Articles | Volume 21, issue 4
https://doi.org/10.5194/cp-21-841-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-841-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Middle Miocene climate evolution in the northern Mediterranean region (Digne–Valensole basin, SE France)
Armelle Ballian
CORRESPONDING AUTHOR
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
Maud J. M. Meijers
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, Graz, Austria
Isabelle Cojan
MinesParis, Centre de Géosciences, PSL University, Fontainebleau, France
Damien Huyghe
MinesParis, Centre de Géosciences, PSL University, Fontainebleau, France
Miguel Bernecker
Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
Katharina Methner
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
Institute for Earth System Science and Remote Sensing, University of Leipzig, Leipzig, Germany
Mattia Tagliavento
Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
Jens Fiebig
Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
Andreas Mulch
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
Related authors
Daniel Boateng, Sebastian G. Mutz, Armelle Ballian, Maud J. M. Meijers, Katharina Methner, Svetlana Botsyun, Andreas Mulch, and Todd A. Ehlers
Earth Syst. Dynam., 14, 1183–1210, https://doi.org/10.5194/esd-14-1183-2023, https://doi.org/10.5194/esd-14-1183-2023, 2023
Short summary
Short summary
We present model-based topographic sensitivity experiments that provide valuable constraints for interpreting past proxies and records of climate and tectonic processes. The study uses a climate model to quantify the response of regional climate and oxygen isotopic composition of precipitation to diachronous surface uplift scenarios across the European Alps. The results suggest that isotopic signal changes can be measured in geologic archives using stable isotope paleoaltimetry.
Maud J. M. Meijers, Tamás Mikes, Bora Rojay, H. Evren Çubukçu, Erkan Aydar, Tina Lüdecke, and Andreas Mulch
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-80, https://doi.org/10.5194/cp-2024-80, 2025
Revised manuscript under review for CP
Short summary
Short summary
C4 grassland expansion during Late Miocene Cooling caused profound global ecosystem changes. However, C4 biomass expansion in western Eurasia is poorly documented. Our δ13C record shows the simultaneous Late Miocene emergence of C4 vegetation in Anatolia and S Asia. However, Anatolia is the only region on Earth where C4 biomass largely disappeared during the Early Pliocene. We suggest a warm-to-cold season shift in rainfall led to C3 biomass return and impacted large mammal populations.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Benita Putlitz, Andreas Mulch, Edwin Gnos, and Marco Herwegh
Eur. J. Mineral., 36, 879–898, https://doi.org/10.5194/ejm-36-879-2024, https://doi.org/10.5194/ejm-36-879-2024, 2024
Short summary
Short summary
We used U–Pb dating and Pb–Sr–O–H isotopes of hydrothermal epidote to characterize fluid circulation in the Aar Massif (central Swiss Alps). Our data support the hypothesis that Permian fluids exploited syn-rift extensional faults. In the Miocene during the Alpine orogeny, fluid sources were meteoric, sedimentary, and/or metamorphic water. Likely, Miocene shear zones were exploited for fluid circulation, with implications for the Sr isotope budget of the granitoids.
Konstantina Agiadi, Iuliana Vasiliev, Geanina Butiseacă, George Kontakiotis, Danae Thivaiou, Evangelia Besiou, Stergios Zarkogiannis, Efterpi Koskeridou, Assimina Antonarakou, and Andreas Mulch
Biogeosciences, 21, 3869–3881, https://doi.org/10.5194/bg-21-3869-2024, https://doi.org/10.5194/bg-21-3869-2024, 2024
Short summary
Short summary
Seven million years ago, the marine gateway connecting the Mediterranean Sea with the Atlantic Ocean started to close, and, as a result, water circulation ceased. To find out how this phenomenon affected the fish living in the Mediterranean Sea, we examined the changes in the isotopic composition of otoliths of two common fish species. Although the species living at the surface fared pretty well, the bottom-water fish starved and eventually became extinct in the Mediterranean.
Daniel Boateng, Sebastian G. Mutz, Armelle Ballian, Maud J. M. Meijers, Katharina Methner, Svetlana Botsyun, Andreas Mulch, and Todd A. Ehlers
Earth Syst. Dynam., 14, 1183–1210, https://doi.org/10.5194/esd-14-1183-2023, https://doi.org/10.5194/esd-14-1183-2023, 2023
Short summary
Short summary
We present model-based topographic sensitivity experiments that provide valuable constraints for interpreting past proxies and records of climate and tectonic processes. The study uses a climate model to quantify the response of regional climate and oxygen isotopic composition of precipitation to diachronous surface uplift scenarios across the European Alps. The results suggest that isotopic signal changes can be measured in geologic archives using stable isotope paleoaltimetry.
Olaf Klaus Lenz, Mara Montag, Volker Wilde, Katharina Methner, Walter Riegel, and Andreas Mulch
Clim. Past, 18, 2231–2254, https://doi.org/10.5194/cp-18-2231-2022, https://doi.org/10.5194/cp-18-2231-2022, 2022
Short summary
Short summary
We describe different carbon isotope excursions (CIEs) in an upper Paleocene to lower Eocene lignite succession (Schöningen, DE). The combination with a new stratigraphic framework allows for a correlation of distinct CIEs with long- and short-term thermal events of the last natural greenhouse period on Earth. Furthermore, changes in the peat-forming wetland vegetation are correlated with a CIE that can be can be related to the Paleocene–Eocene Thermal Maximum (PETM).
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Nicolai Schleinkofer, David Evans, Max Wisshak, Janina Vanessa Büscher, Jens Fiebig, André Freiwald, Sven Härter, Horst R. Marschall, Silke Voigt, and Jacek Raddatz
Biogeosciences, 18, 4733–4753, https://doi.org/10.5194/bg-18-4733-2021, https://doi.org/10.5194/bg-18-4733-2021, 2021
Short summary
Short summary
We have measured the chemical composition of the carbonate shells of the parasitic foraminifera Hyrrokkin sarcophaga in order to test if it is influenced by the host organism (bivalve or coral). We find that both the chemical and isotopic composition is influenced by the host organism. For example strontium is enriched in foraminifera that grew on corals, whose skeleton is built from aragonite, which is naturally enriched in strontium compared to the bivalves' calcite shell.
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Miquel Poyatos-Moré, Alexandre Ortiz, Magdalena Curry, Damien Huyghe, Cai Puigdefàbregas, Miguel Garcés, Andreu Vinyoles, Luis Valero, Charlotte Läuchli, Andrés Nowak, Andrea Fildani, Julian D. Clark, and Sébastien Castelltort
Solid Earth Discuss., https://doi.org/10.5194/se-2021-12, https://doi.org/10.5194/se-2021-12, 2021
Publication in SE not foreseen
Cited articles
Abels, H. A., Hilgen, F. J., Krijgsman, W., Kruk, R. W., Raffi, I., Turco, E., and Zachariasse, W. J.: Long-period orbital control on middle Miocene global cooling: Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta, Paleoceanography, 20, PA4012, https://doi.org/10.1029/2004PA001129, 2005.
Abels, H. A., Abdul Aziz, H., Calvo, J. P., and Tuenter, E.: Shallow lacustrine carbonate microfacies document orbitally paced lake-level history in the Miocene Teruel Basin (North-East Spain), Sedimentology, 56, 399–419, https://doi.org/10.1111/j.1365-3091.2008.00976.x, 2009.
Anderson, N. T., Kelson, J. R., Kele, S., Daëron, M., Bonifacie, M., Horita, J., Mackey, T. J., John, C. M., Kluge, T., Petschnig, P., Jost, A. B., Huntington, K. W., Bernasconi, S. M., and Bergmann, K. D.: A Unified Clumped Isotope Thermometer Calibration (0.5–1100 °C) Using Carbonate-Based Standardization, Geophys. Res. Lett., 48, 1–11, https://doi.org/10.1029/2020GL092069, 2021.
Bauer, H.: Influence du climat, de l'eustatisme et de la tectonique dans l'architecture des séries continentales: cas du Miocène inférieur et moyen du bassin de Digne-Valensole (se France), Doctoral dissertation, Paris, ENMP, https://pastel.hal.science/pastel-00002113/file/BAUER-manuscrit.pdf (last access: July 2024), 2006.
Berggren, W. A., Kent, D. V., Swisher, C. C., and Aubry, M. P.: A revised Cenozoic geochronology and chronostratigraphy, Soc. Sediment. Geol., 54, 129–212, https://doi.org/10.2110/pec.95.04.0129, 1995.
Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F. M., Fernandez, A., Hodell, D. A., Jaggi, M., Meckler, A. N., Millan, I., and Ziegler, M.: Reducing Uncertainties in Carbonate Clumped Isotope Analysis Through Consistent Carbonate-Based Standardization, Geochem. Geophy. Geosy., 19, 2895–2914, https://doi.org/10.1029/2017GC007385, 2018.
Bernasconi, S. M., Daëron, M., Bergmann, K. D., Bonifacie, M., Meckler, A. N., Affek, H. P., Anderson, N., Bajnai, D., Barkan, E., Beverly, E., Blamart, D., Burgener, L., Calmels, D., Chaduteau, C., Clog, M., Davidheiser-Kroll, B., Davies, A., Dux, F., Eiler, J., Elliott, B., Fetrow, A. C., Fiebig, J., Goldberg, S., Hermoso, M., Huntington, K. W., Hyland, E., Ingalls, M., Jaggi, M., John, C. M., Jost, A. B., Katz, S., Kelson, J., Kluge, T., Kocken, I. J., Laskar, A., Leutert, T. J., Liang, D., Lucarelli, J., Mackey, T. J., Mangenot, X., Meinicke, N., Modestou, S. E., Müller, I. A., Murray, S., Neary, A., Packard, N., Passey, B. H., Pelletier, E., Petersen, S., Piasecki, A., Schauer, A., Snell, K. E., Swart, P. K., Tripati, A., Upadhyay, D., Vennemann, T., Winkelstern, I., Yarian, D., Yoshida, N., Zhang, N., and Ziegler, M.: InterCarb: A Community Effort to Improve Interlaboratory Standardization of the Carbonate Clumped Isotope Thermometer Using Carbonate Standards, Geochem. Geophy. Geosy., 22, 1–25, https://doi.org/10.1029/2020GC009588, 2021.
Bernecker, M., Hofmann, S., Staudigel, P. T., Davies, A. J., Tagliavento, M., Meijer, N., Ballian, A., and Fiebig, J.: A robust methodology for triple (Δ47, Δ48, Δ49) clumped isotope analysis of carbonates, Chem. Geol., 642, 121803, https://doi.org/10.1016/j.chemgeo.2023.121803, 2023.
Bialkowski, A.: Stratigraphie isotopique (carbone et oxygène) des séries continentales d'un bassin d'avant-pays (Oligo-Miocène du bassin de Digne-Valensole): paléoenvironnements et séquences de dépot, École Nationale Supérieure des Mines de Paris, https://theses.hal.science/tel-00819770v1/document (last access: July 2024), 2002.
Bialkowski, A., Châteauneuf, J. J., Cojan, I., and Bauer, H.: Integrated stratigraphy and paleoenvironmental reconstruction of the Miocene series of the Châteauredon Dome, S. E. France, Eclogae Geol. Helv., 99, 1–15, https://doi.org/10.1007/s00015-006-1176-y, 2006.
Böhme, M.: The Miocene Climatic Optimum: Evidence from ectothermic vertebrates of Central Europe, Palaeogeogr. Palaeocl., 195, 389–401, https://doi.org/10.1016/S0031-0182(03)00367-5, 2003.
Böhme, M.: Migration history of air-breathing fishes reveals Neogene atmospheric circulation patterns, Geology, 32, 393–396, https://doi.org/10.1130/G20316.1, 2004.
Botsyun, S., Ehlers, T. A., Koptev, A., Böhme, M., Methner, K., Risi, C., Stepanek, C., Mutz, S. G., Werner, M., Boateng, D., and Mulch, A.: Middle Miocene Climate and Stable Oxygen Isotopes in Europe Based on Numerical Modeling, Paleoceanogr. Paleoclimatology, 37, 1–30, https://doi.org/10.1029/2022pa004442, 2022.
Châteauneuf, J. J., Bauer, H., and Cojan, I.: Présence d'une mangrove à Avicennia au Miocène moyen dans la région de Digne (Alpes-de-Haute-Provence, France): Implications stratigraphiques et paléoclimatiques, C. R. Geosci., 338, 197–205, https://doi.org/10.1016/j.crte.2005.10.004, 2006.
Cojan, I. and Gillot, T.: Paleosols in distal alluvial sequences and their formation mechanisms: Insights from a high-resolution record in a foreland basin during early Miocene (SE France), Palaeogeogr. Palaeocl., 595, 110983, https://doi.org/10.1016/j.palaeo.2022.110983, 2022.
Cojan, I., Bialkowski, A., Gillot, T., and Renard, M.: Paleoenvironnement and paleoclimate reconstruction for the early to middle Miocene from stable isotopes in pedogenic carbonates (Digne-Valensole basin, southeastern France), B. Soc. Geol. Fr., 184, 583–599, https://doi.org/10.2113/gssgfbull.184.6.583, 2013.
Comas-Bru, L., McDermott, F., and Werner, M.: The effect of the East Atlantic pattern on the precipitation δ18O-NAO relationship in Europe, Clim. Dynam., 47, 2059–2069, https://doi.org/10.1007/s00382-015-2950-1, 2016.
Costeur, L. and Legendre, S.: Mammalian communities document a latitudinal environmental gradient during the Miocene Climatic Optimum in western Europe, Palaios, 23, 280–288, https://doi.org/10.2110/palo.2006.p06-092r, 2008.
Cramer, B. S., Miller, K. G., Barrett, P. J., and Wright, J. D.: Late Cretaceous-Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg Ca) with sea level history, J. Geophys. Res.-Oceans, 116, 1–23, https://doi.org/10.1029/2011JC007255, 2011.
Daëron, M.: Full Propagation of Analytical Uncertainties in Δ47 Measurements, Geochem. Geophy. Geosy., 22, 1–19, https://doi.org/10.1029/2020GC009592, 2021.
Eiler, J. M.: Paleoclimate reconstruction using carbonate clumped isotope thermometry, Quaternary Sci. Rev., 30, 3575–3588, https://doi.org/10.1016/j.quascirev.2011.09.001, 2011.
Fauquette, S., Suc, J.-P., Jiménez-Moreno, G., Micheels, A., Jost, A., Favre, E., Bachiri-Taoufiq, N., Bertini, A., Clet-Pellerin, M., Diniz, F., Farjanel, G., Feddi, N., and Zheng, Z.: Latitudinal climatic gradients in the Western European and Mediterranean regions from the Mid-Miocene (c. 15 Ma) to the Mid-Pliocene (c. 3.5 Ma) as quantified from pollen data, Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, edited by: Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N., Geological Society of London, https://doi.org/10.1144/tms002.22, 2007.
Fauquette, S., Bernet, M., Suc, J. P., Grosjean, A. S., Guillot, S., van der Beek, P., Jourdan, S., Popescu, S. M., Jiménez-Moreno, G., Bertini, A., Pittet, B., Tricart, P., Dumont, T., Schwartz, S., Zheng, Z., Roche, E., Pavia, G., and Gardien, V.: Quantifying the Eocene to Pleistocene topographic evolution of the southwestern Alps, France and Italy, Earth Planet. Sc. Lett., 412, 220–234, https://doi.org/10.1016/j.epsl.2014.12.036, 2015.
Fiebig, J., Daëron, M., Bernecker, M., Guo, W., Schneider, G., Boch, R., Bernasconi, S. M., Jautzy, J., and Dietzel, M.: Calibration of the dual clumped isotope thermometer for carbonates, Geochim. Cosmochim. Ac., 312, 235–256, https://doi.org/10.1016/j.gca.2021.07.012, 2021.
Flower, B. P. and Kennett, J. P.: The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling, Palaeogeogr. Palaeocl., 108, 537–555, https://doi.org/10.1016/0031-0182(94)90251-8, 1994.
Ford, M., Lickorish, W. H., and Kusznir, N. J.: Tertiary foreland sedimentation in the Southern Subalpine Chains, SE France: A geodynamic appraisal, Basin Res., 11, 315–336, https://doi.org/10.1046/j.1365-2117.1999.00103.x, 1999.
Gallagher, T. M., Hren, M., and Sheldon, N. D.: The effect of soil temperature seasonality on climate reconstructions from paleosols, Am. J. Sci., 319, 549–581, https://doi.org/10.2475/07.2019.02, 2019.
Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., Schrag, D., and Eiler, J. M.: 13C-18O bonds in carbonate minerals: A new kind of paleothermometer, Geochim. Cosmochim. Acta, 70, 1439–1456, https://doi.org/10.1016/j.gca.2005.11.014, 2006.
Gigot, P., Grandjacquet, C., and Haccard, D.: Évolution tectono-sédimentaire de la bordure septentrionale du bassin tertiaire de Digne depuis l'Éocène, B. Soc. Geol. Fr., XVI, 128–139, 1974.
Gile, L. H., Peterson, F. F., and Grossman, R. B.: Morphological and genetic sequences of carbonate accumulation in desert soils, Soil Sci., 101, 347–360, https://doi.org/10.4324/9781315844855, 1966.
Gillot, T., Cojan, I., and Badía, D.: Paleoclimate instabilities during late Oligocene – Early Miocene in SW Europe from new geochemical climofunctions based on soils with pedogenic carbonate, Palaeogeogr. Palaeocl., 591, 110882, https://doi.org/10.1016/j.palaeo.2022.110882, 2022.
IAEA/WMO: Global Network of Isotopes in Precipitation. The GNIP Database, https://nucleus.iaea.org/wiser (last access: December 2024), 2024.
Holbourn, A., Kuhnt, W., Schulz, M., and Erlenkeuser, H.: Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion, Nature, 438, 483–487, https://doi.org/10.1038/nature04123, 2005.
Holbourn, A., Kuhnt, W., Schulz, M., Flores, J. A., and Andersen, N.: Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion, Earth Planet. Sc. Lett., 261, 534–550, https://doi.org/10.1016/j.epsl.2007.07.026, 2007.
Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O., and Andersen, N.: Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling, Geology, 42, 19–22, https://doi.org/10.1130/G34890.1, 2014.
Holbourn, A., Kuhnt, W., Kochhann, K. G. D., Andersen, N., and Meier, K. J. S.: Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum, Geology, 43, 123–126, https://doi.org/10.1130/G36317.1, 2015.
Holbourn, A. E., Kuhnt, W., Kochhann, K. G. D., Matsuzaki, K. M., and Andersen, N.: Middle Miocene climate-carbon cycle dynamics: keys for understanding future trends on a warmer Earth? In Undertanding the Monterey Formation and Similar Biosiliceous Units Across Space and Time, Geol. Soc. Am. Sp. P., 556, 1–19, https://doi.org/10.1130/2022.2556(05), 2022.
Ivanov, M. and Böhme, M.: Snakes from Griesbeckerzell (Langhian, Early Badenian), North Alpine Foreland Basin (Germany), with comments on the evolution of snake faunas in Central Europe during the Miocene Climatic Optimum, Geodiversitas, 33, 411–449, https://doi.org/10.5252/g2011n3a2, 2011.
Jiménez-Moreno, G. and Suc, J.-P.: Middle Miocene latitudinal climatic gradient in Western Europe: Evidence from pollen records, Palaeogeogr. Palaeocl., 253, 208–225, https://doi.org/10.1016/j.palaeo.2007.03.040, 2007.
Jiménez-Moreno, G., Rodríguez-Tovar, F. J., Pardo-Igúzquiza, E., Fauquette, S., Suc, J. P., and Müller, P.: High-resolution palynological analysis in late early-middle Miocene core from the Pannonian Basin, Hungary: Climatic changes, astronomical forcing and eustatic fluctuations in the Central Paratethys, Palaeogeogr. Palaeocl., 216, 73–97, https://doi.org/10.1016/j.palaeo.2004.10.007, 2005.
Jiménez-Moreno, G., Fauquette, S., and Suc, J.-P.: Vegetation, climate and palaeoaltitude reconstructions of the Eastern Alps during the Miocene based on pollen records from Austria, Central Europe, J. Biogeogr., 35, 1638–1649, https://doi.org/10.1111/j.1365-2699.2008.01911.x, 2008.
Joly, D., Brossard, T., Cardot, H., Cavailhès, J., Hilal, M., and Wavresky, P.: Les types de climats en France, une construction spatiale, Rev. Eur. géographie/Eur. J. Geogr., 501, 1–23, 2010.
Kälin, D. and Kempf, O.: High-resolution stratigraphy from the continental record of the Middle Miocene Northern Alpine Foreland Basin of Switzerland, Neues Jahrb. Geol. P.-A., 254, 177–235, https://doi.org/10.1127/0077-7749/2009/0010, 2009.
Kelson, J. R., Watford, D., Bataille, C., Huntington, K. W., Hyland, E., and Bowen, G. J.: Warm Terrestrial Subtropics During the Paleocene and Eocene: Carbonate Clumped Isotope (Δ47) Evidence From the Tornillo Basin, Texas (USA), Paleoceanogr. Paleoclimatology, 33, 1230–1249, https://doi.org/10.1029/2018PA003391, 2018.
Kelson, J. R., Huntington, K. W., Breecker, D. O., Burgener, L. K., Gallagher, T. M., Hoke, G. D., and Petersen, S. V.: A proxy for all seasons? A synthesis of clumped isotope data from Holocene soil carbonates, Quaternary Sci. Rev., 234, 106259, https://doi.org/10.1016/j.quascirev.2020.106259, 2020.
Kim, S. T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475, https://doi.org/10.1016/S0016-7037(97)00169-5, 1997.
Kotov, S. and Paelike, H.: QAnalySeries – a cross-platform time series tuning and analysis tool, AGU Fall Meeting Abstracts, Washington DC, 10–14 December 2018, American Geophysical Union, PP53D-1230, https://ui.adsabs.harvard.edu/abs/2018AGUFMPP53D1230K/abstract (last access: July 2024), 2018.
Lear, C. H., Coxall, H. K., Foster, G. L., Lunt, D. J., Mawbey, E. M., Rosenthal, Y., Sosdian, S. M., Thomas, E., and Wilson, P. A.: Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry, Paleoceanography, 30, 1437–1454, https://doi.org/10.1002/2015PA002833, 2015.
Li, L., Quade, J., Garzione, C., Defliese, W. F., DeCelles, P., and Kapp, P.: Reliability of micritic carbonates in recording well-preserved isotopic composition and implications for paleoelevation estimates in central Tibet, Geochim. Cosmochim. Ac., 375, 186–200, https://doi.org/10.1016/j.gca.2024.04.009, 2024.
Lionello, P.: The Climate of the Mediterranean Region: From the Past to the Future, Elsevier, 1–502, ISBN 978-0-12-416042-2, 2012.
Longman, J., Mills, B. J. W., Donnadieu, Y., and Goddéris, Y.: Assessing Volcanic Controls on Miocene Climate Change, Geophys. Res. Lett., 49, 1–11, https://doi.org/10.1029/2021GL096519, 2022.
Meijer, N., Licht, A., Woutersen, A., Hoorn, C., Robin-Champigneul, F., Rohrmann, A., Tagliavento, M., Brugger, J., Kelemen, F. D., Schauer, A. J., Hren, M. T., Sun, A., Fiebig, J., Mulch, A., and Dupont-Nivet, G.: Proto-monsoon rainfall and greening in Central Asia due to extreme early Eocene warmth, Nat. Geosci., 17, 158–164, https://doi.org/10.1038/s41561-023-01371-4, 2024.
Methner, K., Campani, M., Fiebig, J., Löffler, N., Kempf, O., and Mulch, A.: Middle Miocene long-term continental temperature change in and out of pace with marine climate records, Sci. Rep.-UK, 10, 1–10, https://doi.org/10.1038/s41598-020-64743-5, 2020.
Miller, K. G., Wright, J. D., and Fairbanks, R. G.: Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion, J. Geophys. Res., 96, 6829–6848, https://doi.org/10.1029/90JB02015, 1991.
Miller, K. G., Browning, J. V., John Schmelz, W., Kopp, R. E., Mountain, G. S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records, Sci. Adv., 6, https://doi.org/10.1126/sciadv.aaz1346, 2020.
Molnar, P.: Differences between soil and air temperatures: Implications for geological reconstructions of past climate, Geosphere, 18, 800–824, https://doi.org/10.1130/GES02448.1, 2022.
Mosbrugger, V., Utescher, T., and Dilcher, D. L.: Cenozoic continental climatic evolution of Central Europe, P. Natl. Acad. Sci. USA, 102, 14964–14969, https://doi.org/10.1073/pnas.0505267102, 2005.
Mudelsee, M., Bickert, T., Lear, C. H., and Lohmann, G.: Cenozoic climate changes: A review based on time series analysis of marine benthic δ18O records, Rev. Geophys., 52, 333–374, https://doi.org/10.1002/2013RG000440, 2014.
Pound, M. J., Haywood, A. M., Salzmann, U., and Riding, J. B.: Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma), Earth-Sci. Rev., 112, 1–22, https://doi.org/10.1016/j.earscirev.2012.02.005, 2012.
Quade, J., Garzione, C., and Eiler, J.: Paleoelevation reconstruction using pedogenic carbonates, Rev. Mineral. Geochem., 66, 53–87, https://doi.org/10.2138/rmg.2007.66.3, 2007.
Quade, J., Eiler, J., Daëron, M., and Achyuthan, H.: The clumped isotope geothermometer in soil and paleosol carbonate, Geochim. Cosmochim. Ac., 105, 92–107, https://doi.org/10.1016/j.gca.2012.11.031, 2013.
Quan, C., Liu, Y. S. C., Tang, H., and Utescher, T.: Miocene shift of European atmospheric circulation from trade wind to westerlies, Sci. Rep.-UK, 4, 1–6, https://doi.org/10.1038/srep05660, 2014.
Retallack, G. J.: Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols, Geology, 33, 333–336, https://doi.org/10.1130/G21263.1, 2005.
Rugenstein, J. K. C., Methner, K., Kukla, T., Mulch, A., Lüdecke, T., Fiebig, J., Meltzer, A., Wegmann, K. W., Zeitler, P., and Chamberlain, C. P.: Clumped Isotope Constraints on Warming and Precipitation Seasonality in Mongolia Following Altai Uplift, Am. J. Sci., 322, 28–54, https://doi.org/10.2475/01.2022.02, 2022.
Seager, R., Osborn, T. J., Kushnir, Y., Simpson, I. R., Nakamura, J., and Liu, H.: Climate variability and change of mediterranean-type climates, J. Climate, 32, 2887–2915, https://doi.org/10.1175/JCLI-D-18-0472.1, 2019.
Sheldon, N. D. and Tabor, N. J.: Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols, Earth-Sci. Rev., 95, 1–52, https://doi.org/10.1016/j.earscirev.2009.03.004, 2009.
Sosdian, S. M., Babila, T. L., Greenop, R., Foster, G. L., and Lear, C. H.: Ocean Carbon Storage across the middle Miocene: a new interpretation for the Monterey Event, Nat. Commun., 11, 1–11, https://doi.org/10.1038/s41467-019-13792-0, 2020.
Steinthorsdottir, M., Jardine, P. E., and Rember, W. C.: Near-Future pCO2 During the Hot Miocene Climatic Optimum, Paleoceanogr. Paleoclimatology, 36, e2020PA003900, https://doi.org/10.1029/2020PA003900, 2021a.
Steinthorsdottir, M., Coxall, H. K., de Boer, A. M., Huber, M., Barbolini, N., Bradshaw, C. D., Burls, N. J., Feakins, S. J., Gasson, E., Henderiks, J., Holbourn, A. E., Kiel, S., Kohn, M. J., Knorr, G., Kürschner, W. M., Lear, C. H., Liebrand, D., Lunt, D. J., Mörs, T., Pearson, P. N., Pound, M. J., Stoll, H., and Strömberg, C. A. E.: The Miocene: The Future of the Past, Paleoceanogr. Paleoclimatology, 36, e2020PA004037, https://doi.org/10.1029/2020PA004037, 2021b.
Suc, J.-P.: Origin and evolution of the Mediterranean vegetation and climate in Europe, Nature, 307, 429–432, 1984.
Super, J. R., Thomas, E., Pagani, M., Huber, M., O'Brien, C., and Hull, P. M.: North Atlantic temperature and pCO2 coupling in the early-middle Miocene, Geology, 46, 519–522, https://doi.org/10.1130/G40228.1, 2018.
Tabor, N. J. and Myers, T. S.: Paleosols as indicators of paleoenvironment and paleoclimate, Annu. Rev. Earth Pl. Sc., 43, 333–361, https://doi.org/10.1146/annurev-earth-060614-105355, 2015.
Ulbrich, U., Lionello, P., Belušić, D., Jacobeit, J., Knippertz, P., Kuglitsch, F. G., Leckebusch, G. C., Luterbacher, J., Maugeri, M., Maheras, P., Nissen, K. M., Pavan, V., Pinto, J. G., Saaroni, H., Seubert, S., Toreti, A., Xoplaki, E., and Ziv, B.: Climate of the mediterranean: Synoptic patterns, temperature, precipitation, winds, and their extremes, The Climate of the Mediterranean Region, Elsevier, Amsterdam, 301–346, https://doi.org/10.1016/B978-0-12-416042-2.00005-7, 2012.
Urban, M. A., Nelson, D. M., Jiménez-Moreno, G., Châteauneuf, J. J., Pearson, A., and Hu, F. S.: Isotopic evidence of C4 grasses in southwestern Europe during the Early Oligocene-Middle Miocene, Geology, 38, 1091–1094, https://doi.org/10.1130/G31117.1, 2010.
Utescher, T. and Bruch, A.: Klimaentwicklung vom Oligozän – Pliozän, in: Klima- und Ökosystementwicklung im Oligozän/Miozän des Ostalpenraumes, edited by: Hemleben, C., Mosbrugger, V., Nebelsick, J. H., Bruch, A., Mühlstrasser, T., Schmiedl, G., and Utescher, T., Bericht (1998–2000) des Sonderforschungsbereiches 275 “Klimagekoppelte Prozesse in meso- und känozoischen Geoökosystemen”, Universität Tübingen 1, 141–176, 135094128X, 2000.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1388, https://doi.org/10.1126/SCIENCE.ABA6853, 2020.
Zachos, J., Pagani, H., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zamanian, K., Pustovoytov, K., and Kuzyakov, Y.: Pedogenic carbonates: Forms and formation processes, Earth-Sci. Rev., 157, 1–17, https://doi.org/10.1016/j.earscirev.2016.03.003, 2016.
Zamanian, K., Lechler, A. R., Schauer, A. J., Kuzyakov, Y., and Huntington, K. W.: The δ13C, δ18O and Δ47 records in biogenic, pedogenic and geogenic carbonate types from paleosol-loess sequence and their paleoenvironmental meaning, Quaternary Res., 101, 256–272, https://doi.org/10.1017/qua.2020.109, 2021.
Short summary
During the Middle Miocene, the Earth transitioned from a warm to a colder period, significantly impacting ecosystems and climate. We present a 23–13 Ma climate record of soil carbonates from a northern Mediterranean basin. We propose that rapid temperature shifts in our data result from changes in atmospheric circulation patterns. Our climate record aligns well with contemporaneous terrestrial European and global marine records, enhancing our understanding of Miocene climate dynamics.
During the Middle Miocene, the Earth transitioned from a warm to a colder period, significantly...