Articles | Volume 21, issue 11
https://doi.org/10.5194/cp-21-2361-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-2361-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Living on the edge: Response of Late Cretaceous rudist bivalves (Hippuritida) to hot and highly seasonal climate in the low-latitude Saiwan site, Oman
Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Archaeology, Environmental Changes and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
Najat al Fudhaili
Industrial Innovation Academy LLC, Muscat, Oman
Iris Arndt
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Frankfurt, Germany
Philippe Claeys
Archaeology, Environmental Changes and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
René Fraaije
Het Nationaal Oertijdmuseum Boxtel, Boxtel, the Netherlands
Steven Goderis
Archaeology, Environmental Changes and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
John Jagt
Natuurhistorisch Museum Maastricht, Maastricht, the Netherlands
Matthias López Correa
GeoZentrum Nordbayern, Friedrich-Alexander Universität, Erlangen, Germany
Axel Munnecke
GeoZentrum Nordbayern, Friedrich-Alexander Universität, Erlangen, Germany
Jarosław Stolarski
Institute of Paleobiology, Polish Academy of Science, Warsaw, Poland
Martin Ziegler
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Related authors
Rute Coimbra, Niels de Winter, Maria Ríos, Rui Bernardino, Darío Estraviz-López, Priscila Lohmann, Roberta Martino, Aurora Grandal-d'Anglade, Fernando Rocha, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-1770, https://doi.org/10.5194/egusphere-2025-1770, 2025
Short summary
Short summary
To understand human impact on climate and biodiversity, we studied fossil teeth of Gomphotherium from Miocene Portugal. Chemical patterns, like those in modern elephants, show seasonal diet changes and geophagy during dry periods. This suggests dry seasons shaped animal behavior and ecosystems, offering insights into how land life responded to past warming—and how it might react to future climate change.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Niels J. de Winter
Geosci. Model Dev., 15, 1247–1267, https://doi.org/10.5194/gmd-15-1247-2022, https://doi.org/10.5194/gmd-15-1247-2022, 2022
Short summary
Short summary
ShellChron is a tool for determining the relative age of samples in carbonate (climate) archives based on the seasonal variability in temperature and salinity or precipitation recorded in stable oxygen isotope measurements. The model allows dating of fossil archives within a year, which is important for climate reconstructions on the sub-seasonal to decadal scale. In this paper, I introduce ShellChron and test it on a range of real and virtual datasets to demonstrate its use.
Niels J. de Winter, Tobias Agterhuis, and Martin Ziegler
Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, https://doi.org/10.5194/cp-17-1315-2021, 2021
Short summary
Short summary
Climate researchers often need to compromise in their sampling between increasing the number of measurements to obtain higher time resolution and combining measurements to improve the reliability of climate reconstructions. In this study, we test several methods for achieving the optimal balance between these competing interests by simulating seasonality reconstructions using stable and clumped isotopes. Our results inform sampling strategies for climate reconstructions in general.
Manlio Bellesi, Giovanni Pratesi, Alessandro Di Michele, Sabrina Nazzareni, Lidia Pittarello, Steven Goderis, Carlo Santini, and Gabriele Giuli
Eur. J. Mineral., 37, 617–626, https://doi.org/10.5194/ejm-37-617-2025, https://doi.org/10.5194/ejm-37-617-2025, 2025
Short summary
Short summary
Chromites found within the fusion crust of ordinary-chondrite meteorites display significant differences with respect to chromites found in the interior of the same meteorites. Chromites within the fusion crust, when compared to those in the interior of the meteorite, display a significantly higher Mg / (Mg + Fe) ratio; moreover, ca. 15 % of the chromites formed within the crust display small but detectable amounts of Ni.
Rute Coimbra, Niels de Winter, Maria Ríos, Rui Bernardino, Darío Estraviz-López, Priscila Lohmann, Roberta Martino, Aurora Grandal-d'Anglade, Fernando Rocha, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-1770, https://doi.org/10.5194/egusphere-2025-1770, 2025
Short summary
Short summary
To understand human impact on climate and biodiversity, we studied fossil teeth of Gomphotherium from Miocene Portugal. Chemical patterns, like those in modern elephants, show seasonal diet changes and geophagy during dry periods. This suggests dry seasons shaped animal behavior and ecosystems, offering insights into how land life responded to past warming—and how it might react to future climate change.
Marion Peral, Marta Marchegiano, Weronika Wierny, Inigo A. Müller, Johan Vellekoop, Zofia Dubicka, Maciej J. Bojanowski, Steven Goderis, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-502, https://doi.org/10.5194/egusphere-2025-502, 2025
Short summary
Short summary
Around 70 million years ago, during the Late Cretaceous, Earth’s climate was undergoing long-term cooling despite high CO₂ levels. Using an advanced temperature reconstruction technique, we analyzed foraminifer fossils from the European Chalk Sea. Our results show highly variable surface waters, likely influenced by freshwater inputs or upwelling, while deeper waters remained warm and stable, possibly influenced by shifting ocean currents. This improves our understanding of past ocean dynamics.
Jingjing Guo, Martin Ziegler, Louise Fuchs, Youbin Sun, and Francien Peterse
Clim. Past, 21, 343–355, https://doi.org/10.5194/cp-21-343-2025, https://doi.org/10.5194/cp-21-343-2025, 2025
Short summary
Short summary
In this study, we use the distribution of soil bacterial membrane lipids stored on the Chinese Loess Plateau (CLP) to quantitatively reconstruct variations in precipitation amount over the past 130 kyr. The precipitation record shows orbital- and millennial-scale variations and varies at precession and obliquity scale. The application of this precipitation proxy across the CLP indicates a more pronounced spatial gradient during glacials, when the western CLP experiences more arid conditions.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past, 21, 79–93, https://doi.org/10.5194/cp-21-79-2025, https://doi.org/10.5194/cp-21-79-2025, 2025
Short summary
Short summary
Based on dinoflagellate cyst assemblages and sea surface temperature records west of offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes affected atmosphere–ocean CO2 exchange in the Southern Ocean.
Nina M. A. Wichern, Or M. Bialik, Theresa Nohl, Lawrence M. E. Percival, R. Thomas Becker, Pim Kaskes, Philippe Claeys, and David De Vleeschouwer
Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, https://doi.org/10.5194/cp-20-415-2024, 2024
Short summary
Short summary
Middle–Late Devonian sedimentary rocks are often punctuated by anoxic black shales. Due to their semi-regular nature, anoxic events may be linked to periodic changes in the Earth’s climate caused by astronomical forcing. We use portable X-ray fluorescence elemental records, measured on marine sediments from Germany, to construct an astrochronological framework for the Kellwasser ocean anoxic Crisis. Results suggest that the Upper Kellwasser event was preceded by a specific orbital configuration.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Sarah Wauthy, Jean-Louis Tison, Mana Inoue, Saïda El Amri, Sainan Sun, François Fripiat, Philippe Claeys, and Frank Pattyn
Earth Syst. Sci. Data, 16, 35–58, https://doi.org/10.5194/essd-16-35-2024, https://doi.org/10.5194/essd-16-35-2024, 2024
Short summary
Short summary
The datasets presented are the density, water isotopes, ions, and conductivity measurements, as well as age models and surface mass balance (SMB) from the top 120 m of two ice cores drilled on adjacent ice rises in Dronning Maud Land, dating from the late 18th century. They offer many development possibilities for the interpretation of paleo-profiles and for addressing the mechanisms behind the spatial and temporal variability of SMB and proxies observed at the regional scale in East Antarctica.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Matthias Sinnesael, Alfredo Loi, Marie-Pierre Dabard, Thijs R. A. Vandenbroucke, and Philippe Claeys
Geochronology, 4, 251–267, https://doi.org/10.5194/gchron-4-251-2022, https://doi.org/10.5194/gchron-4-251-2022, 2022
Short summary
Short summary
We used new geochemical measurements to study the expression of astronomical climate cycles recorded in the Ordovician (~ 460 million years ago) geological sections of the Crozon Peninsula (France). This type of geological archive is not often studied in this way, but as they become more important going back in time, a better understanding of their potential astronomical cycles is crucial to advance our knowledge of deep-time climate dynamics and to construct high-resolution timescales.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Niels J. de Winter
Geosci. Model Dev., 15, 1247–1267, https://doi.org/10.5194/gmd-15-1247-2022, https://doi.org/10.5194/gmd-15-1247-2022, 2022
Short summary
Short summary
ShellChron is a tool for determining the relative age of samples in carbonate (climate) archives based on the seasonal variability in temperature and salinity or precipitation recorded in stable oxygen isotope measurements. The model allows dating of fossil archives within a year, which is important for climate reconstructions on the sub-seasonal to decadal scale. In this paper, I introduce ShellChron and test it on a range of real and virtual datasets to demonstrate its use.
Niels J. de Winter, Tobias Agterhuis, and Martin Ziegler
Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, https://doi.org/10.5194/cp-17-1315-2021, 2021
Short summary
Short summary
Climate researchers often need to compromise in their sampling between increasing the number of measurements to obtain higher time resolution and combining measurements to improve the reliability of climate reconstructions. In this study, we test several methods for achieving the optimal balance between these competing interests by simulating seasonality reconstructions using stable and clumped isotopes. Our results inform sampling strategies for climate reconstructions in general.
Cited articles
Adams, A., Daval, D., Baumgartner, L. P., Bernard, S., Vennemann, T., Cisneros-Lazaro, D., Stolarski, J., Baronnet, A., Grauby, O., Guo, J., and Meibom, A.: Rapid grain boundary diffusion in foraminifera tests biases paleotemperature records, Commun Earth Environ, 4, 1–11, https://doi.org/10.1038/s43247-023-00798-2, 2023.
Al-Aasm, I. S. and Veizer, J.: Diagenetic Stabilization of Aragonite and Low-mg Calcite, I. Trace Elements in Rudists, Journal of Sedimentary Research, 56, https://doi.org/10.1306/212F88A5-2B24-11D7-8648000102C1865D, 1986a.
Al-Aasm, I. S. and Veizer, J.: Diagenetic stabilization of aragonite and low-Mg calcite, II. Stable isotopes in rudists, Journal of Sedimentary Research, 56, 763–770, 1986b.
Allan, J. R. and Matthews, R. K.: Isotope Signatures Associated with Early Meteoric Diagenesis, in: Carbonate Diagenesis, John Wiley & Sons, Ltd, 197–217, https://doi.org/10.1002/9781444304510.ch16, 1990.
Amiot, R., Lécuyer, C., Buffetaut, E., Fluteau, F., Legendre, S., and Martineau, F.: Latitudinal temperature gradient during the Cretaceous Upper Campanian–Middle Maastrichtian: δ18O record of continental vertebrates, Earth and Planetary Science Letters, 226, 255–272, 2004.
Arndt, I., Coenen, D., Evans, D., Renema, W., and Müller, W.: Quantifying Sub-Seasonal Growth Rate Changes in Fossil Giant Clams Using Wavelet Transformation of Daily Mg Ca Cycles, Geochemistry, Geophysics, Geosystems, 24, e2023GC010992, https://doi.org/10.1029/2023GC010992, 2023.
Aze, T., Pearson, P. N., Dickson, A. J., Badger, M. P. S., Bown, P. R., Pancost, R. D., Gibbs, S. J., Huber, B. T., Leng, M. J., Coe, A. L., Cohen, A. S., and Foster, G. L.: Extreme warming of tropical waters during the Paleocene–Eocene Thermal Maximum, Geology, 42, 739–742, https://doi.org/10.1130/G35637.1, 2014.
Batenburg, S. J., Reichart, G.-J., Jilbert, T., Janse, M., Wesselingh, F. P., and Renema, W.: Interannual climate variability in the Miocene: High resolution trace element and stable isotope ratios in giant clams, Palaeogeography, Palaeoclimatology, Palaeoecology, 306, 75–81, 2011.
Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F., Fernandez, A., Hodell, D. A., Jaggi, M., Meckler, A. N., Millan, I., and Ziegler, M.: Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate-based standardization, Geochemistry, Geophysics, Geosystems, 19, 2895–2914, 2018.
Bernasconi, S. M., Daëron, M., Bergmann, K. D., Bonifacie, M., Meckler, A. N., Affek, H. P., Anderson, N., Bajnai, D., Barkan, E., Beverly, E., Blamart, D., Burgener, L., Calmels, D., Chaduteau, C., Clog, M., Davidheiser-Kroll, B., Davies, A., Dux, F., Eiler, J., Elliott, B., Fetrow, A. C., Fiebig, J., Goldberg, S., Hermoso, M., Huntington, K. W., Hyland, E., Ingalls, M., Jaggi, M., John, C. M., Jost, A. B., Katz, S., Kelson, J., Kluge, T., Kocken, I. J., Laskar, A., Leutert, T. J., Liang, D., Lucarelli, J., Mackey, T. J., Mangenot, X., Meinicke, N., Modestou, S. E., Müller, I. A., Murray, S., Neary, A., Packard, N., Passey, B. H., Pelletier, E., Petersen, S., Piasecki, A., Schauer, A., Snell, K. E., Swart, P. K., Tripati, A., Upadhyay, D., Vennemann, T., Winkelstern, I., Yarian, D., Yoshida, N., Zhang, N., and Ziegler, M.: InterCarb: A Community Effort to Improve Interlaboratory Standardization of the Carbonate Clumped Isotope Thermometer Using Carbonate Standards, Geochemistry, Geophysics, Geosystems, 22, e2020GC009588, https://doi.org/10.1029/2020GC009588, 2021.
Brand, U. and Veizer, J.: Chemical diagenesis of a multicomponent carbonate system–1: Trace elements, Journal of Sedimentary Research, 50, https://doi.org/10.1306/212F7BB7-2B24-11D7-8648000102C1865D, 1980.
Brand, U. and Veizer, J.: Chemical diagenesis of a multicomponent carbonate system-2: stable isotopes, Journal of Sedimentary Research, 51, 987–997, 1981.
Buick, D. P. and Ivany, L. C.: 100 years in the dark: Extreme longevity of Eocene bivalves from Antarctica, Geology, 32, 921–924, https://doi.org/10.1130/G20796.1, 2004.
Burgener, L., Hyland, E., Huntington, K. W., Kelson, J. R., and Sewall, J. O.: Revisiting the equable climate problem during the Late Cretaceous greenhouse using paleosol carbonate clumped isotope temperatures from the Campanian of the Western Interior Basin, USA, Palaeogeography, Palaeoclimatology, Palaeoecology, 516, 244–267, https://doi.org/10.1016/j.palaeo.2018.12.004, 2018.
Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J., and Otto-Bliesner, B. L.: Pliocene and Eocene provide best analogs for near-future climates, P. Natl. Acad. Sci., 115, 13288–13293, https://doi.org/10.1073/pnas.1809600115, 2018.
Carré, M., Bentaleb, I., Bruguier, O., Ordinola, E., Barrett, N. T., and Fontugne, M.: Calcification rate influence on trace element concentrations in aragonitic bivalve shells: Evidences and mechanisms, Geochimica et Cosmochimica Acta, 70, 4906–4920, https://doi.org/10.1016/j.gca.2006.07.019, 2006.
Cermeño, P., García-Comas, C., Pohl, A., Williams, S., Benton, M. J., Chaudhary, C., Le Gland, G., Müller, R. D., Ridgwell, A., and Vallina, S. M.: Post-extinction recovery of the Phanerozoic oceans and biodiversity hotspots, Nature, 607, 507–511, https://doi.org/10.1038/s41586-022-04932-6, 2022.
Chen, S., Ryb, U., Piasecki, A. M., Lloyd, M. K., Baker, M. B., and Eiler, J. M.: Mechanism of solid-state clumped isotope reordering in carbonate minerals from aragonite heating experiments, Geochimica et Cosmochimica Acta, 258, 156–173, https://doi.org/10.1016/j.gca.2019.05.018, 2019.
Cisneros-Lazaro, D., Adams, A., Guo, J., Bernard, S., Baumgartner, L. P., Daval, D., Baronnet, A., Grauby, O., Vennemann, T., Stolarski, J., Escrig, S., and Meibom, A.: Fast and pervasive diagenetic isotope exchange in foraminifera tests is species-dependent, Nat. Commun., 13, 113, https://doi.org/10.1038/s41467-021-27782-8, 2022.
Clarke, A.: The thermal limits to life on Earth, International Journal of Astrobiology, 13, 141–154, https://doi.org/10.1017/S1473550413000438, 2014.
Compton, T. J., Rijkenberg, M. J. A., Drent, J., and Piersma, T.: Thermal tolerance ranges and climate variability: A comparison between bivalves from differing climates, Journal of Experimental Marine Biology and Ecology, 352, 200–211, https://doi.org/10.1016/j.jembe.2007.07.010, 2007.
Daëron, M. and Vermeesch, P.: Omnivariant generalized least squares regression: Theory, geochronological applications, and making the case for reconciled Δ47 calibrations, Chemical Geology, 121881, https://doi.org/10.1016/j.chemgeo.2023.121881, 2023.
de Winter, N. J.: ShellChron 0.4.0: a new tool for constructing chronologies in accretionary carbonate archives from stable oxygen isotope profiles, Geosci. Model Dev., 15, 1247–1267, https://doi.org/10.5194/gmd-15-1247-2022, 2022.
de Winter, N.: Supplementary Information to: “Living on the edge: Response of rudist bivalves (Hippuritida) to hot and highly seasonal climate in the low-latitude Saiwan site, Oman”, in: Palaeogeography, Palaeoclimatology, Palaeoecology (4.0), Zenodo [data set], https://doi.org/10.5281/zenodo.12567712, 2025.
de Winter, N. J. and Claeys, P.: Micro X-ray fluorescence (µXRF) line scanning on Cretaceous rudist bivalves: A new method for reproducible trace element profiles in bivalve calcite, Sedimentology, 64, 231–251, https://doi.org/10.1111/sed.12299, 2016.
de Winter, N., Sinnesael, M., Makarona, C., Vansteenberge, S., and Claeys, P.: Trace element analyses of carbonates using portable and micro-X-ray fluorescence: Performance and optimization of measurement parameters and strategies, Journal of Analytical Atomic Spectrometry, https://doi.org/10.1039/c6ja00361c, 2017a.
de Winter, N. J., Goderis, S., Dehairs, F., Jagt, J. W. M., Fraaije, R. H. B., Van Malderen, S. J. M., Vanhaecke, F., and Claeys, P.: Tropical seasonality in the late Campanian (late Cretaceous): Comparison between multiproxy records from three bivalve taxa from Oman, Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 740–760, https://doi.org/10.1016/j.palaeo.2017.07.031, 2017b.
de Winter, N. J., Goderis, S., Malderen, S. J. M. V., Sinnesael, M., Vansteenberge, S., Snoeck, C., Belza, J., Vanhaecke, F., and Claeys, P.: Subdaily-Scale Chemical Variability in a Torreites Sanchezi Rudist Shell: Implications for Rudist Paleobiology and the Cretaceous Day-Night Cycle, Paleoceanography and Paleoclimatology, 35, e2019PA003723, https://doi.org/10.1029/2019PA003723, 2020a.
de Winter, N. J., Vellekoop, J., Clark, A. J., Stassen, P., Speijer, R. P., and Claeys, P.: The giant marine gastropod Campanile giganteum (Lamarck, 1804) as a high-resolution archive of seasonality in the Eocene greenhouse world, Geochemistry, Geophysics, Geosystems, 21, e2019GC008794, https://doi.org/10.1029/2019GC008794, 2020b.
de Winter, N. J., Ullmann, C. V., Sørensen, A. M., Thibault, N., Goderis, S., Van Malderen, S. J. M., Snoeck, C., Goolaerts, S., Vanhaecke, F., and Claeys, P.: Shell chemistry of the boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates and life cycle of an extinct Cretaceous oyster, Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, 2020c.
de Winter, N. J., Müller, I. A., Kocken, I. J., Thibault, N., Ullmann, C. V., Farnsworth, A., Lunt, D. J., Claeys, P., and Ziegler, M.: Absolute seasonal temperature estimates from clumped isotopes in bivalve shells suggest warm and variable greenhouse climate, Commun Earth Environ, 2, 1–8, https://doi.org/10.1038/s43247-021-00193-9, 2021a.
de Winter, N. J., Agterhuis, T., and Ziegler, M.: Optimizing sampling strategies in high-resolution paleoclimate records, Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, 2021b.
de Winter, N. J., Tindall, J., Johnson, A. L. A., Goudsmit-Harzevoort, B., Wichern, N., Kaskes, P., Claeys, P., Huygen, F., van Leeuwen, S., Metcalfe, B., Bakker, P., Goolaerts, S., Wesselingh, F., and Ziegler, M.: Amplified seasonality in western Europe in a warmer world, Science Advances, 10, eadl6717, https://doi.org/10.1126/sciadv.adl6717, 2024.
Dowsett, H. J., Foley, K. M., Stoll, D. K., Chandler, M. A., Sohl, L. E., Bentsen, M., Otto-Bliesner, B. L., Bragg, F. J., Chan, W.-L., Contoux, C., Dolan, A. M., Haywood, A. M., Jonas, J. A., Jost, A., Kamae, Y., Lohmann, G., Lunt, D. J., Nisancioglu, K. H., Abe-Ouchi, A., Ramstein, G., Riesselman, C. R., Robinson, M. M., Rosenbloom, N. A., Salzmann, U., Stepanek, C., Strother, S. L., Ueda, H., Yan, Q., and Zhang, Z.: Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison, Sci. Rep., 3, 2013, https://doi.org/10.1038/srep02013, 2013.
Elliot, M., Welsh, K., Chilcott, C., McCulloch, M., Chappell, J., and Ayling, B.: Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimate studies, Palaeogeography, Palaeoclimatology, Palaeoecology, 280, 132–142, https://doi.org/10.1016/j.palaeo.2009.06.007, 2009.
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C.: Revised carbonate-water isotopic temperature scale, Geological Society of America Bulletin, 64, 1315–1326, 1953.
European Centre for Medium-Range Weather Forecasts (ECMWF): Duqm climate, https://en.climate-data.org/asia/oman/al-wusta/duqm-151282/, last access: 24 May 2024.
Evans, D., Müller, W., Oron, S., and Renema, W.: Eocene seasonality and seawater alkaline earth reconstruction using shallow-dwelling large benthic foraminifera, Earth and Planetary Science Letters, 381, 104–115, 2013.
Gili, E. and Götz, S.: Treatise Online no. 103: Part N, Volume 2, Chapter 26B: Paleoecology of rudists, 1, https://doi.org/10.17161/to.v0i0.7183, 2018.
Gili, E. and Skelton, P. W.: Factors regulating the development of elevator rudist congregations, Geological Society, London, Special Publications, 178, 109–116, https://doi.org/10.1144/GSL.SP.2000.178.01.08, 2000.
Gili, E., Skelton, P. W., Vicens, E., and Obrador, A.: Corals to rudists – an environmentally induced assemblage succession, Palaeogeography, Palaeoclimatology, Palaeoecology, 119, 127–136, https://doi.org/10.1016/0031-0182(95)00064-X, 1995.
Global Biodiversity Information Facility: Torreites, https://www.gbif.org/species/4591957, last access: 10 May 2024.
Goodwin, D. H., Schöne, B. R., and Dettman, D. L.: Resolution and Fidelity of Oxygen Isotopes as Paleotemperature Proxies in Bivalve Mollusk Shells: Models and Observations, PALAIOS, 18, 110–125, https://doi.org/10.1669/0883-1351(2003)18<110:RAFOOI>2.0.CO;2, 2003.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: Geologic Time Scale 2020, Elsevier, 1393 pp., ISBN 978-0-12-824360-2, https://doi.org/10.1016/C2020-1-02369-3, 2020.
Grossman, E. L. and Ku, T.-L.: Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects, Chemical Geology: Isotope Geoscience section, 59, 59–74, 1986.
Hartigan, J. A. and Wong, M. A.: Algorithm AS 136: A K-Means Clustering Algorithm, Journal of the Royal Statistical Society. Series C (Applied Statistics), 28, 100–108, https://doi.org/10.2307/2346830, 1979.
Harzhauser, M., Piller, W. E., Müllegger, S., Grunert, P., and Micheels, A.: Changing seasonality patterns in Central Europe from Miocene Climate Optimum to Miocene Climate Transition deduced from the Crassostrea isotope archive, Global and Planetary Change, 76, 77–84, https://doi.org/10.1016/j.gloplacha.2010.12.003, 2011.
He, B., Olack, G. A., and Colman, A. S.: Pressure baseline correction and high-precision CO2 clumped-isotope (Δ47) measurements in bellows and micro-volume modes, Rapid Communications in Mass Spectrometry, 26, 2837–2853, 2012.
Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Pérez-Huerta, A., and Yancey, T. E.: Temperature limits for preservation of primary calcite clumped isotope paleotemperatures, Geochimica et Cosmochimica Acta, 139, 362–382, 2014.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: NOAA extended reconstructed sea surface temperature (ERSST), version 5, NOAA National Centers for Environmental Information, 30, 25, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Huyghe, D., Merle, D., Lartaud, F., Cheype, E., and Emmanuel, L.: Middle Lutetian climate in the Paris Basin: implications for a marine hotspot of paleobiodiversity, Facies, 58, 587–604, 2012.
IPCC: Synthesis Report Of The IPCC Sixth Assessment Report (AR6), Intergovernmental Panel on Climate Change, Geneva, Switzerland, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Ivany, L. C.: Reconstructing paleoseasonality from accretionary skeletal carbonates – challenges and opportunities, The Paleontological Society Papers, 18, 133–166, 2012.
Jones, D. S.: Sclerochronology: reading the record of the molluscan shell: annual growth increments in the shells of bivalve molluscs record marine climatic changes and reveal surprising longevity, American Scientist, 71, 384–391, 1983.
Jones, M. M., Petersen, S. V., and Curley, A. N.: A tropically hot mid-Cretaceous North American Western Interior Seaway, Geology, 50, 954–958, https://doi.org/10.1130/G49998.1, 2022.
Judd, E. J., Wilkinson, B. H., and Ivany, L. C.: The life and time of clams: Derivation of intra-annual growth rates from high-resolution oxygen isotope profiles, Palaeogeography, Palaeoclimatology, Palaeoecology, https://doi.org/10.1016/j.palaeo.2017.09.034, 2017.
Kaufman, L. and Rousseeuw, P. J.: Partitioning Around Medoids (Program PAM), in: Finding Groups in Data, John Wiley & Sons, Ltd, 68–125, https://doi.org/10.1002/9780470316801.ch2, 1990.
Kennedy, W. J., Jagt, J. W. M., Hanna, S. S., and Schulp, A. S.: Late Campanian ammonites from the Saiwan area (Huqf Desert, Sultanate of Oman), Cretaceous Research, 21, 553–562, https://doi.org/10.1006/cres.2000.0217, 2000.
Killam, D., Thomas, R., Al-Najjar, T., and Clapham, M.: Interspecific and Intrashell Stable Isotope Variation Among the Red Sea Giant Clams, Geochemistry, Geophysics, Geosystems, 21, e2019GC008669, https://doi.org/10.1029/2019GC008669, 2020.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochimica et Cosmochimica Acta, 61, 3461–3475, 1997.
Lehmann, J.: Ammonite Biostratigraphy of the Cretaceous – An Overview, in: Ammonoid Paleobiology: From macroevolution to paleogeography, edited by: Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R. H., Springer Netherlands, Dordrecht, 403–429, https://doi.org/10.1007/978-94-017-9633-0_15, 2015.
Looser, N., Petschnig, P., Hemingway, J. D., Fernandez, A., Morales Grafulha, L., Perez-Huerta, A., Vickers, M. L., Price, G. D., Schmidt, M. W., and Bernasconi, S. M.: Thermally-induced clumped isotope resetting in belemnite and optical calcites: Towards material-specific kinetics, Geochimica et Cosmochimica Acta, 350, 1–15, https://doi.org/10.1016/j.gca.2023.03.030, 2023.
Maechler, M.: cluster package: https://www.rdocumentation.org/packages/cluster/versions/2.1.6, last access: 27 November 2024.
Maechler, M. and Rousseeuw, P. J.: cluster: “Finding Groups in Data”: Cluster Analysis Extended v. 2.1.8.1, CRAN [code], https://doi.org/10.32614/CRAN.package.cluster, 2025.
Marchitto, T. M., Curry, W. B., Lynch-Stieglitz, J., Bryan, S. P., Cobb, K. M., and Lund, D. C.: Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera, Geochimica et Cosmochimica Acta, 130, 1–11, 2014.
McConnaughey, T. A. and Gillikin, D. P.: Carbon isotopes in mollusk shell carbonates, Geo-Marine Letters, 28, 287–299, https://doi.org/10.1007/s00367-008-0116-4, 2008.
Müller, I. A., Fernandez, A., Radke, J., van Dijk, J., Bowen, D., Schwieters, J., and Bernasconi, S. M.: Carbonate clumped isotope analyses with the long-integration dual-inlet (LIDI) workflow: scratching at the lower sample weight boundaries: LIDI as key for more precise analyses on much less carbonate material, Rapid Communications in Mass Spectrometry, 31, 1057–1066, https://doi.org/10.1002/rcm.7878, 2017.
National Oceanographic and Atmospheric Administration (NOAA): Muscat Water Temperature: https://www.seatemperature.org/middle-east/oman/muscat.htm, last access: 24 May 2024.
Nooitgedacht, C. W., van der Lubbe, H. J. L., Ziegler, M., and Staudigel, P. T.: Internal Water Facilitates Thermal Resetting of Clumped Isotopes in Biogenic Aragonite, Geochemistry, Geophysics, Geosystems, 22, e2021GC009730, https://doi.org/10.1029/2021GC009730, 2021.
OBIS: Ocean Biodiversity Information System, Intergovernmental Oceanographic Commission of UNESCO, https://cran.r-project.org/web/packages/robis/index.html (last access: 15 November 2025), 2025.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J. S., Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C., Brassell, S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N., Jenkyns, H. C., Linnert, C., Littler, K., Markwick, P., McAnena, A., Mutterlose, J., Naafs, B. D. A., Püttmann, W., Sluijs, A., van Helmond, N. A. G. M., Vellekoop, J., Wagner, T., and Wrobel, N. E.: Cretaceous sea-surface temperature evolution: Constraints from TEX 86 and planktonic foraminiferal oxygen isotopes, Earth-Science Reviews, 172, 224–247, https://doi.org/10.1016/j.earscirev.2017.07.012, 2017.
O'Hora, H. E., Petersen, S. V., Vellekoop, J., Jones, M. M., and Scholz, S. R.: Clumped-isotope-derived climate trends leading up to the end-Cretaceous mass extinction in northwestern Europe, Clim. Past, 18, 1963–1982, https://doi.org/10.5194/cp-18-1963-2022, 2022.
Onuma, N., Masuda, F., Hirano, M., and Wada, K.: Crystal structure control on trace element partition in molluscan shell formation, Geochemical Journal, 13, 187–189, 1979.
Passey, B. H. and Henkes, G. A.: Carbonate clumped isotope bond reordering and geospeedometry, Earth and Planetary Science Letters, 351–352, 223–236, https://doi.org/10.1016/j.epsl.2012.07.021, 2012.
Petersen, S. V., Tabor, C. R., Lohmann, K. C., Poulsen, C. J., Meyer, K. W., Carpenter, S. J., Erickson, J. M., Matsunaga, K. K., Smith, S. Y., and Sheldon, N. D.: Temperature and salinity of the Late Cretaceous western interior seaway, Geology, 44, 903–906, 2016a.
Petersen, S. V., Winkelstern, I. Z., Lohmann, K. C., and Meyer, K. W.: The effects of Porapak™ trap temperature on δ18O, δ13C, and Δ47 values in preparing samples for clumped isotope analysis, Rapid Communications in Mass Spectrometry, 30, 199–208, 2016b.
Philip, J. M. and Platel, J.-P.: Stratigraphy and rudist biozonation of the Campanian and the Maastrichtian of Eastern Oman, Revista mexicana de ciencias geológicas, 12, 15, 1995.
Prayudi, S. D., Korin, A., and Kaminski, M. A.: Thermal tolerance of intertidal gastropods in the Western Arabian Gulf, Journal of Sea Research, 197, 102470, https://doi.org/10.1016/j.seares.2024.102470, 2024.
Price, G. D., Bajnai, D., and Fiebig, J.: Carbonate clumped isotope evidence for latitudinal seawater temperature gradients and the oxygen isotope composition of Early Cretaceous seas, Palaeogeography, Palaeoclimatology, Palaeoecology, 552, 109777, https://doi.org/10.1016/j.palaeo.2020.109777, 2020.
Provoost, P., Bosch, S., Appeltans, W., and OBIS: robis: Ocean Biodiversity Information System (OBIS) Client, v2.11.3, CRAN [code], https://cran.r-project.org/web/packages/robis/index.html (last access: 15 November 2025), 2022.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://ropensci.org/blog/2021/11/16/how-to-cite-r-and-r-packages/ (last access: 15 November 2025), 2023.
R Core Team: stats package, https://www.rdocumentation.org/packages/stats/versions/3.6.2, last access: 30 April 2024.
Ross, D. J. and Skelton, P. W.: Rudist formations of the Cretaceous: a palaeoecological, sedimentological and stratigraphical review, Sedimentology Review, 1, 73–91, 1993.
Schmitt, K. E., Huck, S., Krummacker, M., de Winter, N. J., Godet, A., Claeys, P., and Heimhofer, U.: Radiolitid rudists: an underestimated archive for Cretaceous climate reconstruction?, Lethaia, 55, 1–21, https://doi.org/10.18261/let.55.4.4, 2022.
Schumann, P. D. D.: Upper cretaceous rudist and stromatoporid associations of Central Oman (Arabian Peninsula), Facies, 32, 189–202, https://doi.org/10.1007/BF02536868, 1995.
Shackleton, N. J.: Paleogene stable isotope events, Palaeogeography, Palaeoclimatology, Palaeoecology, 57, 91–102, 1986.
Skelton, P.: Treatise Online no. 104: Part N, Volume 1, Chapter 26A: Introduction to the Hippuritida (rudists): Shell structure, anatomy, and evolution, Treatise Online, https://doi.org/10.17161/to.v0i0.7414, 2018.
Skelton, P. W. and Wright, V. P.: A Caribbean rudist bivalve in Oman-island-hopping across the Pacific in the Late Cretaceous, Palaeontology, 30, 505–529, 1987.
Steuber, T.: Isotopic and chemical intra-shell variations in low-Mg calcite of rudist bivalves (Mollusca-Hippuritacea): disequilibrium fractionations and late Cretaceous seasonality, International Journal of Earth Sciences, 88, 551–570, 1999.
Steuber, T., Rauch, M., Masse, J.-P., Graaf, J., and Malkoč, M.: Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes, Nature, 437, 1341–1344, https://doi.org/10.1038/nature04096, 2005.
Stolper, D. A. and Eiler, J. M.: The kinetics of solid-state isotope-exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples, American Journal of Science, 315, 363–411, https://doi.org/10.2475/05.2015.01, 2015.
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X.: Lethally Hot Temperatures During the Early Triassic Greenhouse, Science, 338, 366–370, https://doi.org/10.1126/science.1224126, 2012.
Surge, D., Lohmann, K. C., and Dettman, D. L.: Controls on isotopic chemistry of the American oyster, Crassostrea virginica: implications for growth patterns, Palaeogeography, Palaeoclimatology, Palaeoecology, 172, 283–296, 2001.
Swart, P. K. and Oehlert, A. M.: Revised interpretations of stable C and O patterns in carbonate rocks resulting from meteoric diagenesis, Sedimentary Geology, 364, 14–23, https://doi.org/10.1016/j.sedgeo.2017.12.005, 2018.
Tehei, M. and Zaccai, G.: Adaptation to high temperatures through macromolecular dynamics by neutron scattering, The FEBS Journal, 274, 4034–4043, https://doi.org/10.1111/j.1742-4658.2007.05953.x, 2007.
Tehei, M., Madern, D., Franzetti, B., and Zaccai, G.: Neutron Scattering Reveals the Dynamic Basis of Protein Adaptation to Extreme Temperature *, Journal of Biological Chemistry, 280, 40974–40979, https://doi.org/10.1074/jbc.M508417200, 2005.
Ullmann, C. V. and Korte, C.: Diagenetic alteration in low-Mg calcite from macrofossils: a review, Geological Quarterly, 59, 3–20, https://doi.org/10.7306/gq.1217, 2015.
Vaes, B., van Hinsbergen, D. J. J., van de Lagemaat, S. H. A., van der Wiel, E., Lom, N., Advokaat, E. L., Boschman, L. M., Gallo, L. C., Greve, A., Guilmette, C., Li, S., Lippert, P. C., Montheil, L., Qayyum, A., and Langereis, C. G.: A global apparent polar wander path for the last 320 Ma calculated from site-level paleomagnetic data, Earth-Science Reviews, 245, 104547, https://doi.org/10.1016/j.earscirev.2023.104547, 2023.
van Hinsbergen, D. J., de Groot, L. V., van Schaik, S. J., Spakman, W., Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A paleolatitude calculator for paleoclimate studies, PloS one, 10, e0126946, https://doi.org/10.1371/journal.pone.0126946, 2015.
Vansteenberge, S., de Winter, N. J., Sinnesael, M., Xueqin, Z., Verheyden, S., and Claeys, P.: Benchtop µXRF as a tool for speleothem trace elemental analysis: Validation, limitations and application on an Eemian to early Weichselian (125–97 ka) stalagmite from Belgium, Palaeogeography, Palaeoclimatology, Palaeoecology, 538, 109460, https://doi.org/10.1016/j.palaeo.2019.109460, 2020.
Vellekoop, J., Kaskes, P., Sinnesael, M., Huygh, J., Déhais, T., Jagt, J. W. M., Speijer, R. P., and Claeys, P.: A new age model and chemostratigraphic framework for the Maastrichtian type area (southeastern Netherlands, northeastern Belgium), nos, 55, 479–501, https://doi.org/10.1127/nos/2022/0703, 2022.
Walliser, E. O. and Schöne, B. R.: Paleoceanography of the Late Cretaceous northwestern Tethys Ocean: Seasonal upwelling or steady thermocline?, PLOS ONE, 15, e0238040, https://doi.org/10.1371/journal.pone.0238040, 2020.
Wang, Y., Huang, C., Sun, B., Quan, C., Wu, J., and Lin, Z.: Paleo-CO2 variation trends and the Cretaceous greenhouse climate, Earth-Science Reviews, 129, 136–147, https://doi.org/10.1016/j.earscirev.2013.11.001, 2014.
Wichern, N. M. A., de Winter, N. J., Johnson, A. L. A., Goolaerts, S., Wesselingh, F., Hamers, M. F., Kaskes, P., Claeys, P., and Ziegler, M.: The fossil bivalve Angulus benedeni benedeni: a potential seasonally resolved stable-isotope-based climate archive to investigate Pliocene temperatures in the southern North Sea basin, Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, 2023.
World Wildlife Fund: The Living Planet Report 2020, http://stats.livingplanetindex.org/, last access: 19 February 2021.
Short summary
To test the tolerance of past shallow marine ecosystems to extreme climates, we collected and compiled stable and clumped isotope data from rudist (Order Hippuritida) bivalves that lived in tropical shallow marine waters in present-day Oman during the Campanian (75 million years ago). Our dataset shows that these animals were able to withstand exceptionally warm temperatures, exceeding 40 °C, during hot summers. Our finding highlights how seasonal climate extremes impact marine biodiversity.
To test the tolerance of past shallow marine ecosystems to extreme climates, we collected and...