.3a) is above freez-
ing everywhere. With the exception of inland Antarctica and
a small region in high latitude, mountainous western North
America, it is warmer than 10◦C everywhere, as required
by proxy records (see discussion in Sect.3.1.2). Maximum
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a

Fig. 1a. Comparison of paleogeographic information used in the simulation with independent reconstructions fromMueller et al.(2008)
via the freely available GPLATES software and via personal communication from Paul Markwick. In(a) a plate tectonic reconstruction for
55 mya from GPLATES including sea floor age is shown. Terrestrial paleoclimate proxy localities are indicated on this map with green circles.
The modern continental boundaries in their 55 mya positions as reconstructed by GPLATES compard with Markwick’s paleogegraphy are
shown in(b, d). The topography used in model(c, e) is compared with the independently derived high resolution early Eocene topography
of Markwick (based onMarkwick (1998)) (b, d). In these figures, the paleoclimate proxy localities are indicated with magenta circles.
The GPLATES derived plate configuration is a reasonable match to the land-sea distribution developed inSewall et al.(2000) used in the
simulations here(c, e). It should be noted that in some cases GPLATES derived paleolocations must be adjusted slightly to fall on land or
to be in the right location with respect to topography, as described in the text. In(f) an example of how the pointwise comparison of model
and proxy records is performed is shown. Colors are modelled temperatures and the text indicates the abbreviated names of proxy localities.
Based on modern latitude and longitudes the localities are rotated back to 55 mya positions using GPLATES, thus enabling the best objective
placement of the paleo-positions within the model’s reference frame. As(f) shows, errors in paleo-position are unlikely to introduce large
errors in inferred temperature except in regions with strong temperature gradients, i.e. in regions of strong elevation variation.

SSTs are about 35◦C, in general agreement with proxies
(Pearson et al., 2007; Huber, 2008; Jaramillo et al., 2010;
Schouten et al., 2007). The hottest temperatures are on land
in the subtropics, where annual mean values are 45◦C. No
proxy records currently exist to support or refute this result.

Winter temperatures in the EOCENE-4480 case remain
above freezing everywhere except for inland Antarctica.
Temperatures in intermontane western North America dip
near zero in agreement with the existence of microthermic
flora – though with an absence of frost intolerant macroflora
– in various upland localities in the region (Smith et al.,
2009). Maximum terrestrial temperatures in summer of up
to 50◦C are reached in northern and southwestern Africa,
southern central South America, southwest North America,
central Europe and western central Asia. The interiors of
North America and Amazonia are also very hot (>40◦C)
in summer. It should be noted that these are seasonal (3-
month) means and that temperature extrema on subseasonal

time scales may be substantially higher; we present seasonal
means here since they are likely to best reflect the processes
that shape the long-term distribution of proxies, flora and
fauna. A comparison with the coldest climatological monthly
mean temperature is carried out below for strict comparison
with CMM proxy records.

Comparison of the two Eocene cases allows the identi-
fication of certain regions that are especially sensitive to a
globally uniform radiative forcing. The land masses respond
roughly homogeneously in the annual mean, though with
some enhanced warming in eastern and central North Amer-
ica, central Asia and central South America. Seasonal dif-
ferences are more pronounced. In boreal winter, the mid-to-
high latitude interiors of North America and Asia are loci
of focused warming in response to the increase inpCO2.
Northern and central North American and Asian MATs are
between−10◦ and 0◦C in winter in the EOCENE-2240 case,
but above freezing everywhere in the EOCENE-4480 case.

www.clim-past.net/7/603/2011/ Clim. Past, 7, 603–633, 2011
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b

c

Fig. 1b−c. Figure 1 continued, see Fig. 1a for description.

Localized warming is also evident in austral winter in the
interior of Antarctica and in the boreal summer of west cen-
tral Asia, and in midlatitude North America and Europe.
These results show that localized temperature changes of up
to 10◦C can occur seasonally even with globally homoge-
neous forcing and annual-mean SST change of less than 3◦C
everywhere. Though the EOCENE-2240 case is very warm
and has no sea ice, the additional greenhouse gas forcing
in the EOCENE-4480 case yields a polar-amplified warm-
ing, with most of the amplification occurring in the winter
season. The overall pattern is quite similar to the effect of
doublingpCO2 in modern CAM3/CCSM3 simulations, de-
spite the large differences in continental configuration, back-
ground greenhouse gas values, and other boundary condi-
tions. Polar ampliflication in the absence of sea-ice has been
attributed in various studies to increased latent heat transport
(Langen and Alexeev, 2007; Caballero and Langen, 2005)
and to high-latitude cloud feedbacks (Abbot et al., 2009a,b);
the latter have been shown be especially important in Eocene

CAM3 simulations. Much of the terrestrial winter response
seen here (between the two Eocene cases) correlates well
with the near complete loss of snow cover and associated
albedo decreases in the EOCENE-4480 case.

Most crucially for this study, the fact that winter sea-
son temperatures are above freezing in all regions for which
quantitative and qualitative proxy data indicate frost in-
tolerance (Greenwood and Wing, 1995; Markwick, 1998;
Collinson and Hooker, 2003; Markwick, 2007; Kvacek,
2010) suggests that the EOCENE-4480 simulation does not
suffer from the equable climate problem. This comes at the
expense of a very large radiative forcing, causing temper-
atures>40◦C on land over significant regions. However,
tropical SSTs in the EOCENE-4480 simulation are in good
agreement with what is currently the best tropical proxy tem-
perature records we have, from Tanzania (Pearson et al.,
2001b, 2007) and off the coast of Colombia (Jaramillo et al.,
2010), though the absolute temperatures inferred from this
record are subject to significant uncertainty (Huber, 2008).
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d

e

Fig. 1d−e. Figure 1 continued, see Fig. 1a for description.

f

Fig. 1f. Figure 1 continued, see Fig. 1a for description.

www.clim-past.net/7/603/2011/ Clim. Past, 7, 603–633, 2011



618 M. Huber and R. Caballero: Eocene equable climates revisited

annual mean boreal winter boreal summer

Fig. 2. Zonal mean surface temperature from the EOCENE-4480 (red) and modern, AMIP (blue) simulations as described in the text.
In the upper row, the annual (left) boreal winter (middle) and boreal summer (right) means are shown. In the lower row, the anomaly,
EOCENE-4480 minus modern, AMIP simulation is shown.

4.3 Pointwise data-model comparison

Pointwise comparison of proxy data and EOCENE-4480
modeled MAT (Fig. 4) reveals reasonably good overall
agreement. Substantial scatter in the proxy data is apparent
in the Northern Hemisphere midlatitudes, but is due mostly
to data from intermontane western North America and likely
reflects real gradients in topography and surface temperature
that are not well represented in the low resolution topography
used in the model (Fig.5). The model and data generally
agree within their respective errors, which include a gross
estimate of uncertainty due to modelled versus real elevation
in mountainous regions, as discussed in Sect.3.1.3. Both
simulated and proxy data MATs are∼35◦C at the poleward
edge of the subtropics. The model does not appear to cap-
ture the peak high latitude temperatures derived from MBT-
CBT, although it does capture warm temperatures on Axel
Heiberg and Ellesmere Islands. The Axel Heiberg Island
proxy records may reflect cooler conditions because they are
middle Eocene in age, but the Ellesmere Island data, which is
early Eocene in age produces a similar MAT, so the fact that
the model matches the data at these high latitude sites is not
necessarily attributable to temporal sampling issues. It has
been conjectured that the MBT-CBT proxy may be biased to
summer values (Weijers et al., 2007a; Eberle et al., 2010), in
which case the data and model are more concordant.

Inspection of Fig.4b suggests that the model does not suf-
fer from a strong bias either to hot or cold temperatures, with
roughly equal numbers of points falling on either side of the
1:1 line.The mean data-model difference is 0.7◦C, while the
standard error is 1.3◦ (assuming all data points are uncorre-
lated), implying that there is no statistically significant over-
all bias. This lack of global bias is qualitatively confirmed on
a regional basis by Fig.5, which shows positive and negative
errors scattered randomly with no obvious bias in any region.
On the other hand, the 2 largest model-data discrepancies are
both on the warm side, with the model overestimating the
data by roughly 9◦C. Most of the errors lie in regions of
steep orography (Figs.1d−e, 5), with a slight tendency for
overprediction of temperatures by the model at lower eleva-
tion and underprediction of temperatures along topographic
highs; these discrepancies plausibly result from errors in pa-
leolocation of paleoelevation. These nearly bias-free results
are a vast improvement over our previous model-data com-
parison (Huber et al., 2003), which used an older version of
the NCAR coupled model with 560 ppmv CO2 and showed
model MATs systematically offset from proxy data by 10◦C
or more over large parts of the globe.

In Fig. 6 we compare modelled and reconstructed CMM
for each locality where quantitative paleoclimate proxy esti-
mates have been compiled. CMM in the model was calcu-
lated as the coldest monthly mean value from the 12-month
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Fig. 3a. Maps of time averaged surface temperature from the EOCENE-4480 and EOCENE-2240 simulations. The annual (a), boreal winter
(b), and boreal summer (c) means are shown. The upper row is the EOCENE-4480 case, the middle row is the EOCENE-2240 case, and the
bottom row is the anomaly. The range is values is indicated in the color bar in (a) and is the same in (a-c). Units are in ◦C

Fig. 3a. Maps of time averaged surface temperature from the EOCENE-4480 and EOCENE-2240 simulations. The annual(a), boreal
winter (b), and boreal summer(c) means are shown. The upper row is the EOCENE-4480 case, the middle row is the EOCENE-2240 case,
and the bottom row is the anomaly. The range is values is indicated in the color bar in(a) and is the same in(a–c). Units are in◦C.

climatology to be as close to possible to the standard
definition of CMM employed in paleoclimate reconstruc-
tions. Correspondence is excellent, even in mid-to-high lat-
itude regions that have previously been challenging (Shel-
lito et al., 2003). The main remaining discrepancy is at the
Puryear-Buchanan site (37.1◦ N, 70.7◦ W, see table), where
the model produces a CMM of nearly∼25◦C whereas the
data are∼16◦C. This may not be too serious given that there
is wide uncertainty in the proxy data estimate (Greenwood
and Wing, 1995) and other nearby localities, albeit from
marine proxies, show winter temperatures of 21.6–24.3◦C

(Kobashi et al., 2004). The model is clearly capable of
matching both the general qualitative pattern of a frost-free
early Eocene (Fig.3b), while giving a good quantitative
match to winter temperature minima where such data exist
(Fig. 6).

Finally, we compare the degree of polar amplification in
the data and model simulation. This is a crucial point,
as it bears on the long-standing challenge to our ability to
predict basic patterns of past climate change (Barron, 1987;
Lindzen, 1994; Sloan et al., 1995; Valdes, 2000; Huber and
Sloan, 1999; Kirk-Davidoff et al., 2002; Miller et al., 2010;
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Fig. 3b. Figure 3 continued, see Fig. 3a for description.

Abbot et al., 2009b). To establish the point-by-point degree
of temperature change, we take the anomaly of proxy-based
Eocene MAT estimates compared to modern observed MAT
at the same location. Modern MAT from the European Cen-
ter for Medium-Range Weather Forecasts 40-Year Reanaly-
sis Project (ERA-40) was used for modern observations. To
calculate the pointwise warming of the model with respect to
modern, we compare the MAT anomaly point-by-point be-
tween the EOCENE-4480 case and the modern CAM3 AMIP
simulation discussed in Sect.4.1. This comparison (Fig.7)
reveals a generally very good correspondence between the
modelled and reconstructed warming at all latitudes. The
zonal-mean modelled temperature anomaly with respect to

modern conditions gives a good overall agreement with the
observational anomalies, though regional and local details in-
troduce significant scatter. Overall, it appears that the model
is capable of quantitatively reproducing the polar amplifica-
tion of terrestrial warming in passing from modern to early
Eocene conditions.

5 Discussion

New estimates emerging from improved data coverage, the
introduction of new proxies, and reinterpretation of older
proxy records, show that temperatures in the early Eocene
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Fig. 3c. Figure 3 continued, see Fig. 3a for description.

were much warmer than previously reconstructed (Covey
et al., 1996). Thus, revisiting the equable climate problem
requires rethinking how to frame the problem. Most cli-
mate model simulations have not investigated temperatures
– including tropical temperatures – nor greenhouse gas forc-
ing, in the ranges now considered likely. Our perspective
in this paper is that most previous attempts to solve the
equable climate problem have suffered from the question
being ill-posed. Climate was even warmer than previously
reconstructed and the forcing or climate sensitivity were also
probably larger. Utilizing these new higher temperature ter-
restrial reconstructions for comparison makes the model-data
comparison more challenging than some prior attempts given

the historical tendency of the models to underestimate extra-
tropical temperatures. Yet our results clearly show that the
model makes credible predictions for both the winter season
warmth, mean terrestrial temperature change, and the polar
amplification of warming in the early Eocene, to our knowl-
edge, for the first time.This was accomplished by incorpo-
rating very high values of greenhouse gas radiative forcing.
Note that this approach is in a rough sense equivalent to “tun-
ing” climate sensitivity to a higher value, but is much sim-
pler in practice. The 4480 ppm CO2 concentration used here
should not be construed literally: it is merely a means to in-
crease global mean warmth.
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Fig. 4. On the left, a pointwise comparison of annual mean terrestrial surface temperature (MAT) from EOCENE-4480 (red) and proxy data
estimates (green) versus latitude. The vertical error bars on the proxies represent the methodological error plus the temporal variation (if a
time series) as further described in the text. The model vertical error bars are only included in regions considered to have high elevation and
represent topographic uncertainty as described in the text. Horizontal error bars indicate the uncertainty in the position of the paleolocality
and the propagation of that uncertainty onto the discrete model grid (as described in the text). A comparison is also made for reference of
tropical SSTs (reconstructed in blue and modelled in magenta). The tropical reconstructions follow those inHuber(2008) with the exception
of the Tanzanian (19 South latitude) TEX86 data which were recalculated using theLiu et al. (2009) calibration. It should be noted that the
potential uncertainty is underestimated, since only one set of calibrations was used for each proxy and therefore a major source of uncertainty
is ignored. On the right, the temperatures reconstructed from terrestrial proxies are plotted versus modelled and the 1-to-1 line is plotted in
black. The error bars are the same as previously described.

5

Fig. 5. Difference between modelled and reconstructed MAT as indicated by the color bar(on the right) overlain on the the model predicted
temperatures (grey scale color bar on left).

Model-data discrepancies remain, however. These do not
appear to be of a magnitude that a compelling case for com-
pletely “missing physics” can be made, but they do point to
many areas that need improvement. But, as described pre-
viously in Sects. 2 and 3.1.3 there may be limits to how
well we can ever expect the simulations to match observa-
tions, given the incompleteness of the record and, of course,

the limitations of the models – we can never expect them to
better in the past than they do today, and the weaknesses of
modern models are legion. Concrete strategies for continued
improvement for the Eocene do exist. There are several fac-
tors that should be considered in further refining the model
data comparison. These include some concrete refinements
described further below: improvements to paleotopography
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Fig. 6. A pointwise comparison of cold month mean tempera-
ture (CMM) from the EOCENE-4480 (red) and proxy data esti-
mates(green) versus latitude. The error bars are as described in the
text.

and their reprepresentation in the model, exploration of sen-
sitivity to orbital forcing, and improvements to the vegetation
boundary conditions.

5.1 Further improvements

5.1.1 Resolution

As discussed bySewall et al.(2000), the low resolution pale-
otopography used in this study is probably not only a source
of random temperature error (due to random errors in to-
pography) but also probably a source of cold bias. This is
because paleoclimate proxies are likely to be warmer than
model estimates since they reflect conditions at the bottom
of valleys in high relief areas that have a high mean eleva-
tion. This systematic bias was not corrected for in this study.

One approach to solving this problem is to use a lim-
ited domain atmospheric model at very high resolution
(i.e. ∼50 km), which might enable a full representation of
the basin and peak scale orographic details that plague lower
resolution, global climate models. This has been attempted
over Eocene North America bySewall and Sloan(2006),
andThrasher and Sloan(2009, 2010) with varying success.
These studies clearly demonstrate that modelled tempera-
tures are sensitive to resolving fine scale topographic detail,
but little reduction of the model-data mismatch common to
lower-resolution global model simulations was noted.

This is probably due to two factors. First, knowledge of
the true paleotopographic variation on those length scales
is still rudimentary, hence random scatter is introduced.
Second, and more importantly, limited area models use
dynamics to downscale global model output to finer scales,
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Fig. 7. A pointwise comparison of anomaly of annual mean terres-
trial surface temperature (MAT) from the EOCENE-4480 (red) and
proxy data estimates(green) minus the modern temperature value at
those locations versus latitude. The error bars are the same as de-
scribed in Fig. 3. The zonal mean anomaly of the EOCENE-4480
case minus the modern AMIP case plotted originally in Fig. 2 is
shown in grey on this figure for reference. The land-only zonal
mean anomaly is also shown in black.

but they are unlikely to generate temperature results substan-
tially different than the global model used to drive them. In
other words, limited domain models such as this, typically
produce the same aggregate temperatures as the global mod-
els, but with better representations of fine scale variations.
Consequently if the global model is biased to too cold val-
ues, the limited area model will produce the same result, but
at higher resolution (Sloan, 2006; Thrasher and Sloan, 2009,
2010).

Limited domain modeling is likely to be a very effec-
tive approach once global models produce results roughly
in agreement with proxy data and once high resolution to-
pographic reconstructions are available and are trustworthy.
Our results here suggest that this high resolution approach in
conjunction with high resolution, accurate paleotopography
(and vegetation) may lead to a substantial reduction in the
midlatitude scatter between proxy data reconstructions and
model output. Building model boundary conditions directly
from a properly geo-referenced DEM, such as implemented
by Markwick and Valdes(2004), is a clearly better approach
than the one originally used inSewall et al.(2000) and sub-
sequently re-used in the coupled modeling studies ofHuber
and Sloan(2001), Shellito et al.(2009), Winguth et al.(2010)
and in this study.
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5.1.2 Orbit

All of these simulations were carried out assuming a mod-
ern orbital configuration. Clearly, orbital variations caused
fluctuations in temperature patterns in the early Eocene and
inclusion of this feature in simulations would alter the sea-
sonal and spatial patterns in detail. Cold summer orbital and
hot summer orbit configurations would clearly impact the
seasonality in these simulations (Morrill et al., 2001; Sewall
et al., 2004; Lawrence et al., 2003). Nevertheless, it is reveal-
ing that the relatively crude approach used here of increasing
the global radiative forcing due topCO2 had a more pro-
nounced impact on reconciling models with data, including
seasonally sensitive data, than any orbital approach has so
far.

5.1.3 Vegetation

The simulations are likely to be sensitive in their regional
details—especially in terms of the localized seasonal tem-
perature extrema—to the vegetation distributions and their
representation in land surface models (DeConto et al., 1999;
Sewall et al., 2000; Shellito and Sloan, 2006a,b). Cold sea-
son, extratropical temperatures are likely to be especially
sensitive to vegetation albedo and leaf area index (LAI),
whereas peak tropical temperatures are likely to be sensitive
to evapotranspirational fluxes, which in turn are controlled by
a variety of parameters including LAI, stomatal resistance,
leaf phenology, vegetation type fractional coverage, and soil
hydrology (Bonan, 2008).

Likely regimes of vegetation albedo are relatively easy to
estimate and to test sensitivity to (Upchurch et al., 1999;
Otto-Bliesner and Upchurch, 1997; DeConto et al., 1999; Se-
wall et al., 2000), but the issue of how much latent flux trop-
ical vegetation is capable of in very hot scenarios is a largely
unconstrained problem, but very sensitive to the treatment of
angiosperm evapotranspiration (Boyce and Lee, 2010). In
our view, the least constrained aspect of the modeled temper-
ature distributions is peak subtropical-to-tropical terrestrial
warmth, as evidenced by the troubling model prediction of
subtropical warmth at the upper limit of proxy error bars. The
large, 15◦C differences between localized terrestrial summer
maxima surface temperature and the warmest open ocean
SSTs is good evidence that a better understanding of the con-
trols on evapotranspiration is necessary to accurately predict
tropical-to-subtropical terrestrial temperatures.

5.1.4 Sampling of warm regions

Additional challenges to estimating temperatures in the
warmest regions derive from the filter of existing recon-
struction methodologies and geographic sampling. At
present there are almost no quantitative terrestrial tempera-
ture records for the early Eocene from 30◦ N to 30◦ S latitude.
We have some hints from the late Paleocene (Head et al.,

2009; Huber, 2009) and earliest Eocene (Jaramillo et al.,
2010) that tropical conditions were significantly hotter than
modern, but in general the early Eocene terrestrial tropics are
almostterra incognita(Burnham and Johnson, 2004; Jacobs,
2004; Jacobs and Herendeen, 2004; Kaiser et al., 2006). For
our analysis, we included one flora from Africa of middle
Eocene age, to have at least some tropical information, but
given that the early Eocene, as indicated by marine records,
was likely somewhat warmer than the middle Eocene, the
one tropical estimate shown here likely underestimates the
true temperature. Including the tropical SST records ofPear-
son et al.(2007) or Jaramillo et al.(2010), does not substan-
tially altered our conclusions, given the fact that those stud-
ies’ reconstructed values are substantially warmer than mod-
ern in agreement with our model results and they have large
error bars.

Furthermore, floristic approaches to temperature recon-
struction are obviously biased to regions with vegetation. We
have no idea how hot the arid and semi-arid regions were. To-
day arid-to-semi-arid regions account for 30 % of terrestrial
surface area and this was approximately true in the Eocene as
well (Ziegler et al., 2003). So in terms of even approximately
reconstructing the mean terrestrial temperature in the early
Eocene about one third of the surface area is thoroughly un-
sampled and it is likely to be the hottest third. Nearby SSTs
are not expect to strongly constrain terrestrial temperatures in
the subtropical arid regions and deviations between the two
as simulated here are expected. Over the oceans, evapora-
tion couples surface temperatures to upper troposphere tem-
peratures through convection and the largeness of the Rossby
radius of deformation enforces weak upper atmospheric tem-
perature gradients (Pierrehumbert, 1995; Williams et al.,
2009). But this process is inhibited by dry surface conditions
and in the presence of large-scale descending atmospheric
motions, such very strong surface temperature gradients can
exist between oceans and nearby arid regions (Pierrehum-
bert, 1995). It may be that we must await proxy records
utilizing different techniques, such as “clumped isotopes”
(Eiler, 2007), to place meaningful constraints on terrestrial
temperatures in these areas.

6 Summary and conclusions

In prior work, robust model-data differences within conti-
nental interiors, especially in winter, have suggested to many
that climate models fail to reproduce the leading order feed-
backs in a warmer world. Acknowledging the large error
bars in the proxies and the various layers of uncertainty in
the model data-comparison we have performed, it appears
that the model reproduces the reconstructed MAT, CMM,
and the proper degree of terrestrial high latitude amplifica-
tion. The congruence of models and data in the simulations
here and the conditions under which the congruence occurs
suggest that the leading order physics are well represented,
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but perhaps either radiative forcing or climate sensitivity was
near the upper range of plausible values, or some combi-
nation of the two. We have shown that increased radiative
forcing in the form of very highpCO2 seems to resolve
the equable climate problem without running too far afoul
of other constraints, but this does not necessarily mean that
pCO2 was the only major forcing factor. Since the proxy
records now allow for warmer temperatures in the tropics,
higher water vapor concentrations and a stronger water va-
por greenhouse gas forcing (relative to prior simulations with
cooler tropical SSTs), help to maintain continental interior
warmth. We have not addressed whether the enhanced ra-
diative forcing was due topCO2, methane, other greenhouse
gases, novel cloud feedbacks, or other “missing” factors. We
have also not established whether large forcing is actually
necessary, the alternative being high values of climate sen-
sitivity as in the study ofHeinemann et al.(2009) and only
moderate increases in forcing.

Regardless of which explanation is correct, the model’s
ability to capture the reduced seasonality signal and spatial
gradients derived from terrestrial paleoclimate proxies pro-
vides a validation of CAM3/CCSM3 for climates vastly dif-
ferent from, and warmer than, modern. With the overall mod-
ern patterns in good agreement with the proxy data, signifi-
cant future progress should be possible in understanding the
large-scale dynamics of past greenhouse climates within the
framework of a validated model.

Subtantial work remains to resolve the remaining model-
data differences. To us, the most troubling result is extremely
hot terrestrial temperatures in the tropics, but sufficient data
do not exist to rule this result out at this time. Provided
compelling evidence becomes available, ruling out terres-
trial temperatures much above 35◦C in the subtropic, then
it is likely that improvements in the model’s representation
of tropical evapotranspiration and vegetation type can alle-
viate the problem in future work. It seems likely to us that
the remaining model-data discrepancies in mid-to-high lat-
itudes are due to regional and local scale features, such as
unresolved topographic and vegetation details, which can be
resolved utilizing better boundary condition data sets and
higher resolution models.

Our results do not preclude the existence of more exotic
forcings and feedbacks (e.g.Kump and Pollard, 2008; Sloan
and Pollard, 1998; Emanuel, 2002; Korty et al., 2008) but
instead provide a baseline for comparison involving simple
and well understood forcing mechanisms. From a reduction-
ist point of view, such novel processes may not be necessary
to explain the proxy data patterns, nevertheless enough lati-
tude exists in the proxy interpretations that significant future
improvements are possible.

Supplementary material related to this
article is available online at:
http://www.clim-past.net/7/603/2011/
cp-7-603-2011-supplement.zip.

http://roskilde.eas.purdue.edu/∼huberm/k.EO4.02.t42-k.
EO3.02.t42/
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