Articles | Volume 6, issue 4
https://doi.org/10.5194/cp-6-531-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/cp-6-531-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS 9–14) and their implications for the thermohaline circulation
A. H. L. Voelker
CIMAR Associate Laboratory, Rua dos Bragas 289, 4050-123 Porto, Portugal
Unidade Geologia Marinha, Laboratorio Nacional de Energia e Geologia (LNEG; ex-INETI), Estrada da Portela, Zambujal, 2610-143 Amadora, Portugal
T. Rodrigues
CIMAR Associate Laboratory, Rua dos Bragas 289, 4050-123 Porto, Portugal
Unidade Geologia Marinha, Laboratorio Nacional de Energia e Geologia (LNEG; ex-INETI), Estrada da Portela, Zambujal, 2610-143 Amadora, Portugal
K. Billups
College of Earth, Ocean, and Environment, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
D. Oppo
Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
J. McManus
Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
now at: Department of Earth and Environmental Science, Columbia University, Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, NY 10964-8000, USA
R. Stein
Alfred-Wegener-Institute for Polar and Marine Research, Columbusstrasse, 27568 Bremerhaven, Germany
J. Hefter
Alfred-Wegener-Institute for Polar and Marine Research, Columbusstrasse, 27568 Bremerhaven, Germany
J. O. Grimalt
Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA–CSIC),Jordi Girona 18, 08034-Barcelona, Spain
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Pleistocene
Sea-level and monsoonal control on the Maldives carbonate platform (Indian Ocean) over the last 1.3 million years
Planktonic foraminiferal assemblages as tracers of paleoceanographic changes within the Northern Benguela current system since the Early Pleistocene
Changes in the Red Sea overturning circulation during Marine Isotope Stage 3
Glacial-interglacial Circumpolar Deep Water temperatures during the last 800,000 years: estimates from a synthesis of bottom water temperature reconstructions
Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception
An Intertropical Convergence Zone shift controlled the terrestrial material supply on the Ninetyeast Ridge
Sea ice changes in the southwest Pacific sector of the Southern Ocean during the last 140 000 years
Summer sea-ice variability on the Antarctic margin during the last glacial period reconstructed from snow petrel (Pagodroma nivea) stomach-oil deposits
Variations in export production, lithogenic sediment transport and iron fertilization in the Pacific sector of the Drake Passage over the past 400 kyr
Lower oceanic δ13C during the last interglacial period compared to the Holocene
Change in the North Atlantic circulation associated with the mid-Pleistocene transition
Thermocline state change in the eastern equatorial Pacific during the late Pliocene/early Pleistocene intensification of Northern Hemisphere glaciation
A multi-proxy analysis of Late Quaternary ocean and climate variability for the Maldives, Inner Sea
Central Arctic Ocean paleoceanography from ∼ 50 ka to present, on the basis of ostracode faunal assemblages from the SWERUS 2014 expedition
Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins
Mediterranean Outflow Water variability during the Early Pleistocene
Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios
Subsurface North Atlantic warming as a trigger of rapid cooling events: evidence from the early Pleistocene (MIS 31–19)
Photic zone changes in the north-west Pacific Ocean from MIS 4–5e
Seasonal changes in glacial polynya activity inferred from Weddell Sea varves
High-latitude obliquity as a dominant forcing in the Agulhas current system
Sensitivity of Red Sea circulation to sea level and insolation forcing during the last interglacial
Sea-surface salinity variations in the northern Caribbean Sea across the Mid-Pleistocene Transition
Oceanic tracer and proxy time scales revisited
A simple mixing explanation for late Pleistocene changes in the Pacific-South Atlantic benthic δ13C gradient
High Arabian Sea productivity conditions during MIS 13 – odd monsoon event or intensified overturning circulation at the end of the Mid-Pleistocene transition?
Montserrat Alonso-Garcia, Jesus Reolid, Francisco J. Jimenez-Espejo, Or M. Bialik, Carlos A. Alvarez Zarikian, Juan Carlos Laya, Igor Carrasquiera, Luigi Jovane, John J. G. Reijmer, Gregor P. Eberli, and Christian Betzler
Clim. Past, 20, 547–571, https://doi.org/10.5194/cp-20-547-2024, https://doi.org/10.5194/cp-20-547-2024, 2024
Short summary
Short summary
The Maldives Inner Sea (northern Indian Ocean) offers an excellent study site to explore the impact of climate and sea-level changes on carbonate platforms. The sediments from International Ocean Discovery Program (IODP) Site U1467 have been studied to determine the drivers of carbonate production in the atolls over the last 1.3 million years. Even though sea level is important, the intensity of the summer monsoon and the Indian Ocean dipole probably modulated the production at the atolls.
Arianna Valentina Del Gaudio, Aaron Avery, Gerald Auer, Werner Erwin Piller, and Walter Kurz
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-16, https://doi.org/10.5194/cp-2024-16, 2024
Revised manuscript accepted for CP
Short summary
Short summary
The Benguela Upwelling System is a region in the SE Atlantic Ocean of high biological productivity. It comprises several water masses such as the Benguela Current, the South Atlantic Central Water and the Indian Ocean Agulhas waters. We analyzed planktonic foraminifera from IODP Sites U1575-U1576 to characterize the water masses and their interplay in the Pleistocene. This defined changes in the local thermocline, which were linked to long-term Benguela Niño/Niña-like and deglaciation events.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
David M. Chandler and Petra M. Langebroek
EGUsphere, https://doi.org/10.5194/egusphere-2023-850, https://doi.org/10.5194/egusphere-2023-850, 2023
Short summary
Short summary
Sea-level rise and global climate change caused by ice melt in Antarctica is a puzzle of feedbacks between the climate, ocean and ice sheets, over tens to thousands of years. Antarctic Ice Sheet melting is caused mainly by warm deep water from the Southern Ocean. Here, we analyse close relationships between deep water temperatures and global climate in the last 800,000 years. This knowledge can help us to better understanding how climate and sea-level are likely to change in the future.
Helen Eri Amsler, Lena Mareike Thöle, Ingrid Stimac, Walter Geibert, Minoru Ikehara, Gerhard Kuhn, Oliver Esper, and Samuel Laurent Jaccard
Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, https://doi.org/10.5194/cp-18-1797-2022, 2022
Short summary
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
Xudong Xu, Jianguo Liu, Yun Huang, Lanlan Zhang, Liang Yi, Shengfa Liu, Yiping Yang, Li Cao, and Long Tan
Clim. Past, 18, 1369–1384, https://doi.org/10.5194/cp-18-1369-2022, https://doi.org/10.5194/cp-18-1369-2022, 2022
Short summary
Short summary
Terrestrial materials in marine environments record source information and help us understand how climate and ocean impact sediment compositions. Here, we use evidence on the Ninetyeast Ridge to analyze the relationship between terrestrial material supplementation and climatic change. We find that the ITCZ controlled the rainfall in the Burman source area and that closer connections occurred between the Northern–Southern Hemisphere in the eastern Indian Ocean during the late LGM.
Jacob Jones, Karen E. Kohfeld, Helen Bostock, Xavier Crosta, Melanie Liston, Gavin Dunbar, Zanna Chase, Amy Leventer, Harris Anderson, and Geraldine Jacobsen
Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, https://doi.org/10.5194/cp-18-465-2022, 2022
Short summary
Short summary
We provide new winter sea ice and summer sea surface temperature estimates for marine core TAN1302-96 (59° S, 157° E) in the Southern Ocean. We find that sea ice was not consolidated over the core site until ~65 ka and therefore believe that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice does appear to have coincided with Antarctic Intermediate Water production and subduction, suggesting it may have influenced intermediate ocean circulation changes.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
María H. Toyos, Gisela Winckler, Helge W. Arz, Lester Lembke-Jene, Carina B. Lange, Gerhard Kuhn, and Frank Lamy
Clim. Past, 18, 147–166, https://doi.org/10.5194/cp-18-147-2022, https://doi.org/10.5194/cp-18-147-2022, 2022
Short summary
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Gloria M. Martin-Garcia, Francisco J. Sierro, José A. Flores, and Fátima Abrantes
Clim. Past, 14, 1639–1651, https://doi.org/10.5194/cp-14-1639-2018, https://doi.org/10.5194/cp-14-1639-2018, 2018
Short summary
Short summary
This work documents major oceanographic changes that occurred in the N. Atlantic from 812 to 530 ka and were related to the mid-Pleistocene transition. Since ~ 650 ka, glacials were more prolonged and intense than before. Larger ice sheets may have worked as a positive feedback mechanism to prolong the duration of glacials. We explore the connection between the change in the N. Atlantic oceanography and the enhanced ice-sheet growth, which contributed to the change of cyclicity in climate.
Kim Alix Jakob, Jörg Pross, Christian Scholz, Jens Fiebig, and Oliver Friedrich
Clim. Past, 14, 1079–1095, https://doi.org/10.5194/cp-14-1079-2018, https://doi.org/10.5194/cp-14-1079-2018, 2018
Short summary
Short summary
Eastern equatorial Pacific (EEP) thermocline dynamics during the intensification of Northern Hemisphere glaciation (iNHG; ~ 2.5 Ma) currently remain unclear. In light of this uncertainty, we generated geochemical, faunal and sedimentological data for EEP Site 849 (~ 2.75–2.4 Ma). We recorded a thermocline depth change shortly before the final phase of the iNHG, which supports the hypothesis that tropical thermocline shoaling may have contributed to substantial Northern Hemisphere ice growth.
Dorothea Bunzel, Gerhard Schmiedl, Sebastian Lindhorst, Andreas Mackensen, Jesús Reolid, Sarah Romahn, and Christian Betzler
Clim. Past, 13, 1791–1813, https://doi.org/10.5194/cp-13-1791-2017, https://doi.org/10.5194/cp-13-1791-2017, 2017
Short summary
Short summary
We investigated a sediment core from the Maldives to unravel the interaction between equatorial climate and ocean variability of the past 200 000 years. The sedimentological, geochemical and foraminiferal data records reveal enhanced dust, which was transported by intensified winter monsoon winds during glacial conditions. Precessional fluctuations of bottom water oxygen suggests an expansion of the Arabian Sea OMZ and a varying inflow of Antarctic Intermediate Water.
Laura Gemery, Thomas M. Cronin, Robert K. Poirier, Christof Pearce, Natalia Barrientos, Matt O'Regan, Carina Johansson, Andrey Koshurnikov, and Martin Jakobsson
Clim. Past, 13, 1473–1489, https://doi.org/10.5194/cp-13-1473-2017, https://doi.org/10.5194/cp-13-1473-2017, 2017
Short summary
Short summary
Continuous, highly abundant and well-preserved fossil ostracodes were studied from radiocarbon-dated sediment cores collected on the Lomonosov Ridge (Arctic Ocean) that indicate varying oceanographic conditions during the last ~50 kyr. Ostracode assemblages from cores taken during the SWERUS-C3 2014 Expedition, Leg 2, reflect paleoenvironmental changes during glacial, deglacial, and interglacial transitions, including changes in sea-ice cover and Atlantic Water inflow into the Eurasian Basin.
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary
Short summary
Global sea level rise during the last deglacial flooded the Siberian continental shelf in the Arctic Ocean. Sediment cores, radiocarbon dating, and microfossils show that the regional sea level in the Arctic rose rapidly from about 12 500 to 10 700 years ago. Regional sea level history on the Siberian shelf differs from the global deglacial sea level rise perhaps due to regional vertical adjustment resulting from the growth and decay of ice sheets.
Stefanie Kaboth, Patrick Grunert, and Lucas Lourens
Clim. Past, 13, 1023–1035, https://doi.org/10.5194/cp-13-1023-2017, https://doi.org/10.5194/cp-13-1023-2017, 2017
Short summary
Short summary
This study is devoted to reconstructing Mediterranean Outflow Water (MOW) variability and the interplay between the Mediterranean and North Atlantic climate systems during the Early Pleistocene. We find indication that the increasing production of MOW aligns with the intensification of the North Atlantic overturning circulation, highlighting the potential of MOW to modulate the North Atlantic salt budget. Our results are based on new stable isotope and grain-size data from IODP 339 Site U1389.
Carl Wunsch
Clim. Past, 12, 1281–1296, https://doi.org/10.5194/cp-12-1281-2016, https://doi.org/10.5194/cp-12-1281-2016, 2016
Short summary
Short summary
This paper examines the oxygen isotope data in several deep-sea cores. The question addressed is whether those data support an inference that the abyssal ocean in the Last Glacial Maximum period was significantly colder than it is today. Along with a separate analysis of salinity data in the same cores, it is concluded that a cold, saline deep ocean is consistent with the available data but so is an abyss much more like that found today. LGM model testers should beware.
I. Hernández-Almeida, F.-J. Sierro, I. Cacho, and J.-A. Flores
Clim. Past, 11, 687–696, https://doi.org/10.5194/cp-11-687-2015, https://doi.org/10.5194/cp-11-687-2015, 2015
Short summary
Short summary
This manuscript presents new Mg/Ca and previously published δ18O measurements of Neogloboquadrina pachyderma sinistral for MIS 31-19, from a sediment core from the subpolar North Atlantic. The mechanism proposed here involves northward subsurface transport of warm and salty subtropical waters during periods of weaker AMOC, leading to ice-sheet instability and IRD discharge. This is the first time that these rapid climate oscillations are described for the early Pleistocene.
G. E. A. Swann and A. M. Snelling
Clim. Past, 11, 15–25, https://doi.org/10.5194/cp-11-15-2015, https://doi.org/10.5194/cp-11-15-2015, 2015
Short summary
Short summary
New diatom isotope records are presented alongside existing geochemical and isotope records to document changes in the photic zone, including nutrient supply and the efficiency of the soft-tissue biological pump, between MIS 4 and MIS 5e in the subarctic north-west Pacific Ocean. The results provide evidence for temporal changes in the strength and efficiency of the regional soft-tissue biological pump, altering the ratio of regenerated to preformed nutrients in the water.
D. Sprenk, M. E. Weber, G. Kuhn, V. Wennrich, T. Hartmann, and K. Seelos
Clim. Past, 10, 1239–1251, https://doi.org/10.5194/cp-10-1239-2014, https://doi.org/10.5194/cp-10-1239-2014, 2014
T. Caley, J.-H. Kim, B. Malaizé, J. Giraudeau, T. Laepple, N. Caillon, K. Charlier, H. Rebaubier, L. Rossignol, I. S. Castañeda, S. Schouten, and J. S. Sinninghe Damsté
Clim. Past, 7, 1285–1296, https://doi.org/10.5194/cp-7-1285-2011, https://doi.org/10.5194/cp-7-1285-2011, 2011
G. Trommer, M. Siccha, E. J. Rohling, K. Grant, M. T. J. van der Meer, S. Schouten, U. Baranowski, and M. Kucera
Clim. Past, 7, 941–955, https://doi.org/10.5194/cp-7-941-2011, https://doi.org/10.5194/cp-7-941-2011, 2011
S. Sepulcre, L. Vidal, K. Tachikawa, F. Rostek, and E. Bard
Clim. Past, 7, 75–90, https://doi.org/10.5194/cp-7-75-2011, https://doi.org/10.5194/cp-7-75-2011, 2011
C. Siberlin and C. Wunsch
Clim. Past, 7, 27–39, https://doi.org/10.5194/cp-7-27-2011, https://doi.org/10.5194/cp-7-27-2011, 2011
L. E. Lisiecki
Clim. Past, 6, 305–314, https://doi.org/10.5194/cp-6-305-2010, https://doi.org/10.5194/cp-6-305-2010, 2010
M. Ziegler, L. J. Lourens, E. Tuenter, and G.-J. Reichart
Clim. Past, 6, 63–76, https://doi.org/10.5194/cp-6-63-2010, https://doi.org/10.5194/cp-6-63-2010, 2010
Cited articles
Alvarez-Salgado, X. A., Figueiras, F. G., Perez, F. F., Groom, S., Nogueira, E., Borges, A. V., Chou, L., Castro, C. G., Moncoiffe, G., and Rios, A. F.: The Portugal coastal counter current off NW Spain: new insights on its biogeochemical variability, Prog. Oceanogr., 56, 281–321, 2003.
Amore, F. O., Flores, J. A., Voelker, A. H. L., Lebreiro, S., and Sierro, F. J.: Coccolithophore record during the middle Pleistocene in the North Atlantic: paleoclimatic and paleoproductivity patterns, Mar. Micropaleontol., submitted, 2010.
Bard, E., Rostek, F., Turon, J.-L., and Gendreau, S.: Hydrological Impact of Heinrich Events in the Subtropical Northeast Atlantic, Science, 289, 1321–1324, 2000.
Barker, S., Archer, D., Booth, L., Elderfield, H., Henderiks, J., and Rickaby, R. E. M.: Globally increased pelagic carbonate production during the Mid-Brunhes dissolution interval and the CO2 paradox of MIS 11, Quaternary. Sci. Rev., 25, 3278–3293, 2006.
Bauch, H. A., Erlenkeuser, H., Helmke, J. P., and Struck, U.: A paleoclimatic evaluation of marine oxygen isotope stage 11 in the high-northern Atlantic (Nordic seas), Global Planet. Change, 24, 27–39, https://doi.org/10.1016/S0921-8181(99)00067-3, 2000.
Baumann, K.-H. and Freitag, T.: Pleistocene fluctuations in the northern Benguela Current system as revealed by coccolith assemblages, Mar. Micropaleontol., 52, 195–215, https://doi.org/10.1016/j.marmicro.2004.04.011, 2004.
Berger, W. H. and Wefer, G.: On the Dynamics of the Ice Ages: Stage-11 Paradox, Mid-Brunhes Climate Shift, and 100-ky Cycle, in: Earth's Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question edited by: Droxler, A. W., Poore, R. Z., and Burckle, L. H., Geophysical Monograph, American Geophysical Union, Washington, DC, 41–59, 2003.
Bigg, G. R., Levine, R. C., Clark, C. D., Greenwood, S. L., Haflidason, H., Hughes, A. L. C., Nygård, A., and Sejrup, H. P.: Last glacial ice-rafted debris off southwestern Europe: the role of the British-Irish Ice Sheet, J. Quaternary. Sci., 25(5), 689–699, https://doi.org/10.1002/jqs.1345, 2010.
Billups, K., Chaisson, W., Worsnopp, M., and Thunell, R.: Millennial-scale fluctuations in subtropical northwestern Atlantic surface ocean hydrography during the mid-Pleistocene, Paleoceanography, 19(2), PA2017, https://doi.org/10.1029/2003PA000990, 2004.
Billups, K., Lindley, C., Fisler, J., and Martin, P.: Mid Pleistocene climate instability in the subtropical northwestern Atlantic, Global Planet. Change, 54, 251–262, 2006.
Brambilla, E. and Talley, L. D.: Subpolar Mode Water in the northeastern Atlantic: 1. Averaged properties and mean circulation, J. Geophys. Res., 113, C04025, https://doi.org/10.1029/2006JC004062, 2008.
Broecker, W. S. and Peng, T.-H.: Tracers in the Sea, Tracers in the Sea, ELDIGIO Press, Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York, 690 pp., 1982.
Calvo, E., Villanueva, J., Grimalt, J. O., Boelaert, A., and Labeyrie, L.: New insights into the glacial latitudinal temperature gradients in the North Atlantic. Results from Uk37' sea surface temperatures and terrigenous inputs, Earth Planet. Sc. Lett., 188, 509–519, 2001.
Calvo, E., Pelejero, C., and Logan, G. A.: Pressurized liquid extraction of selected molecular biomarkers in deep sea sediments used as proxies in paleoceanography, J. Chromatogr. A, 989, 197–205, 2003.
Chaisson, W. P., Poli, M.-S., and Thunell, R. C.: Gulf Stream and Western Boundary Undercurrent variations during MIS 10-12 at Site 1056, Blake-Bahama Outer Ridge, Mar. Geol., 189, 79–105, 2002.
Channell, J. E. T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C. A., Malone, M. J., and the Expedition 303/306 Scientists: Proceedings IODP, 303/306, Integrated Ocean Drilling Program Management International, Inc., College Station TX, 2006.
Chapman, M. R. and Maslin, M. A.: Low-latitude forcing of meridional temperature and salinity gradients in the subpolar North Atlantic and the growth of glacial ice sheets, Geology, 27, 875–878, 1999.
Cléroux, C., Cortijo, E., Duplessy, J.-C., and Zahn, R.: Deep-dwelling foraminifera as thermocline temperature recorders, Geochem. Geophy. Geosy., 8, Q04N11, https://doi.org/10.1029/2006GC001474, 2007.
de Abreu, L., Shackleton, N. J., Schoenfeld, J., Hall, M., and Chapman, M.: Millennial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods, Mar. Geol., 196, 1–20, 2003.
de Abreu, L., Abrantes, F. F., Shackleton, N. J., Tzedakis, P. C., McManus, J. F., Oppo, D. W., and Hall, M. A.: Ocean climate variability in the eastern North Atlantic during interglacial marine isotope stage 11: a partial analogue to the Holocene?, Paleoceanography, 20, PA3009, https://doi.org/10.1029/2004PA001091, 2005.
Desprat, S., Sanchez Goñi, M. F., Turon, J. L., McManus, J. F., Loutre, M. F., Duprat, J., Malaize, B., Peyron, O., and Peypouquet, J. P.: Is vegetation responsible for glacial inception during periods of muted insolation changes?, Quaternary Sci. Rev., 24, 1361–1374, 2005.
Desprat, S., Sánchez Goñi, M. F., McManus, J. F., Duprat, J., and Cortijo, E.: Millennial-scale climatic variability between 340 000 and 270 000 years ago in SW Europe: evidence from a NW Iberian margin pollen sequence, Clim. Past, 5, 53–72, https://doi.org/10.5194/cp-5-53-2009, 2009.
Deuser, W. G. and Ross, E. H.: Seasonally Abundant Planktonic-Foraminifera of the Sargasso Sea – Succession, Deep-Water Fluxes, Isotopic Compositions, and Paleoceanographic Implications, J. Foramin. Res., 19, 268–293, 1989.
de Vernal, A. and Hillaire-Marcel, C.: Natural variability of Greenland climate, vegetation, and ice volume during the past million years, Science, 320, 1622–1625, https://doi.org/10.1126/science.1153929, 2008.
Dickson, A. J., Leng, M. J., and Maslin, M. A.: Mid-depth South Atlantic Ocean circulation and chemical stratification during MIS-10 to 12: implications for atmospheric CO2, Clim. Past, 4, 333–344, 2008.
Droxler, A. W., Alley, R. B., Howard, W. R., Poore, R. Z., and Burckle, L. H.: Introduction: unique and Exceptionally Long Interglacial Marine Isotope Stage 11: Window into Earth Warm Future Climate, in: Earth's Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question, edited by: Droxler, A. W., Poore, R. Z., and Burckle, L. H., Geophysical Monograph, American Geophysical Union, Washington, DC, 1–14, 2003.
EPICA Members: Eight glacial cycles from an Antarctic ice core, Nature, 429, 623–628, 2004.
Fairbanks, R. G., Wiebe, P. H., and Be, A. W. H.: Vertical-Distribution and Isotopic Composition of Living Planktonic-Foraminifera in the Western North-Atlantic, Science, 207, 61–63, 1980.
Fiúza, A. F. G.: Hidrologia e Dinamica das Aguas Costeiras de Portugal, Faculdade de Ciências da Universidade de Lisboa, Universidade de Lisboa, Lisbon, 294 pp., 1984.
Flores, J.-A., Marino, M., Sierro, F. J., Hodell, D. A., and Charles, C. D.: Calcareous plankton dissolution pattern and coccolithophore assemblages during the last 600 kyr at ODP Site 1089 (Cape Basin, South Atlantic): paleoceanographic implications, Palaeogeography, Palaeoclimatology, Palaeoecology, 196, 409–426, 2003.
Flower, B. P., Oppo, D. W., McManus, J. F., Venz, K. A., Hodell, D. A., and Cullen, J. L.: North Atlantic intermediate to deep water circulation and chemical stratification during the past 1 Myr, Paleoceanography, 15, 388–403, 2000.
Fratantoni, D. M.: North Atlantic surface circulation during the 1990's observed with satellite-tracked drifters, J. Geophys. Res., 106, 22067–22093, 2001.
Ganssen, G.: Dokumentation von küstennahem Auftrieb anhand stabiler Isotope in rezenten Foraminiferen vor Nordwestafrika, Meteor-Forschungsergebnisse, C37, 1–46, 1983.
Guo, Z. T., Biscaye, P., Wei, L. Y., Chen, X. F., Peng, S. Z., and Liu, T. S.: Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China, Geophys. Res. Lett., 27, 1751–1754, 2000.
Hall, I. R. and Becker, J.: Deep Western Boundary Current variability in the subtropical northwest Atlantic Ocean during marine isotope stages 12–10, Geochem. Geophy. Geosy., 8, Q06013, https://doi.org/10.1029/2006GC001518, 2007.
Hefter, J.: Analysis of Alkenone Unsaturation Indices with Fast Gas Chromatography/Time-of-Flight Mass Spectrometry, Anal. Chem., 80, 2161–2170, 2008.
Helmke, J. P. and Bauch, H. A.: Comparison of glacial and interglacial conditions between the polar and subpolar North Atlantic region over the last five climatic cycles, Paleoceanography, 18(2), 1036, https://doi.org/10.1029/2002PA000794, 2003.
Helmke, J. P., Bauch, H. A., Röhl, U., and Kandiano, E. S.: Uniform climate development between the subtropical and subpolar Northeast Atlantic across marine isotope stage 11, Clim. Past, 4, 181–190, 2008.
Hemming, S. R.: Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint, Rev. Geophys., 42, 1–43, https://doi.org/10.1029/2003RG000128, 2004.
Hodell, D. A., Charles, C. D., and Ninnemann, U. S.: Comparison of interglacial stages in the South Atlantic sector of the southern ocean for the past 450 kyr: implifications for Marine Isotope Stage (MIS) 11, Global Planet. Change, 24, 7–26, https://doi.org/10.1016/S0921-8181(99)00069-7, 2000.
Hodell, D. A., Kanfoush, S. L., Venz, K. A., Charles, C. D., and Sierro, F. J.: The Mid-Brunhes Transition in ODP Sites 1089 and 1090 (Subantarctic South Atlantic), in: Earth's Climate and orbital eccentricity: the Marine Isotope Stage 11 Question, edited by: Droxler, A. W., Poore, R. Z., and Burckle, L. H., Geophysical Monograph, American Geophysical Union, Washington, DC, 113–130, 2003.
Hodell, D. A., Channell, J. E. T., Curtis, J. H., Romero, O. E., and Röhl, U.: Onset of "Hudson Strait" Heinrich Events in the Eastern North Atlantic at the end of the Middle Pleistocene Transition ( 640 ka)?, Paleoceanography, 23, PA4218, https://doi.org/10.1029/2008PA001591, 2008.
Jansen, J. H. F., Kuijpers, A., and Troelstra, S. R.: A Mid-Brunhes Climatic Event: Long-Term Changes in Global Atmosphere and Ocean Circulation, Science, 232, 619–622, 10.1126/science.232.4750.619, 1986.
Ji, J., Ge, Y., Balsam, W., Damuth, J. E., and Chen, J.: Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR): a fast method for identifying Heinrich events in IODP Site U1308, Mar. Geol., 258, 60–68, 2009.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and Millennial Antarctic Climate Variability over the Past 800 000 Years, Science, 317, 793–796, https://doi.org/10.1126/science.1141038, 2007.
Kandiano, E. S. and Bauch, H. A.: Surface ocean temperatures in the north-east Atlantic during the last 500 000 years: evidence from foraminiferal census data, Terra Nova, 15, 265–271, 2003.
Kandiano, E. S. and Bauch, H. A.: Phase relationship and surface water mass change in the Northeast Atlantic during Marine Isotope Stage 11 (MIS 11), Quaternary Res., 68, 445–455, 2007.
Knies, J., Matthiessen, J., Mackensen, A., Stein, R., Vogt, C., Frederichs, T., and Nam, S., II: Effects of Arctic freshwater forcing on thermohaline circulation during the Pleistocene, Geology, 35, 1075–1078, 2007.
Labeyrie, L. D. and Duplessy, J.-C.: Changes in the oceanic 13C/12C ratio during the last 140 000 years: high-latitude surface water records., Palaeogeography, Palaeoclimatology, Palaeoecology, 50, 217–240, 1985.
Lambert, F., Delmonte, B., Petit, J. R., Bigler, M., Kaufmann, P. R., Hutterli, M. A., Stocker, T. F., Ruth, U., Steffensen, J. P., and Maggi, V.: Dust-climate couplings over the past 800 000 years from the EPICA Dome C ice core, Nature, 452, 616–619, 2008.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astronomy and Astrophysics, 428, 261–285, https://doi.org/210.1051/0004-6361:20041335, 2004.
Lea, D. W., Pak, D. K., and Spero, H. J.: Sea Surface Temperatures in the Western Equatorial Pacific During Marine Isotope Stage 11, in: Earth's Climate and orbital eccentricity: The Marine Isotope Stage 11 Question, edited by: Droxler, A. W., Poore, R. Z., and Burckle, L. H., Geophysical Monograph, American Geophysical Union, Washington, DC, 147–156, 2003.
Levy, M., Lehahn, Y., André, J.-M., Mémery, L., Loisel, H., and Heifetz, E.: Production regimes in the northeast Atlantic: astudy based on Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll and ocean general circulation model mixed layer depth, J. Geophys. Res., 110, C07S10, https://doi.org/10.1029/2004JC002771, 2005.
Lisiecki, L. E. and Raymo, M.: A Pliocene-Pleistocene stack of 57 globally distributed benthic �18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T. F., and Chappellaz, J.: Orbital and millennial-scale features of atmospheric CH4 over the past 800 000[thinsp]years, Nature, 453, 383–386, 2008.
Loutre, M. F. and Berger, A.: Marine Isotope Stage 11 as an analogue for the present interglacial, Global Planet. Change, 36, 209–217, 2003.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker, T. F.: High-resolution carbon dioxide concentration record 650 000–800 000 years before present, Nature, 453, 379–382, 2008.
Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M. A., and Stocker, T. F.: Four Climate Cycles of Recurring Deep and Surface Water Destabilizations on the Iberian Margin, Science, 317, 502–507, https://doi.org/10.1126/science.1139994, 2007.
McCartney, M. S. and Talley, L. D.: The Subpolar Mode Water of the North Atlantic Ocean, J. Phys. Oceanogr., 12, 1169–1188, 1982.
McManus, J., Oppo, D. W., and Cullen, J. L.: A 0.5-million-year record of millennial-scale climate variability in the North Atlantic, Science, 283, 971–975, 1999.
McManus, J., Oppo, D., Cullen, J., and Healey, S.: Marine Isotope Stage 11 (MIS 11): analog for Holocene and Future Climate?, in: Earth's Climate and orbital eccentricity: the Marine Isotope Stage 11 Question, edited by: Droxler, A. W., Poore, R. Z., and Burckle, L. H., Geophysical Monograph, American Geophysical Union, Washington, DC, 69–86, 2003.
Müller, P. J., Kirst, G., Ruhland, G., von Storch, I., and Rosell-Melé, A.: Calibration of the alkenone paleotemperature index Uk37' based on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S), Geochim. Cosmochim. Ac., 62, 1757–1772, 1998.
Oppo, D. W., McManus, J., and Cullen, J. C.: Abrupt climate change events 500 000 to 340 000 years ago: Evidence from subpolar North Atlantic sediments, Science, 279, 1335–1338, 1998.
Oppo, D. W., Keigwin, L. D., McManus, J. F., and Cullen, J. L.: Persistent suborbital climate variability in marine isotope stage 5 and Termination II, Paleoceanography, 16, 280–292, 2001.
Ortiz, J. D., Mix, A. C., Rugh, W., Watkins, J. M., and Collier, R. W.: Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean reveal environmental control of oxygen and carbon isotopic disequilibria, Geochim. Cosmochim. Ac., 60, 4509–4523, 1996.
Ottens, J. J.: Planktic foraminifera as North Atlantic water mass indicators, Oceanol. Acta, 14, 123–140, 1991.
Peliz, A., Dubert, J., Santos, A. M. P., Oliveira, P. B., and Le Cann, B.: Winter upper ocean circulation in the Western Iberian Basin – Fronts, Eddies and Poleward Flows: an overview, Deep Sea Research Part I: Oceanographic Research Papers, 52, 621–646, 2005.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chapellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999.
Pflaumann, U., Sarnthein, M., Chapman, M., de Abreu, L., Funnell, B., Huels, M., Kiefer, T., Maslin, M., Schulz, H., Swallow, J., van Kreveld, S. , Vautravers, M., Vogelsang, E., and Weinelt, M.: Glacial North Atlantic: sea-surface conditions reconstructed by GLAMAP 2000 Paleoceanography, 18(3), 1065, https://doi.org/10.1029/2002PA000774, 2003.
Pierre, C., Belanger, P., Saliège, J. F., Urrutiaguer, M. J., and Murat, A.: Paleoceanography of the western Mediterranean during the Pleistocene: oxygen and carbon isotope records at Site 975, in: Proceedings ODP, Scientific Results, edited by: Zahn, R., Comas, M. C., and Klaus, A., Ocean Drilling Program, College Station, TX, 481–488, 1999.
Poli, M. S., Thunell, R. C., and Rio, D.: Millennial-scale changes in North Atlantic Deep Water circulation during marine isotope stages 11 and 12: Linkage to Antarctic climate, Geology, 28, 807–810, 2000.
Prokopenko, A. A., Williams, D. F., Kuzmin, M. I., Karabanov, E. B., Khursevich, G. K., and Peck, J. A.: Muted climate variations in continental Siberia during the mid-Pleistocene epoch, Nature, 418, 65–68, 2002.
Raffi, I., Backman, J., Fornaciari, E., Palike, H., Rio, D., Lourens, L., and Hilgen, F.: A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years, Quaternary Sci. Rev., 25, 3113–3137, 2006.
Reverdin, G., Niiler, P. P., and Valdimarsson, H.: North Atlantic Ocean surface currents, J. Geophys. Res., 108(C1), 3002, https://doi.org/10.1029/2001JC001020, 2003.
Rickaby, R. E. M. and Elderfield, H.: Evidence from the high-latitude North Atlantic for variations in Antarctic Intermediate water flow during the last deglaciation, Geochem. Geophy. Geosy., 6, Q05001, 1–12, 2005.
Rios, A. F., Perez, F. F., and Fraga, F.: Water Masses in the Upper and Middle North-Atlantic Ocean East of the Azores, Deep-Sea Res. Pt. A, 39, 645–658, 1992.
Rodrigues, T., Voelker, A. H. L., Grimalt, J. O., Abrantes, F., and Naughton, F.: Iberian Margin Sea Surface Temperature during MIS 15 to 9 (580–300 ka): Glacial suborbital variability vs. interglacial stability. Paleoceanography, in review, 2010.
Ruddiman, W. F.: Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65° N), Geol. Soc. Am. Bull., 88, 1813–1827, 1977.
Ruddiman, W. F.: Orbital changes and climate, Quaternary Sci. Rev., 25, 3092–3112, 2006.
Salgueiro, E., Voelker, A., Abrantes, F., Meggers, H., Pflaumann, U., Loncaric, N., Gonzalez-Alvarez, R., Oliveira, P., Bartels-Jonsdottir, H. B., Moreno, J., and Wefer, G.: Planktonic foraminifera from modern sediments reflect upwelling patterns off Iberia: insights from a regional transfer function, Mar. Micropaleontol., 66, 135–164, https://doi.org/10.1016/j.marmicro.2007.09.003, 2008.
Salgueiro, E., Voelker, A. H. L., de Abreu, L., Abrantes, F., Meggers, H., and Wefer, G.: Temperature and productivity changes off the western iberian margin during the last 150 ky, Quaternary Sci. Rev., 29, 680–695, https://doi.org/10.1016/j.quascirev.2009.11.013, 2010.
Shackleton, N. J.: The last interglacial in the marine and terrestrial records, P. R. Soc. London, 6, 183–190, 1969.
Shackleton, N. J.: Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last Glacial, Colloques Internationaux du C. N. R. S., 219, 203–209, 1974.
Shackleton, N. J., Hall, M. A., and Vincent, E.: Phase relationships between millennial-scale events 64 000–24 000 years ago, Paleoceanography, 15, 565–569, 2000.
Siegenthaler, U., Stocker, T. F., Monnin, E., Luethi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V., and Jouzel, J.: Stable Carbon Cycle-Climate Relationship During the Late Pleistocene, Science, 310, 1313–1317, 2005.
Spahni, R., Chappellaz, J., Stocker, T. F., Loulergue, L., Hausammann, G., Kawamura, K., Flückiger, J., Schwander, J., Raynaud, D., Masson-Delmotte, V., and Jouzel, J.: Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores, Science, 310, 1317–1321, 2005.
Spero, H. J. and Lea, D. W.: The cause of carbon isotope minimum events on glacial terminations, Science, 296, 522–525, 2002.
Stein, R., Hefter, J., Grützner, J., Voelker, A., and Naafs, B. D. A.: Variability of surface-water characteristics and Heinrich-like Events in the Pleistocene mid-latitude North Atlantic Ocean: Biomarker and XRD records from IODP Site U1313 (MIS 16 – 9), Paleoceanography, 24, PA2203, https://doi.org/10.1029/2008PA001639, 2009.
Stirling, C. H., Esat, T. M., Lambeck, K., McCulloch, M. T., Blake, S. G., Lee, D.-C., and Halliday, A. N.: Orbital Forcing of the Marine Isotope Stage 9 Interglacial, Science, 291, 290–293, 2001.
Toucanne, S., Zaragosi, S., Bourillet, J. F., Cremer, M., Eynaud, F., Van Vliet-Lanoe, B., Penaud, A., Fontanier, C., Turon, J. L., Cortijo, E., and Gibbard, P. L.: Timing of massive "Fleuve Manche" discharges over the last 350 kyr: insights into the European ice-sheet oscillations and the European drainage network from MIS 10 to 2, Quaternary Sci. Rev., 28, 1238–1256, 2009.
Tzedakis, P. C., Andrieu, V., de Beaulieu, J. L., Crowhurst, S., Follieri, M., Hooghiemstra, H., Magri, D., Reille, M., Sadori, L., Shackleton, N. J., and Wijmstra, T. A.: Comparison of terrestrial and marine records of changing climate of the last 500 000 years, Earth Planet. Sci. Lett., 150, 171–176, 1997.
Tzedakis, P. C., Roucoux, K. H., de Abreu, L., and Shackleton, N. J.: The Duration of Forest Stages in Southern Europe and Interglacial Climate Variability, Science, 306, 2231–2235, 2004.
Tzedakis, P. C., Hooghiemstra, H., and Palike, H.: The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends, Quaternary Sci. Rev., 25, 3416–3430, 2006.
Tzedakis, P. C., Pälike, H., Roucoux, K. H., and de Abreu, L.: Atmospheric methane, southern European vegetation and low-mid latitude links on orbital and millennial timescales, Earth Planet. Sci. Lett., 277, 307–317, 2009.
van Aken, H. M.: The hydrography of the mid-latitude Northeast Atlantic Ocean – Part III: the subducted thermocline water mass, Deep-Sea Res. Pt. I: Oceanographic Research Papers, 48, 237–267, 2001.
Venz, K. A., Hodell, D. A., Stanton, C., and Warnke, D. A.: A 1.0 Myr record of Glacial North Atlantic Intermediate Water variability from ODP site 982 in the northeast Atlantic, Paleoceanography, 14, 42–52, 1999.
Villanueva, J., Grimalt, J. O., Cortijo, E., Vidal, L., and Labeyrie, L.: A biomarker approach to the organic matter deposited in the North Atlantic during the last climatic cycle, Geochim. Cosmochim. Ac., 61, 4633–4646, 1997.
Voelker, A., Martin, P., Lebreiro, S., and Abrantes, F.: Millennial-scale Deep/Intermediate Water Changes at the Mid-depth Portuguese Margin During Marine Isotope Stage (MIS) 11, Quaternary International, 436, 167–168, 2007.
Voelker, A. H. L.: Zur Deutung der Dansgaard-Oeschger Ereignisse in ultra-hochauflösenden Sedimentprofilen aus dem Europäischen Nordmeer., DSc dissertation, Berichte-Reports, Institut für Geowissenschaften, Universität Kiel, no. 9, University of Kiel, Kiel, Germany, 278 pp., 1999.
von Grafenstein, R., Zahn, R., Tiedemann, R., and Murat, A.: Planktonic δ18O records at Sites 976 and 977, Alboran Sea: stratigraphy, forcing, and paleoceanographic implications, in: Proceedings ODP, Scientific Results, edited by: Zahn, R., Comas, M. C., and Klaus, A., Ocean Drilling Program, College Station, TX, 469–479, 1999.
Wang, P., Tian, J., Cheng, X., Liu, C., and Xu, J.: Carbon reservoir changes preceded major ice-sheet expansion at the Mid-Brunhes event, Geology, 31, 239–242, 2003.
Watanabe, O., Jouzel, J., Johnsen, S., Parrenin, F., Shoji, H., and Yoshida, N.: Homogeneous climate variability across East Antarctica over the past three glacial cycles, Nature, 422, 509–512, 2003.
Weirauch, D., Billups, K., and Martin, P.: Evolution of Millennial-Scale Climate Variability During the Mid Pleistocene, Paleoceanography, 23, PA3216, https://doi.org/10.1029/2007PA001584, 2008.
Yin, Q. Z. and Berger, A.: Insolation and CO2 contribution to the interglacial climate before and after the Mid-Brunhes Event, Nature Geosci., 3, 243–246, https://doi.org/10.1038/ngeo771, 2010.