Supplement of Clim. Past, 21, 2525–2539, 2025 https://doi.org/10.5194/cp-21-2525-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Penultimate glacial sea surface temperature and hydrologic variability in the tropical South Pacific from 150 ka Tahiti corals

Ryuji Asami et al.

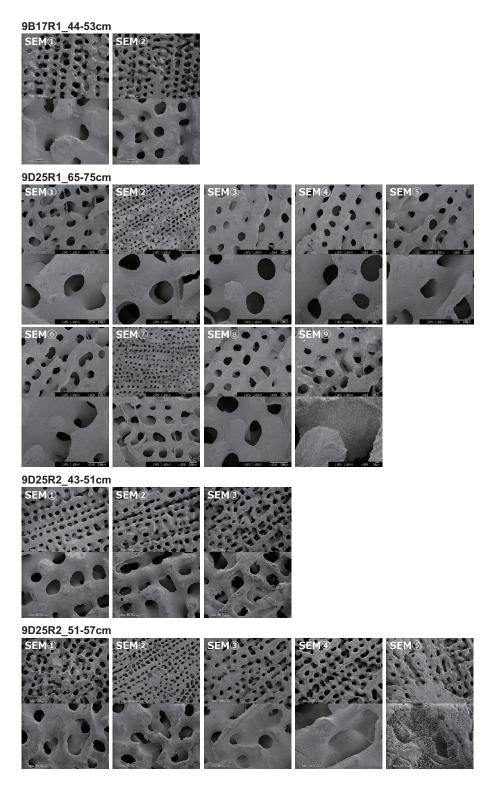
Correspondence to: Ryuji Asami (ryuji.asami.b5@tohoku.ac.jp)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1 Results of X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) observation on fossil corals. Subsamples with numbers are investigated for diagenesis screening, which correspond to skeletal portions with numbers in Figs. 3 and S1.

Sample ID	Subsample for diagenesis test*	XRD		SEM
		Aragonite	Calcite	Secondary
		(%)	(%) 0.0 0.0 10.4 19.5 28.7 0.0 0.0 0.0 0.0 0.0	aragonite cement
Exp.310-9B-17R-1 - (44-53 cm) -	1	100.0	0.0	none
	2	100.0	0.0	partially distributed
	3	89.6	10.4	-
	4	80.5	19.5	-
	(5)	71.3	28.7	-
Exp.310-9D-25R-1 (65-75 cm)	1)	100.0	0.0	none
	2	100.0	0.0	none
	3	100.0	0.0	none
	4	100.0	0.0	none
	(5)	100.0	0.0	none
	6	100.0	0.0	none
	7	100.0	0.0	none
	8	100.0	0.0	none
	9	95.3	4.7	partially distributed
Eva 240 0D 25D 2	1)	100.0 0.0	none	
Exp.310-9D-25R-2 - (43-51 cm) -	2	100.0	0.0	none
	3	100.0	0.0	none
Exp.310-9D-25R-2 (51-57 cm)	1)	100.0	0.0	none
	2	100.0	0.0	none
	3	100.0	0.0	none
	(4)	100.0	0.0	none
	(5)	100.0	0.0	partially distributed

^{*}The subsample number corresponds to that in Figure DR2.


Table S2 Differences in SST and its seasonality estimates attributable to differences in sampling resolution during winter and summer (so-called averaging effects).

OISST v2.1 for 1982-2022*	Monthly data (°C, ±1SD)	Bimonthly data (°C, ±1SD) [†]	Offset (°C, ±1SD)§
Annual maximum (summer)	28.95 ± 0.38	28.86 ± 0.39	-0.09 ± 0.06
Annual minimum (winter)	26.28 ± 0.33	26.36 ± 0.29	$+0.08 \pm 0.07$
Seasonality	2.67 ± 0.45	2.49 ± 0.41	-0.18 ± 0.09

^{*}Data from the monthly OISST v2.1 time series (Huang et al., 2021)

 $^{^{\}dagger}$ Bimonthly maximum and minimum data were estimated as the 2-month average of monthly 1st and 2nd highest SSTs and of monthly 1st and 2nd lowest SSTs for each year, respectively.

 $[\]S{\mbox{The}}$ offsets were estimated as differences between monthly and bimonthly values.

Figure S1. SEM images of coral skeleton from sample 310-9B-17R-1, 310-9D-25R-1, and 310-9D-25R-2. Numbers correspond to those of skeletal portions shown in Fig. 3.