Articles | Volume 21, issue 12
https://doi.org/10.5194/cp-21-2525-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-2525-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Penultimate glacial sea surface temperature and hydrologic variability in the tropical South Pacific from 150 ka Tahiti corals
Ryuji Asami
CORRESPONDING AUTHOR
Institute of Geology and Paleontology, Graduate School of Science, Tohoku University,6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
Thomas Felis
MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359 Bremen, Germany
Ryuichi Shinjo
Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto 603-8047, Japan
Graduate School of Engineering and Science, University of the Ryukyus, 1-Senbaru,Nakagami District, Nishihara, Okinawa 903-0213, Japan
Masafumi Murayama
Center for Advanced Marine Core Research, Kochi University, B200 Monobe, Nangoku, Kochi 783-8502, Japan
Yasufumi Iryu
Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
Institute of Geology and Paleontology, Graduate School of Science, Tohoku University,6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
Related authors
No articles found.
Alyssa R. Atwood, Andrea L. Moore, Kristine L. DeLong, Sylvia E. Long, Sara C. Sanchez, Jessica A. Hargreaves, Chandler A. Morris, Raquel E. Pauly, Emilie P. Dassie, Thomas Felis, Antje H. L. Voelker, Sujata A. Murty, and Kim M. Cobb
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-467, https://doi.org/10.5194/essd-2025-467, 2025
Preprint under review for ESSD
Short summary
Short summary
The stable isotopic composition of seawater is a valuable tool for studying the global water cycle in the past, present, and future. However, an active repository dedicated to archiving this type of data has been lacking, and many datasets remain hidden from public view. We have created a new database of observational seawater isotope data that is rich in metadata, publicly accessible, and machine readable to increase its availability and usability for a variety of Earth Science applications.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Karla Rubio-Sandoval, Alessio Rovere, Ciro Cerrone, Paolo Stocchi, Thomas Lorscheid, Thomas Felis, Ann-Kathrin Petersen, and Deirdre D. Ryan
Earth Syst. Sci. Data, 13, 4819–4845, https://doi.org/10.5194/essd-13-4819-2021, https://doi.org/10.5194/essd-13-4819-2021, 2021
Short summary
Short summary
The Last Interglacial (LIG) is a warm period characterized by a higher-than-present sea level. For this reason, scientists use it as an analog for future climatic conditions. In this paper, we use the World Atlas of Last Interglacial Shorelines database to standardize LIG sea-level data along the coasts of the western Atlantic and mainland Caribbean, identifying 55 unique sea-level indicators.
Cited articles
Asami, R., Felis, T., Deschamps, P., Hanawa, K., Iryu, Y., Bard, E., Durand, N., and Murayama, M.: Evidence for tropical South Pacific climate change during the Younger Dryas and the Bølling-Allerød from geochemical records of fossil Tahiti corals, Earth Planet. Sc. Lett., 288, 96–107, https://doi.org/10.1016/j.epsl.2009.09.011, 2009.
Asami, R., Iryu, Y., Hanawa, K., Miwa, T., Holden, P., Shinjo, R., and Paulay, G.: MIS 7 interglacial sea surface temperature and salinity reconstructions from a southwestern subtropical Pacific coral, Quat. Res., 80, 575–585, https://doi.org/10.1016/j.yqres.2013.09.002, 2013.
Asami, R., Yoshimura, N., Toriyabe, H., Minei, S., Shinjo, R., Hongo, C., Sakamaki, T., and Fujita, K.: High-resolution evidence for middle Holocene East Asian winter and summer monsoon variations: snapshots of fossil coral records, Geophys. Res. Lett., 47, e2020GL088509, https://doi.org/10.1029/2020GL088509, 2020.
Asami, R., Felis, T., Shinjo, R., Murayama, M., and Iryu, Y.: Geochemical data from IODP Expedition 310 Tahiti fossil corals, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.987216, 2025.
Ayling, B. F., McCulloch, M. T., Gagan, M. K., Stirling, C. H., Andersen, M. B., and Blake, S. G.: and δ18O seasonality in a Porites coral from the MIS 9 (339–303 ka) interglacial, Earth Planet. Sc. Lett., 248, 462–475, https://doi.org/10.1016/j.epsl.2006.06.009, 2006.
Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., Fohlmeister, J., Frank, N., Andersen, M. B., and Deininger, M.: Strong and deep Atlantic meridional overturning circulation during the last glacial cycle, Nature, 517, 73–76, https://doi.org/10.1038/nature14059, 2015.
Brenner, L. D., Linsley, B. K., Webster, J. M., Potts, D., Felis, T., Gagan, M. K., Inoue, M., McGregor, H., Suzuki, A., Tudhope, A., Esat, T., Thomas, A., Thompson, W., Fallon, S., Humblet, M., Tiwari, M., and Yokoyama, Y.: Coral record of Younger Dryas Chronozone warmth on the Great Barrier Reef, Paleoceanogr. Paleoclimatol., 35, e2020PA003962, https://doi.org/10.1029/2020PA003962, 2020.
Brocas, W. M., Felis, T., Gierz, P., Lohmann, G., Werner, M., Obert, J. C., Scholz, D., Kölling, M., and Scheffers, S. R.: Last interglacial hydroclimate seasonality reconstructed from tropical Atlantic corals. Paleoceanography and Paleoclimatology, 33, 198–213, https://doi.org/10.1002/2017PA003216, 2018.
Brown, J. R., Lengaigne, M., Lintner, B. R. Widlansky, M. J., Van der Wiel, K., Dutheil, C., Linsley, B. K., Matthews, A. J., and Renwick, J.: South Pacific Convergence Zone dynamics, variability and impacts in a changing climate, Nature Rev. Earth Environ., 1, 530–543, https://doi.org/10.1038/s43017-020-0078-2, 2020.
Cahyarini, S. Y., Pfeiffer, M., Timm, O., Dullo, W. C., and Schönberg, D. G.: Reconstructing seawater δ18O from paired coral δ18O and ratios: methods, error analysis and problems, with examples from Tahiti (French Polynesia) and Timor (Indonesia), Geochim. Cosmochim. Acta, 72, 2841–2853, https://doi.org/10.1016/j.gca.2008.04.005, 2008.
Camoin, G. F., Iryu, Y., McInroy, D., and the Expedition 310 Scientists: Proc. IODP, 310, Integrated Ocean Drilling Program Management International, Inc., Washington DC, https://doi.org/10.2204/iodp.proc.310.2007, 2007.
Cao, J., Wang, B., and Liu, J.: Attribution of the Last Glacial Maximum climate formation, Clim. Dynam., 53, 1661–1679, https://doi.org/10.1007/s00382-019-04711-6, 2019.
Carton, J. A., Chepurin, G. A., and Chen, L.: SODA3: A new ocean climate reanalysis, J. Climate, 31, 6967–6983, https://doi.org/10.1175/jcli-d-18-0149.1, 2018.
Chuang, K.-Y., Asami, R., Takayanagi, H., Morimoto, M., Abe, O., Nakamori, T., and Iryu, Y.: Multidecadal-to-interannual modulations of Late Holocene climate variations reconstructed from oxygen isotope ratios of a 237-year-long lived fossil coral in Kikai Island, southwestern Japan, Quat. Sci. Rev., 322, 108392, https://doi.org/10.1016/j.quascirev.2023.108392, 2023.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The Last Glacial Maximum, Science, 325, 710–714, https://doi.org/10.1126/science.1172873, 2009.
CLIMAP Project Members: The surface of the Ice-Age Earth, Science, 191, 1131–1137, https://doi.org/10.1126/science.191.4232.1131, 1976.
Cole, J. E., Fairbanks, R. G., and Shen, G. T.: Recent variability in the Southern Oscillation: Isotopic results from a Tarawa Atoll coral, Science, 260, 1790–1793, https://doi.org/10.1126/science.260.5115.1790, 1993.
Corrège, T.: Sea surface temperature and salinity reconstruction from coral geochemical tracers, Palaeogeogr. Palaeoclimatol. Palaeoecol., 232, 408–428, https://doi.org/10.1016/j.palaeo.2005.10.014, 2006.
Deaney, E., Barker, S., and van de Flierdt, T.: Timing and nature of AMOC recovery across Termination 2 and magnitude of deglacial CO2 change, Nat. Commun., 8, 14595, https://doi.org/10.1038/ncomms14595, 2017.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone, D.: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378, 2004.
Delcroix, T. and McPhaden, M. J.: Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992–2000, J. Geophys. Res., 107, 1–17, https://doi.org/10.1029/2001JC000862, 2002.
Delcroix, T., Cravatte, S., and McPhaden, M. J.: Decadal variations and trends in tropical Pacific sea surface salinity since 1970, J. Geophys. Res., 112, C03012, https://doi.org/10.1029/2006JC003801, 2007.
DeLong, K. L., Quinn, T. M., Shen, C.-C., and Lin, K.: A snapshot of climate variability at Tahiti at 9.5 ka using a fossil coral from IODP Expedition 310, Geochem. Geophys. Geosyst., 11, Q06005, https://doi.org/10.1029/2009GC002758, 2010.
de Villiers, S.: Seawater strontium and variability in the Atlantic and Pacific oceans, Earth Planet. Sc. Lett., 171, 623–634, https://doi.org/10.1016/S0012-821X(99)00174-0, 1999.
EPICA Community Members: One-to-one coupling of glacial climate variability in Greenland and Antarctica, Nature, 444, 195–197, https://doi.org/10.1038/nature05301, 2006.
Felis, T.: Extending the instrumental record of ocean-atmosphere variability into the last interglacial using tropical corals, Oceanography, 33, 68–79, https://doi.org/10.5670/oceanog.2020.209, 2020.
Felis, T., Pätzold, J., and Loya, Y.: Mean oxygen-isotope signatures in Porites spp. corals: Inter-colony variability and correction for extension-rate effects, Coral Reefs, 22, 328–336, https://doi.org/10.1007/s00338-003-0324-3, 2003.
Felis, T., Lohmann, G., Kuhnert, H., Lorenz, S. J., Scholz, D., Pätzold, J., Al-Rousan, S. A., and Al-Moghrabi, S. M.: Increased seasonality in Middle East temperatures during the last interglacial period, Nature, 429, 164–168, https://doi.org/10.1038/nature02546, 2004.
Felis, T., Suzuki, A., Kuhnert, H., Dima, M., Lohmann, G., and Kawahata, H.: Subtropical coral reveals abrupt early-twentieth-century freshening in the western North Pacific Ocean, Geology, 37, 527–530, https://doi.org/10.1130/G25581A.1, 2009.
Felis, T., Merkel, U., Asami, R., Deschamps, P., Hathorne, E. C., Kölling, M., Bard, E., Cabioch, G., Durand, N., Prange, M., Schulz, M., Cahyarini, S. Y., and Pfeiffer, M.: Pronounced interannual variability in tropical South Pacific temperatures during Heinrich Stadial 1, Nat. Commun., 3, 965, https://doi.org/10.1038/ncomms1973, 2012.
Felis, T., McGregor, H. V., Linsley, B. K., Tudhope, A. W., Gagan, M. K., Suzuki, A., Inoue, M., Thomas, A. L., Esat, T. M., Thompson, W. G., Tiwari, M., Potts, D. C., Mudelsee, M., Yokoyama, Y., and Webster, J. M.: Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum, Nat. Commun., 5, 4102, https://doi.org/10.1038/ncomms5102, 2014.
Felis, T., Hinestrosa, G., Köhler, P., and Webster, J. M.: Role of the deglacial buildup of the Great Barrier Reef for the global carbon cycle, Geophys. Res. Lett., 49, e2021GL096495, https://doi.org/10.1029/2021GL096495, 2022.
Ford, H., Ravelo, A. C., and Polissar, P.: Reduced El Niño–Southern Oscillation during the Last Glacial Maximum, Science, 347, 255–258, https://doi.org/10.1126/science.1258437, 2015.
Gagan, M. K., Ayliffe, L. K., Hopley, D., Cali, J. A., Mortimer, G. E., Chappell, J., McCulloch, M. T., and Head, M. J.: Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific, Science, 279, 1014–1018, https://doi.org/10.1126/science.279.5353.1014, 1998.
Gagan, M. K., Dunbar, G. B., and Suzuki, A.: The effect of skeletal mass accumulation in Porites on coral and δ18O paleothermometry, Paleoceanography, 27, PA1203, https://doi.org/10.1029/2011PA002215, 2012.
Giry, C., Felis, T., Kölling, M., Scholz, D., Wei, W., Lohmann, G., and Scheffers, S.: Mid- to late Holocene changes in tropical Atlantic temperature seasonality and interannual to multidecadal variability documented in southern Caribbean corals. Earth Planet. Sc. Lett., 331–332, 187–200, https://doi.org/10.1016/j.epsl.2012.03.019, 2012.
Gouriou, Y. and Delcroix, T.: Seasonal and ENSO variations of sea surface salinity and temperature in the South Pacific Convergence Zone during 1976–2000, J. Geophys. Res., 107, 3185, https://doi.org/10.1029/2001JC000830, 2002.
Hathorne, E. C., Felis, T., James, R. H., and Thomas, A.: Laser ablation ICP-MS screening of corals for diagenetically affected areas applied to Tahiti corals from the last deglaciation, Geochim. Cosmochim. Acta, 75, 1490–1506, https://doi.org/10.1016/j.gca.2010.12.011, 2011.
Hathorne, E. C., Gagnon, A., Felis, T., Adkins, J., Asami, R., Boer, W., Caillon, N., Case, D., Cobb, K. M., Douville, E., deMenocal, P., Eisenhauer, A., Garbe-Schönberg, D., Geibert, W., Goldstein, S., Hughen, K., Inoue, M., Kawahata, H., Kölling, M., Cornec, F. L., Linsley, B. K., McGregor, H. V., Montagna, P., Nurhati, I. S., Quinn, T. M., Raddatz, J., Rebaubier, H., Robinson, L., Sadekov, A., Sherrell, R., Sinclair, D., Tudhope, A. W., Wei, G., Wong, H., Wu, H. C., and You, C.-F.: Interlaboratory study for coral and other element/Ca ratio measurements, Geochem., Geophys., Geosyst., 14, 3730–3750, https://doi.org/10.1002/ggge.20230, 2013.
Hayashi, E., Suzuki, A., Nakamura, T., Iwase, A., Ishimura, T., Iguchi, A., Sakai, K., Okai, T., Inoue, M., Araoka, D., Murayama, S., and Kawahata, H.: Growth-rate influences on coral climate proxies tested by a multiple colony culture experiment, Earth Planet. Sc. Lett., 362, 198–206, https://doi.org/10.1016/j.epsl.2012.11.046, 2013.
Hirabayashi, S., Yokoyama, Y., Suzuki, A., Kawakubo, Y., Miyairi, Y., Okai, T., and Nojima, S.: Coral growth-rate insensitive as a robust temperature recorder at the extreme latitudinal limits of Porites, Geochem. J., 47, e1–e5, https://doi.org/10.2343/geochemj.2.0259, 2013.
Huang, B., Liu, C., Banzon, V. F., Freeman, E., Graham, G., Hankins, W., Smith, T. M., and Zhang, H.-M.: NOAA 0.25-degree daily optimum interpolation sea surface temperature (OISST), Version 2.1, NOAA [data set], https://doi.org/10.25921/RE9P-PT57, 2020.
Inoue, M., Suzuki, A., Nohara, M., Hibino, K., and Kawahata, H.: Empirical assessment of coral and ratios as climate proxies using colonies grown at different temperatures, Geophys. Res. Lett., 34, L12611, https://doi.org/10.1029/2007GL029628, 2007.
Inoue, M., Yokoyama, Y., Harada, M., Suzuki, A., Kawahata, H., Matsuzaki, H., and Iryu, Y.: Trace element variations in fossil corals from Tahiti collected by IODP Expedition 310: Reconstruction of marine environments during the last deglaciation (15 to 9 ka), Mar. Geol., 271, 303–306, https://doi.org/10.1016/j.margeo.2010.02.016, 2010.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and millennial Antarctic climate variability over the past 800,000 years, Science, 317, 793–796, https://doi.org/10.1126/science.1141038, 2007.
Juillet-Leclerc, A. and Schmidt, G.: A calibration of the oxygen isotope paleothermometer of coral aragonite from Porites, Geophys. Res. Lett., 28, 4135–4138, https://doi.org/10.1029/2000GL012538, 2001.
Kageyama, M., Sime, L. C., Sicard, M., Guarino, M.-V., de Vernal, A., Stein, R., Schroeder, D., Malmierca-Vallet, I., Abe-Ouchi, A., Bitz, C., Braconnot, P., Brady, E. C., Cao, J., Chamberlain, M. A., Feltham, D., Guo, C., LeGrande, A. N., Lohmann, G., Meissner, K. J., Menviel, L., Morozova, P., Nisancioglu, K. H., Otto-Bliesner, B. L., O'ishi, R., Ramos Buarque, S., Salas y Melia, D., Sherriff-Tadano, S., Stroeve, J., Shi, X., Sun, B., Tomas, R. A., Volodin, E., Yeung, N. K. H., Zhang, Q., Zhang, Z., Zheng, W., and Ziehn, T.: A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: sea ice data compilation and model differences, Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, 2021.
Knebel, O., Felis, T., Asami, R., Deschamps, P., Kölling, M., and Scholz, D.: Last deglacial environmental change in the tropical South Pacific from Tahiti corals, Paleoceanogr. Paleoclimatol., 39, e2022PA004585, https://doi.org/10.1029/2022PA004585, 2024.
Krätschmer, S., van der Does, M., Lamy, F., Lohmann, G., Völker, C., and Werner, M.: Simulating glacial dust changes in the Southern Hemisphere using ECHAM6.3-HAM2.3, Clim. Past, 18, 67–87, https://doi.org/10.5194/cp-18-67-2022, 2022.
Lambert, F., Delmonte, B., Petit, J., Bigler, M., Kaufmann, P. R., Hutterli, M. A., Stocker, T. F., Ruth, U., Steffensen, J. P., and Maggi, V.: Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core, Nature, 452, 616–619, https://doi.org/10.1038/nature06763, 2008.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long-term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004.
LeGrande, A. N. and Schmidt, G. A.: Global gridded data set of the oxygen isotopic composition in seawater, Geophys. Res. Lett., 33, L12604, https://doi.org/10.1029/2006GL026011, 2006.
Linsley, B. K., Kaplan, A., Gouriou, Y., Salinger, J., deMenocal, P. B., Wellington, G. M., and Howe, S. S.: Tracking the extent of the South Pacific Convergence Zone since the early 1600s, Geochem., Geophys., Geosyst., 7, Q05003, https://doi.org/10.1029/2005GC001115, 2006.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K., Paver, C. R., and Smolyar, I.: World Ocean Atlas 2018, Volume 1: Temperature, edited by: Mishonov, A., NOAA Atlas NESDIS 81, NOAA National Centers for Environmental Information, 52 pp., https://doi.org/10.25923/e5rn-9711, 2018.
MARGO Project Members: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum, Nat. Geosci., 2, 127–132, https://doi.org/10.1038/ngeo411, 2009.
McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D., and Brown-Leger, S.: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes, Nature, 428, 834–837, https://doi.org/10.1038/nature02494, 2004.
Medina-Elizalde, M. and Lea, D. W.: The Mid-Pleistocene transition in the tropical Pacific, Science, 310, 1009–1012, https://doi.org/10.1126/science.1115933, 2005.
Meehl, G. A.: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions, Mon. Weather Rev., 115, 27–50, https://doi.org/10.1175/1520-0493(1987)115<0027:TACAIV>2.0.CO;2, 1987.
Okai, T., Suzuki, A., Kawahata, H., Terashima, S., and Imai, N.: Preparation of a new geological survey of Japan geochemical reference material: Coral JCp-1, Geostand. Newslett., 26, 95–99, https://doi.org/10.1111/j.1751-908X.2002.tb00627.x, 2002.
Pahnke, K. and Sachs, J. P.: Sea surface temperatures of southern midlatitudes 0–160 kyr B.P., Paleoceanography, 21, PA2003, https://doi.org/10.1029/2005PA001191, 2006.
Petit, J., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., PÉpin, L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, https://doi.org/10.1038/20859, 1999.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B., Clausen, H. B., Siggaard-Andersen, M.-L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M., and Ruth, U.: A new Greenland ice core chronology for the last glacial termination, J. Geophys. Res., 111, D06102, https://doi.org/10.1029/2005JD006079, 2006.
Ronge, T. A., Steph, S., Tiedemann, R., Prange, M., Merkel, U., Nürnberg, D., and Kuhn, G.: Pushing the boundaries: Glacial/interglacial variability of intermediate and deep waters in the southwest Pacific over the last 350,000 years, Paleoceanography, 30, 23–38, https://doi.org/10.1002/2014PA002727, 2015.
Sayani, H. R., Cobb, K. M., DeLong, K., Hitt, N. T., and Druffel, E. R. M.: Intercolony δ18O and variability among Porites spp. corals at Palmyra Atoll: Toward more robust coral-based estimates of climate, Geochem. Geophys. Geosyst., 20, 5270–5284, https://doi.org/10.1029/2019GC008420, 2019.
Schrag, D. P., Adkins, J. F., McIntyre, K., Alexander, J. L., Hodell, D. A., Charles, C. D., and McManus, J. F.: The oxygen isotopic composition of seawater during the Last Glacial Maximum, Quat. Sci. Rev., 21, 331–342, https://https://doi.org/10.1016/S0277-3791(01)00110-X, 2002.
Siddall, M., Rohling, E. J., Almogi-Labin, A., Hemleben, Ch., Meischner, D., Schmelzer, I., and Smeed, D. A.: Sea-level fluctuations during the last glacial cycle, Nature, 423, 853–858, https://doi.org/10.1038/nature01690, 2003.
Sikes, E. L. and Volkman, J. K.: Calibration of alkenone unsaturation ratios (U ) for paleotemperature estimation in cold polar waters: Geochim. Cosmochim. Acta, 57, 1883–1889, https://doi.org/10.1016/0016-7037(93)90120-L, 1993.
Smith, A. S. V., Buddemeier, R. W., Redalje, R. C., and Houck, J. E.: Strontium-calcium thermometry in coral skeletons. Science, 204, 404–407, https://doi.org/10.1126/science.204.4391.404, 1979.
Stoll, H. M. and Schrag, D. P.: Effects of Quaternary sea-level cycles on strontium in seawater, Geochim. Cosmochim. Acta, 62, 1107–1118, https://doi.org/10.1016/S0016-7037(98)00042-8, 1998.
Takahashi, K. and Battisti, D. S.: Processes controlling the mean tropical pacific precipitation pattern. Part II: The SPCZ and the southeast Pacific dry zone, J. Climate, 20, 5696–5706, https://doi.org/10.1175/2007JCLI1656.1, 2007.
Thirumalai, K., DiNezio, P. N., Partin, J. W., Liu, D., Costa, K., and Jacobel, A.: Future increase in extreme El Niño supported by past glacial changes, Nature, 634, 374–380, https://doi.org/10.1038/s41586-024-07984-y, 2024.
Thomas, A., Henderson, G. M., Deschamps, P., Yokoyama, Y., Mason, A. J., Bard, E., Hamelin, B., Durand, N., and Camoin, G.: Penultimate Deglacial Sea-Level Timing from Uranium/Thorium Dating of Tahitian Corals, Science, 324, 1186–1189, https://doi.org/10.1126/science.1168754, 2009.
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and Poulsen, C. J.: Glacial cooling and climate sensitivity revisited, Nature, 584, 569–573, /https://doi.org/10.1038/s41586-020-2617-x, 2020.
Timmermann, A., Okumura, Y., An, S.-I., Clement, A., Dong, B., Guilyardi, E., Hu, A., Jungclaus, J. H., Renold, M., Stocker, T. F., Stouffer, R. J., Sutton, R., Xie, S.-P., and Yin, J.: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO, J. Climate, 20, 4899–4919, https://doi.org/10.1175/JCLI4283.1, 2007.
Todorović, S., Wu, H. C., Linsley, B. K., Kuhnert, H., Menkes, C., Isbjakowa, A., and Dissard, D.: Western Pacific warm pool warming and salinity front expansion since 1821 reconstructed from paired coral δ18O, , and reconstructed δ18Osw, Paleoceanogr. Paleoclimatol., 39, e2024PA004843, https://doi.org/10.1029/2024PA004843, 2024.
Trenberth, K. E.: Spatial and temporal variations of the southern oscillation, Q. J. Roy. Meteor. Soc., 102, 639–653, https://doi.org/10.1002/qj.49710243310, 1976.
Vincent, D. G.: The South Pacific Convergence Zone (SPCZ): a review, Mon. Weather Rev., 122, 1949–1970, https://doi.org/10.1175/1520-0493(1994)122<1949:TSPCZA>2.0.CO;2, 1994.
Vincent, E. M., Lengaigne, M., Menkes, C. E., Jourdain, N. C., Marchesiello, P., and Madec, G.: Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis, Clim. Dynam., 36, 1881–1896, https://doi.org/10.1007/s00382-009-0716-3, 2011.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., Mcmanus, J. F., Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records, Quat. Sci. Rev., 21, 295–305, https://doi.org/10.1016/S0277-3791(01)00101-9, 2002.
Wang, T., Wang, N., and Jiang, D.: Last glacial maximum ITCZ changes from PMIP3/4 simulations, J. Geophys. Res., 128, e2022JD038103, https://doi.org/10.1029/2022JD038103, 2023.
Webster, J. M., Ravelo, A. C., Grant, H. L. J., and the Expedition 389 Scientists: Expedition 389 Preliminary Report: Hawaiian Drowned Reefs, International Ocean Discovery Program, IODP Publications, https://doi.org/10.14379/iodp.pr.389.2024, 2024.
Wu, H. C., Linsley, B. K., Dassié, E. P., Schiraldi, B., and de Menocal, P. B.: Oceanographic variability in the South Pacific Convergence Zone region over the last 210 years from multi-site coral records, Geochem. Geophys. Geosyst., 14, 1435–1453, https://doi.org/10.1029/2012GC004293, 2013.
Yokoyama, Y., Esat, T. M., Thompson, W. G., Thomas, A. L., Webster, J. M., Miyairi, Y., Sawada, C., Aze, T., Matsuzaki, H., Okuno, J., Fallon, S., Braga, J.-C., Humblet, M., Iryu, Y., Potts, D. C., Fujita, K., Suzuki, A., and Kan, H.: Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum, Nature, 559, 603–607, https://doi.org/10.1038/s41586-018-0335-4, 2018.
Yuan, S., Chiang, H.-W., Liu, G., Bijaksana, S., He, S., Jiang, X., Imran, A. M., Wicaksono, S. A., and Wang, X.: The strength, position, and width changes of the intertropical convergence zone since the Last Glacial Maximum, P. Natl. Acad. Sci. USA, 120, e2217064120, https://doi.org/10.1073/pnas.2217064120, 2023.
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A., Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K., Paver, C. R., and Smolyar, I.: World Ocean Atlas 2018, Volume 2: Salinity, edited by: Mishonov, A., NOAA Atlas NESDIS 82, NOAA National Centers for Environmental Information, 50 pp., https://doi.org/10.25923/9pgv-1224, 2018.
Short summary
We generated high resolution geochemical records from well-preserved fossil corals of the penultimate glacial (~150 000 years ago) and last glacial (~30 000 years ago) periods drilled at Tahiti in the central tropical South Pacific. The fossil records revealed that the glacial mean seawater temperature was 3–4 °C lower and had greater seasonality than present. Our coral-based reconstructions document oceanographic and hydroclimatological changes in glacial periods extremely different from today.
We generated high resolution geochemical records from well-preserved fossil corals of the...