Articles | Volume 21, issue 8
https://doi.org/10.5194/cp-21-1405-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-21-1405-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Eocene–Oligocene Transition in the Paratethys: boreal water ingression and its paleoceanographic implications
Department of Geological Engineering, Middle East Technical University, Ankara, 06800, Türkiye
present address: Geological Institute, RWTH Aachen University, Aachen, Germany
Henk Brinkhuis
Oceans Systems Research (OCS), NIOZ Royal Netherlands Institute of Sea Research, Texel, 1790 AB, the Netherlands
Department of Earth Sciences, Laboratory of Palaeobotany and Palynology, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, the Netherlands
Chiara Fioroni
Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Modena, 41121, Italy
Serdar Görkem Atasoy
Department of Geological Engineering, Middle East Technical University, Ankara, 06800, Türkiye
Alexis Licht
Aix-Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France
Dirk Nürnberg
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
Taylan Vural
Department of Geological Engineering, Middle East Technical University, Ankara, 06800, Türkiye
Related authors
No articles found.
Anjaly Govindankutty Menon, Aaron L. Bieler, Hanna Firrincieli, Rachel Alcorn, Niko Lahajnar, Catherine V. Davis, Ralf Schiebel, Dirk Nürnberg, Gerhard Schmiedl, and Nicolaas Glock
EGUsphere, https://doi.org/10.5194/egusphere-2025-1182, https://doi.org/10.5194/egusphere-2025-1182, 2025
Short summary
Short summary
The pore density (number of pores per unit area) of unicellular eukaryotes is used to reconstruct past bottom-water nitrate at the Sea of Okhotsk, the Gulf of California, the Mexican Margin and the Gulf of Guayaquil. The reconstructed bottom-water nitrate at the Sea of Okhotsk, the Gulf of California and the Gulf of Guayaquil are influenced by the intermediate water masses, while the nitrate at the Mexican Margin is related to the deglacial NO3− variability in the Pacific Deep Water.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Appy Sluijs and Henk Brinkhuis
J. Micropalaeontol., 43, 441–474, https://doi.org/10.5194/jm-43-441-2024, https://doi.org/10.5194/jm-43-441-2024, 2024
Short summary
Short summary
We present intrinsic details of dinocyst taxa and assemblages from the sole available central Arctic late Paleocene–early Eocene sedimentary succession recovered at the central Lomonosov Ridge by the Integrated Ocean Drilling Program (IODP) Expedition 302. We develop a pragmatic taxonomic framework, document critical biostratigraphic events, and propose two new genera and seven new species.
Megan A. Mueller, Alexis Licht, Andreas Möller, Cailey B. Condit, Julie C. Fosdick, Faruk Ocakoğlu, and Clay Campbell
Geochronology, 6, 265–290, https://doi.org/10.5194/gchron-6-265-2024, https://doi.org/10.5194/gchron-6-265-2024, 2024
Short summary
Short summary
Sedimentary provenance refers to the study of the origin of sedimentary rocks, tracing where sediment particles originated. Common sedimentary provenance techniques struggle to track mafic igneous and metamorphic rock sources and rutile forms in these rock types. We use rutile form ancient sedimentary rocks in Türkiye to present new recommendations and workflows for integrating rutile U–Pb ages and chemical composition into an accurate sedimentary provenance reconstruction.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Dirk Nürnberg, Akintunde Kayode, Karl J. F. Meier, and Cyrus Karas
Clim. Past, 18, 2483–2507, https://doi.org/10.5194/cp-18-2483-2022, https://doi.org/10.5194/cp-18-2483-2022, 2022
Short summary
Short summary
The Leeuwin Current to the west of Australia steers the heat exchange between the tropical and the subantarctic ocean areas. Its prominent variability during the last glacial effectively shaped the Australian ecosystem and was closely related to the dynamics of the Antarctic Circumpolar Current. At ~ 43 ka BP, the rapidly weakening Leeuwin Current, the ecological response in Australia, and human interference likely caused the extinction of the exotic Australian megafauna.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022, https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Short summary
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants describe its middle Eocene to early Oligocene increase in the Northern Hemisphere, but underlying mechanisms have not been studied in detail yet. Using climate simulations, we map global seasonality changes and show that major contemporary forcing – atmospheric CO2 lowering, Antarctic ice-sheet expansion and particularly related sea level drop – participated in this phenomenon and its spatial distribution.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
André Bahr, Monika Doubrawa, Jürgen Titschack, Gregor Austermann, Andreas Koutsodendris, Dirk Nürnberg, Ana Luiza Albuquerque, Oliver Friedrich, and Jacek Raddatz
Biogeosciences, 17, 5883–5908, https://doi.org/10.5194/bg-17-5883-2020, https://doi.org/10.5194/bg-17-5883-2020, 2020
Short summary
Short summary
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a multiproxy approach on a coral-bearing sediment core from off southeastern Brazil. Our results reveal that over the past 160 kyr, CWCs flourished during glacial high-northern-latitude cold events (Heinrich stadials). These periods were associated with anomalous wet phases on the continent enhancing terrigenous nutrient and organic-matter supply to the continental margin, boosting food supply to the CWCs.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Eveline M. Mezger, Lennart J. de Nooijer, Jacqueline Bertlich, Jelle Bijma, Dirk Nürnberg, and Gert-Jan Reichart
Biogeosciences, 16, 1147–1165, https://doi.org/10.5194/bg-16-1147-2019, https://doi.org/10.5194/bg-16-1147-2019, 2019
Short summary
Short summary
Seawater salinity is an important factor when trying to reconstruct past ocean conditions. Foraminifera, small organisms living in the sea, produce shells that incorporate more Na at higher salinities. The accuracy of reconstructions depends on the fundamental understanding involved in the incorporation and preservation of the original Na of the shell. In this study, we unravel the Na composition of different components of the shell and describe the relative contribution of these components.
Anna Jentzen, Dirk Nürnberg, Ed C. Hathorne, and Joachim Schönfeld
Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, https://doi.org/10.5194/bg-15-7077-2018, 2018
Jacqueline Bertlich, Dirk Nürnberg, Ed C. Hathorne, Lennart J. de Nooijer, Eveline M. Mezger, Markus Kienast, Steffanie Nordhausen, Gert-Jan Reichart, Joachim Schönfeld, and Jelle Bijma
Biogeosciences, 15, 5991–6018, https://doi.org/10.5194/bg-15-5991-2018, https://doi.org/10.5194/bg-15-5991-2018, 2018
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Timme H. Donders, Niels A. G. M. van Helmond, Roel Verreussel, Dirk Munsterman, Johan ten Veen, Robert P. Speijer, Johan W. H. Weijers, Francesca Sangiorgi, Francien Peterse, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Lucas Lourens, Gesa Kuhlmann, and Henk Brinkhuis
Clim. Past, 14, 397–411, https://doi.org/10.5194/cp-14-397-2018, https://doi.org/10.5194/cp-14-397-2018, 2018
Short summary
Short summary
The buildup and melting of ice during the early glaciations in the Northern Hemisphere, around 2.5 million years ago, were far shorter in duration than during the last million years. Based on molecular compounds and microfossils from sediments dating back to the early glaciations we show that the temperature on land and in the sea changed simultaneously and was a major factor in the ice buildup in the Northern Hemisphere. These data provide key insights into the dynamics of early glaciations.
Johan Vellekoop, Lineke Woelders, Sanem Açikalin, Jan Smit, Bas van de Schootbrugge, Ismail Ö. Yilmaz, Henk Brinkhuis, and Robert P. Speijer
Biogeosciences, 14, 885–900, https://doi.org/10.5194/bg-14-885-2017, https://doi.org/10.5194/bg-14-885-2017, 2017
Short summary
Short summary
The Cretaceous–Paleogene boundary, ~ 66 Ma, is characterized by a mass extinction. We studied groups of both surface-dwelling and bottom-dwelling organisms to unravel the oceanographic consequences of these extinctions. Our integrated records indicate that a reduction of the transport of organic matter to the sea floor resulted in enhanced recycling of nutrients in the upper water column and decreased food supply at the sea floor in the first tens of thousands of years after the extinctions.
Niels A. G. M. van Helmond, Appy Sluijs, Nina M. Papadomanolaki, A. Guy Plint, Darren R. Gröcke, Martin A. Pearce, James S. Eldrett, João Trabucho-Alexandre, Ireneusz Walaszczyk, Bas van de Schootbrugge, and Henk Brinkhuis
Biogeosciences, 13, 2859–2872, https://doi.org/10.5194/bg-13-2859-2016, https://doi.org/10.5194/bg-13-2859-2016, 2016
Short summary
Short summary
Over the past decades large changes have been observed in the biogeographical dispersion of marine life resulting from climate change. To better understand present and future trends it is important to document and fully understand the biogeographical response of marine life during episodes of environmental change in the geological past.
Here we investigate the response of phytoplankton, the base of the marine food web, to a rapid cold spell, interrupting greenhouse conditions during the Cretaceous.
N. A. G. M. van Helmond, A. Sluijs, J. S. Sinninghe Damsté, G.-J. Reichart, S. Voigt, J. Erbacher, J. Pross, and H. Brinkhuis
Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015, https://doi.org/10.5194/cp-11-495-2015, 2015
Short summary
Short summary
Based on the chemistry and microfossils preserved in sediments deposited in a shallow sea, in the current Lower Saxony region (NW Germany), we conclude that changes in Earth’s orbit around the Sun led to enhanced rainfall and organic matter production. The additional supply of organic matter, depleting oxygen upon degradation, and freshwater, inhibiting the mixing of oxygen-rich surface waters with deeper waters, caused the development of oxygen-poor waters about 94 million years ago.
L. Contreras, J. Pross, P. K. Bijl, R. B. O'Hara, J. I. Raine, A. Sluijs, and H. Brinkhuis
Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, https://doi.org/10.5194/cp-10-1401-2014, 2014
L. Max, L. Lembke-Jene, J.-R. Riethdorf, R. Tiedemann, D. Nürnberg, H. Kühn, and A. Mackensen
Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, https://doi.org/10.5194/cp-10-591-2014, 2014
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014, https://doi.org/10.5194/bg-11-977-2014, 2014
J.-R. Riethdorf, D. Nürnberg, L. Max, R. Tiedemann, S. A. Gorbarenko, and M. I. Malakhov
Clim. Past, 9, 1345–1373, https://doi.org/10.5194/cp-9-1345-2013, https://doi.org/10.5194/cp-9-1345-2013, 2013
Related subject area
Subject: Ocean Dynamics | Archive: Marine Archives | Timescale: Cenozoic
Mean ocean temperature change and decomposition of the benthic δ18O record over the past 4.5 million years
Impact of the Late Miocene Cooling on the loss of coral reefs in the Central Indo-Pacific
Nonlinear increase in seawater 87Sr ∕ 86Sr in the Oligocene to early Miocene and implications for climate-sensitive weathering
Limited exchange between the deep Pacific and Atlantic oceans during the warm mid-Pliocene and Marine Isotope Stage M2 “glaciation”
Late Cenozoic sea-surface-temperature evolution of the South Atlantic Ocean
Buoyancy forcing: a key driver of northern North Atlantic sea surface temperature variability across multiple timescales
Lipid-biomarker-based sea surface temperature record offshore Tasmania over the last 23 million years
Late Neogene nannofossil assemblages as tracers of ocean circulation and paleoproductivity over the NW Australian shelf
Plio-Pleistocene Perth Basin water temperatures and Leeuwin Current dynamics (Indian Ocean) derived from oxygen and clumped-isotope paleothermometry
Temperate Oligocene surface ocean conditions offshore of Cape Adare, Ross Sea, Antarctica
A revised mid-Pliocene composite section centered on the M2 glacial event for ODP Site 846
Lessons from a high-CO2 world: an ocean view from ∼ 3 million years ago
Late Pliocene Cordilleran Ice Sheet development with warm northeast Pacific sea surface temperatures
Understanding the mechanisms behind high glacial productivity in the southern Brazilian margin
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX86-based sea surface temperature reconstructions
Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 2: Insights from Oligocene–Miocene dinoflagellate cyst assemblages
Variations in Mediterranean–Atlantic exchange across the late Pliocene climate transition
Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma
Constraints on ocean circulation at the Paleocene–Eocene Thermal Maximum from neodymium isotopes
Expansion and diversification of high-latitude radiolarian assemblages in the late Eocene linked to a cooling event in the southwest Pacific
Microfossil evidence for trophic changes during the Eocene–Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge)
A major change in North Atlantic deep water circulation 1.6 million years ago
Contribution of changes in opal productivity and nutrient distribution in the coastal upwelling systems to Late Pliocene/Early Pleistocene climate cooling
Productivity response of calcareous nannoplankton to Eocene Thermal Maximum 2 (ETM2)
Technical note: Late Pliocene age control and composite depths at ODP Site 982, revisited
Pliocene three-dimensional global ocean temperature reconstruction
Peter U. Clark, Jeremy D. Shakun, Yair Rosenthal, Chenyu Zhu, Patrick J. Bartlein, Jonathan M. Gregory, Peter Köhler, Zhengyu Liu, and Daniel P. Schrag
Clim. Past, 21, 973–1000, https://doi.org/10.5194/cp-21-973-2025, https://doi.org/10.5194/cp-21-973-2025, 2025
Short summary
Short summary
We reconstruct changes in mean ocean temperature (ΔMOT) over the last 4.5 Myr. We find that the ratio of ΔMOT to changes in global mean sea surface temperature was around 0.5 before the Middle Pleistocene transition but was 1 thereafter. We subtract our ΔMOT reconstruction from the global δ18O record to derive the δ18O of seawater. Finally, we develop a theoretical understanding of why the ratio of ΔMOT / ΔGMSST changed over the Plio-Pleistocene.
Benjamin F. Petrick, Lars Reuning, Miriam Pfeiffer, Gerald Auer, and Lorenz Schwark
Clim. Past, 21, 405–417, https://doi.org/10.5194/cp-21-405-2025, https://doi.org/10.5194/cp-21-405-2025, 2025
Short summary
Short summary
It is known that coral reefs were absent in the central Indo-Pacific during the Early Pliocene. This study uses a new temperature record based on TEX86H biomarkers from the Coral Sea between 11–2 Ma to show a 2 °C cooling in the central Indo-Pacific during the Late Miocene Cooling (7–5.4 Ma). This cooling triggered changes in terrestrial input, ocean circulation, and temperature. These multiple stressors could have caused reef collapses across the central Indo-Pacific.
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Anna Hauge Braaten, Kim A. Jakob, Sze Ling Ho, Oliver Friedrich, Eirik Vinje Galaasen, Stijn De Schepper, Paul A. Wilson, and Anna Nele Meckler
Clim. Past, 19, 2109–2125, https://doi.org/10.5194/cp-19-2109-2023, https://doi.org/10.5194/cp-19-2109-2023, 2023
Short summary
Short summary
In the context of understanding current global warming, the middle Pliocene (3.3–3.0 million years ago) is an important interval in Earth's history because atmospheric carbon dioxide concentrations were similar to levels today. We have reconstructed deep-sea temperatures at two different locations for this period, and find that a very different mode of ocean circulation or mixing existed, with important implications for how heat was transported in the deep ocean.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Bjørg Risebrobakken, Mari F. Jensen, Helene R. Langehaug, Tor Eldevik, Anne Britt Sandø, Camille Li, Andreas Born, Erin Louise McClymont, Ulrich Salzmann, and Stijn De Schepper
Clim. Past, 19, 1101–1123, https://doi.org/10.5194/cp-19-1101-2023, https://doi.org/10.5194/cp-19-1101-2023, 2023
Short summary
Short summary
In the observational period, spatially coherent sea surface temperatures characterize the northern North Atlantic at multidecadal timescales. We show that spatially non-coherent temperature patterns are seen both in further projections and a past warm climate period with a CO2 level comparable to the future low-emission scenario. Buoyancy forcing is shown to be important for northern North Atlantic temperature patterns.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Boris-Theofanis Karatsolis and Jorijntje Henderiks
Clim. Past, 19, 765–786, https://doi.org/10.5194/cp-19-765-2023, https://doi.org/10.5194/cp-19-765-2023, 2023
Short summary
Short summary
Ocean circulation around NW Australia plays a key role in regulating the climate in the area and is characterised by seasonal variations in the activity of a major boundary current named the Leeuwin Current. By investigating nannofossils found in sediment cores recovered from the NW Australian shelf, we reconstructed ocean circulation in the warmer-than-present world from 6 to 3.5 Ma, as mirrored by long-term changes in stratification and nutrient availability.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Timothy D. Herbert, Rocio Caballero-Gill, and Joseph B. Novak
Clim. Past, 17, 1385–1394, https://doi.org/10.5194/cp-17-1385-2021, https://doi.org/10.5194/cp-17-1385-2021, 2021
Short summary
Short summary
The Pliocene represents a geologically warm period with polar ice restricted to the Antarctic. Nevertheless, variability and ice volume persisted in the Pliocene. This work revisits a classic site on which much of our understanding of Pliocene paleoclimate variability is based and corrects errors in data sets related to ice volume and ocean surface temperature. In particular, it generates an improved representation of an enigmatic glacial episode in Pliocene times (circa 3.3 Ma).
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Maria Luisa Sánchez-Montes, Erin L. McClymont, Jeremy M. Lloyd, Juliane Müller, Ellen A. Cowan, and Coralie Zorzi
Clim. Past, 16, 299–313, https://doi.org/10.5194/cp-16-299-2020, https://doi.org/10.5194/cp-16-299-2020, 2020
Short summary
Short summary
In this paper, we present new climate reconstructions in SW Alaska from recovered marine sediments in the Gulf of Alaska. We find that glaciers reached the Gulf of Alaska during a cooling climate 2.9 million years ago, and after that the Cordilleran Ice Sheet continued growing during a global drop in atmospheric CO2 levels. Cordilleran Ice Sheet growth could have been supported by an increase in heat supply to the SW Alaska and warm ocean evaporation–mountain precipitation mechanisms.
Rodrigo da Costa Portilho-Ramos, Tainã Marcos Lima Pinho, Cristiano Mazur Chiessi, and Cátia Fernandes Barbosa
Clim. Past, 15, 943–955, https://doi.org/10.5194/cp-15-943-2019, https://doi.org/10.5194/cp-15-943-2019, 2019
Short summary
Short summary
Fossil microorganisms from the last glacial found in marine sediments collected off southern Brazil suggest that more productive austral summer upwelling and more frequent austral winter incursions of nutrient-rich waters from the Plata River boosted regional productivity year-round. While upwelling was more productive due to the higher silicon content from the Southern Ocean, more frequent riverine incursions were modulated by stronger alongshore southwesterly winds.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Ángela García-Gallardo, Patrick Grunert, and Werner E. Piller
Clim. Past, 14, 339–350, https://doi.org/10.5194/cp-14-339-2018, https://doi.org/10.5194/cp-14-339-2018, 2018
Short summary
Short summary
We study the variability in Mediterranean–Atlantic exchange, focusing on the surface Atlantic inflow across the mid-Pliocene warm period and the onset of the Northern Hemisphere glaciation, still unresolved by previous works. Oxygen isotope gradients between both sides of the Strait of Gibraltar reveal weak inflow during warm periods that turns stronger during severe glacials and the start of a negative feedback between exchange at the Strait and the Atlantic Meridional Overturning Circulation.
Roy H. Wilkens, Thomas Westerhold, Anna J. Drury, Mitchell Lyle, Thomas Gorgas, and Jun Tian
Clim. Past, 13, 779–793, https://doi.org/10.5194/cp-13-779-2017, https://doi.org/10.5194/cp-13-779-2017, 2017
Short summary
Short summary
Here we introduce the Code for Ocean Drilling Data (CODD), a unified and consistent system for integrating disparate data streams such as micropaleontology, physical properties, core images, geochemistry, and borehole logging. As a test case, data from Ocean Drilling Program Leg 154 (Ceara Rise – western equatorial Atlantic) were assembled into a new regional composite benthic stable isotope record covering the last 5 million years.
April N. Abbott, Brian A. Haley, Aradhna K. Tripati, and Martin Frank
Clim. Past, 12, 837–847, https://doi.org/10.5194/cp-12-837-2016, https://doi.org/10.5194/cp-12-837-2016, 2016
Short summary
Short summary
The Paleocene-Eocene Thermal Maximum (PETM) was a brief period when the Earth was in an extreme greenhouse state. We use neodymium isotopes to suggest that during this time deep-ocean circulation was distinct in each basin (North and South Atlanic, Southern, Pacific) with little exchange between. Moreover, the Pacific data show the most variability, suggesting this was a critical region possibly involved in both PETM triggering and remediation.
K. M. Pascher, C. J. Hollis, S. M. Bohaty, G. Cortese, R. M. McKay, H. Seebeck, N. Suzuki, and K. Chiba
Clim. Past, 11, 1599–1620, https://doi.org/10.5194/cp-11-1599-2015, https://doi.org/10.5194/cp-11-1599-2015, 2015
Short summary
Short summary
Radiolarian taxa with high-latitude affinities are present from at least the middle Eocene in the SW Pacific and become very abundant in the late Eocene at all investigated sites. A short incursion of low-latitude taxa is observed during the MECO and late Eocene warming event at Site 277. Radiolarian abundance, diversity and taxa with high-latitude affinities increase at Site 277 in two steps in the latest Eocene due to climatic cooling and expansion of cold water masses.
M. Bordiga, J. Henderiks, F. Tori, S. Monechi, R. Fenero, A. Legarda-Lisarri, and E. Thomas
Clim. Past, 11, 1249–1270, https://doi.org/10.5194/cp-11-1249-2015, https://doi.org/10.5194/cp-11-1249-2015, 2015
Short summary
Short summary
Deep-sea sediments at ODP Site 1263 (Walvis Ridge, South Atlantic) show that marine calcifying algae decreased in abundance and size at the Eocene-Oligocene boundary, when the Earth transitioned from a greenhouse to a more glaciated and cooler climate. This decreased the food supply for benthic foraminifer communities. The plankton rapidly responded to fast-changing conditions, such as seasonal nutrient availability, or to threshold-levels in pCO2, cooling and ocean circulation.
N. Khélifi and M. Frank
Clim. Past, 10, 1441–1451, https://doi.org/10.5194/cp-10-1441-2014, https://doi.org/10.5194/cp-10-1441-2014, 2014
J. Etourneau, C. Ehlert, M. Frank, P. Martinez, and R. Schneider
Clim. Past, 8, 1435–1445, https://doi.org/10.5194/cp-8-1435-2012, https://doi.org/10.5194/cp-8-1435-2012, 2012
M. Dedert, H. M. Stoll, D. Kroon, N. Shimizu, K. Kanamaru, and P. Ziveri
Clim. Past, 8, 977–993, https://doi.org/10.5194/cp-8-977-2012, https://doi.org/10.5194/cp-8-977-2012, 2012
N. Khélifi, M. Sarnthein, and B. D. A. Naafs
Clim. Past, 8, 79–87, https://doi.org/10.5194/cp-8-79-2012, https://doi.org/10.5194/cp-8-79-2012, 2012
H. J. Dowsett, M. M. Robinson, and K. M. Foley
Clim. Past, 5, 769–783, https://doi.org/10.5194/cp-5-769-2009, https://doi.org/10.5194/cp-5-769-2009, 2009
Cited articles
Abels, H. A., Dupont-Nivet, G., Xiao, G., Bosboom, R., and Krijgsman, W.: Step-wise change of Asian interior climate preceding the Eocene–Oligocene Transition (EOT), Palaeogeogr. Palaeocl., 299, 399–412, https://doi.org/10.1016/j.palaeo.2010.11.028, 2011.
Abelson, M. and Erez, J.: The onset of modern-like Atlantic meridional overturning circulation at the Eocene-Oligocene transition: Evidence, causes, and possible implications for global cooling, Geochem. Geophy. Geosy., 18, 2177–2199, https://doi.org/10.1002/2017GC006826, 2017.
Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Palike, H., Backman, J., and Rio, D.: Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes, Newsl. Stratigr., 47, 131–181, https://doi.org/10.1127/0078-0421/2014/0042, 2014.
Aubry, M. P.: Late Paleogene Calcareous Nannoplankton Evolution: A Tale of Climatic Deterioration, in: Eocene-Oligocene Climatic and biotic evolution, edited by: Prothero D. R. and Berggren W. A., Princeton University Press, Princeton, USA, 272–309, http://www.jstor.org/stable/j.ctt7zvp65.18, 1992.
Auer, G., Piller, W. E., and Harzhauser, M.: High-resolution calcareous nannoplankton palaeoecology as a proxy for small-scale environmental changes in the Early Miocene, Mar. Micropaleontol., 111, 53–65, https://doi.org/10.1016/j.marmicro.2014.06.005, 2014.
Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., and Dijkstra, H. A.: The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5, Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, 2020.
Backman, J.: Quantitative Calcareous Nannofossil Biochronology of Middle Eocene through Early Oligocene Sediment from DSDP Sites 522 and 523, Abh. Geol. Bundesanst., 39, 21–31, 1987.
Barrier, E., Vrielynck, B., Brouillet, J. F., and Brunet, M. F.: Paleotectonic Reconstruction of the Central Tethyan Realm. Tectonono-Sedimentary-Palinspastic maps from Late Permian to Pliocene, Paris, Atlas of 20 maps (scale: 1 15 000 000), http://www.ccgm.org (last access: 12 November 2024), 2018.
Bartol, M., Pavšič, J., Dobnikar, M., and Bernasconi, S. M.: Unusual Braarudosphaera bigelowii and Micrantholithus vesper enrichment in the Early Miocene sediments from the Slovenian Corridor, a seaway linking the Central Paratethys and the Mediterranean, Palaeogeogr. Palaeocl., 267, 77–88, https://doi.org/10.1016/j.palaeo.2008.06.005, 2008.
Bati, Z.: Dinoflagellate cyst biostratigraphy of the upper Eocene and lower Oligocene of the Kirmizitepe Section, Azerbaijan, South Caspian Basin, Rev. Palaeobot. Palyno. 217, 9–38, https://doi.org/10.1016/j.revpalbo.2015.03.002, 2015.
Bijl, P. K., Brinkhuis, H., Egger, L. M., Eldrett, J. S., Frieling, J., Grothe, A., Houben, A. J. P., Pross, J., Śliwińska, K. K., and Sluijs, A.: Comment on “Wetzeliella and its allies–the “hole” story: a taxonomic revision of the Paleogene dinoflagellate subfamily Wetzelielloideae” by Williams et al. (2015), Palynology, 41, 423–429, https://doi.org/10.1080/01916122.2016.1235056, 2017.
Brinkhuis, H.: Late Eocene to early Oligocene dinoflagellate cysts from the Priabonian type-area (Northeast Italy): biostratigraphy and paleoenvironmental interpretation, Palaeogeogr. Palaeocl., 107, 121–163, https://doi.org/10.1016/0031-0182(94)90168-6, 1994.
Brinkhuis, H. and Biffi, U.: Dinoflagellate cyst stratigraphy of the Eocene/Oligocene transition in central Italy, Mar. Micropaleontol., 22, 131–183, https://doi.org/10.1016/0377-8398(93)90007-K, 1993.
Brinkhuis, H. and Visscher, H.: The upper boundary of the Eocene Series: a reappraisal based on dinoflagellate cyst biostratigraphy and sequence stratigraphy, in: Geochronology, Time Scales and Global Stratigraphic Correlation, edited by: Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., SEPM, Special Publication, SEPM Society for Sedimentary Geology, 54, 295–304, https://doi.org/10.2110/pec.95.04.0295, 1995.
Brinkhuis, H., Schouten, S., Collinson, M. E., Sluijs, A., Damsté, J. S. S., Dickens, G. R., Huber, M., Cronin, T. M., Onodera, J., Takahashi, K., Bujak, J. P., Stein, R., van der Burgh, J., Eldrett, J. S., Harding, I. C., Lotter, A. F., Sangiorgi, F., van Konijnenburg-van Cittert, H., de Leeuw, J. W., Matthiessen, J., Backman, J., Moran, K., and Expedition 302 Scientists: Episodic fresh surface waters in the Eocene Arctic Ocean, Nature, 441, 606–609, https://doi.org/10.1038/nature04692, 2006.
Bordiga, M., Henderiks, J., Tori, F., Monechi, S., Fenero, R., Legarda-Lisarri, A., and Thomas, E.: Microfossil evidence for trophic changes during the Eocene–Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge), Clim. Past, 11, 1249–1270, https://doi.org/10.5194/cp-11-1249-2015, 2015.
Boulila, S., Dupont-Nivet, G., Galbrun, B., Bauer, H., and Châteauneuf, J.-J.: Age and driving mechanisms of the Eocene–Oligocene transition from astronomical tuning of a lacustrine record (Rennes Basin, France), Clim. Past, 17, 2343–2360, https://doi.org/10.5194/cp-17-2343-2021, 2021.
Bown, P. R.: Palaeogene calcareous nannofossils from the Kilwa and Lindi areas of coastal Tanzania (Tanzania Drilling Project Sites 1 to 10, 2003-4), J. Nannoplankton Res., 27, 21–95, https://doi.org/10.58998/jnr2031, 2005.
Bown, P. R. and Pearson, P.: Calcareous plankton evolution and the Paleocene/Eocene thermal maximum event: New evidence from Tanzaniam, Mar. Micropaleontol., 71, 60–70, https://doi.org/10.1016/j.marmicro.2009.01.005, 2009.
Bown, P. R. and Young, J. R.: Techniques, in: Calcareous nannofossil biostratigraphy, edited by: Bown, P. R., Chapman & Hall, Cambridge, UK, 16–28, ISBN 0-412-78970-1, 1998.
Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene-Oligocene boundary GSSP, in: The Late Eocene Earth-Hothouse, Icehouse, and Impacts, edited by: Koeberl, C. and Montanari, A., Geol. Soc. Am. Bull., 452, 1–19, https://doi.org/10.1130/2009.2452(08), 2009.
Catanzariti, R., Rio, D., and Martelli, L.: Late Eocene to Oligocene calcareous nannofossil Biostratigraphy in Northern Apennines: the Ranzano sandstone, Mem. Sci. Geol., 49, 207–253, 1997.
Cattò, S., Cavazza, W., Zattin, M., and Okay, A. I.: No significant Alpine tectonic overprint on the Cimmerian Strandja Massif (SE Bulgaria and NW Turkey), Int. Geol. Rev., 60, 513–529, https://doi.org/10.1080/00206814.2017.1350604, 2018.
Catuneanu, O. (Ed.): Principles of sequence stratigraphy, Elsevier, Amsterdam, the Netherlands, 375 pp., ISBN 9780444515681, 2006.
Caves, J. K., Jost, A. B., Lau, K. V., and Maher, K.: Cenozoic carbon cycle imbalances and a variable weathering feedback, Earth Planet Sc. Lett., 450, 152–163, https://doi.org/10.1016/j.epsl.2016.06.035, 2016.
Chekar, M., Slimani, H., Jbari, H., Guédé, K. E., Mahboub, I., Asebriy, L., and Aassoumi, H.: Eocene to Oligocene dinoflagellate cysts from the Tattofte section, western External Rif, northwestern Morocco: Biostratigraphy, paleoenvironments and paleoclimate, Palaeogeogr. Palaeocl., 507, 97–114, https://doi.org/10.1016/j.palaeo.2018.07.004, 2018.
Coxall, H. K. and Pearson, P. N.: The Eocene-Oligocene transition, in: Deep Time Perspectives on Climate Change: Marrying the Signal From Computer Models and Biological Proxies, edited by: Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N, The Micropalaeontological Society, Special Publications, Geological Society of London, 2, 351–387, https://doi.org/10.1144/TMS002.16, 2007.
Coxall, H. K. and Wilson, P. A.: Early Oligocene glaciation and productivity in the eastern equatorial Pacific: Insights into global carbon cycling, Paleoceanography, 26, 1–18, https://doi.org/10.1029/2010PA002021, 2011.
Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J.: Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean, Nature, 433, 53–57, https://doi.org/10.1038/nature03135, 2005.
Coxall, H. K., Huck, C. E., Huber, M., Lear, C. H., Legarda-Lisarri, A., O'regan, M., Sliwinska, K. K., van de Flierdt, T., de Boer, A. M., Zachos, J. C., and Backman, J.: Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation, Nat. Geosci., 11, 190–196, https://doi.org/10.1038/s41561-018-0069-9, 2018.
Cramwinckel, M. J., Coxall, H. K., Śliwińska, K. K., Polling, M., Harper, D. T., Bijl, P. K., Brinkhuis, H., Eldrett, J. S., Houben, A. J. P., Peterse, F., Schouten, S., Reichart, G.-J., Zachos, J. C., and Sluijs, A.: A warm, stratified, and restricted Labrador Sea across the Middle Eocene and its climatic optimum, Paleoceanogr. Paleocl., 35, 1–27, https://doi.org/10.1029/2020PA003932, 2020.
Cunha, A. S. and Shimabukuro, S.: Braarudosphaera blooms and anomalous enrichments of Nannoconus: Evidence from the Turonian South Atlantic, Santos Basin, Brazil, J. Nannoplankton Res., 19, 51–55, https://doi.org/10.58998/jnr2217, 1997.
Dall'Antonia, B., Bossio, A., and Guernet, C.: The Eocene/Oligocene boundary and the psychrospheric event in the Tethys as recorded by deep-sea ostracods from the Massignano Global Boundary Stratotype Section and Point, Central Italy, Mar. Micropaleontol., 48, 91–106, https://doi.org/10.1016/S0377-8398(02)00163-9, 2003.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, https://doi.org/10.3402/tellusa.v16i4.8993, 1964.
De Kaenel, E. and Villa, G.: Oligocene-Miocene calcareous nannofossil biostratigraphy and paleoecology from the Iberia Abyssal Plain, in: Proceedings-Ocean Drilling Program Scientific Results vol. 149, edited by: Whitmarsh, R. B., Sawyer, D. S., Klaus, A., and Masson, D. G., College Station, TX, 79–146, https://doi.org/10.2973/odp.proc.sr.149.208.1996, 1996.
De Lira Mota, M. A., Dunkley Jones, T., Sulaiman, N., Edgar, K. M., Yamaguchi, T., Leng, M. J., Adloff, M., Greene, S. E., Norris, R., Warren, B., Duffy, G., Farrant, J., Murayama, M., Hall, J., and Bendle, J.: Multi-proxy evidence for sea level fall at the onset of the Eocene-Oligocene transition, Nat. Commun., 14, 4748, https://doi.org/10.1038/s41467-023-39806-6, 2023.
Dickson, A. J., Bagard, M. L., Katchinoff, J. A., Davies, M., Poulton, S. W., and Cohen, A. S.: Isotopic constraints on ocean redox at the end of the Eocene, Earth Planet Sc. Lett., 562, 116814, https://doi.org/10.1016/j.epsl.2021.116814, 2021.
Diester-Haass, L. and Zahn, R.: Eocene-Oligocene transition in the Southern Ocean: History of water mass circulation and biological productivity, Geology, 24, 163–166, https://doi.org/10.1130/0091-7613(1996)024<0163:EOTITS>2.3.CO;2, 1996.
Dohmann, L.: Die unteroligozänen Fischschiefer im Molassebecken, Dissertation, Ludwig-Maximilian-Universität, Munich, Germany, 365 pp., 1991.
Dunkley Jones, T., Bown, P. R., Pearson, P. N., Wade, B. S., Coxall, H. K., and Lear, C. H.: Major shifts in calcareous phytoplankton assemblages through the Eocene-Oligocene transition of Tanzania and their implications for low-latitude primary production, Paleoceanography, 23, 1–14, https://doi.org/10.1029/2008PA001640, 2008.
El Beialy, S. Y., Head, M. J., El Atfy, H., and El Khoriby, E. M.: Dinoflagellate cyst evidence for the age and palaeoenvironments of the Upper Eocene–Oligocene Dabaa Formation, Qattara Depression, north Western Desert, Egypt, Palynology, 43, 268–291, https://doi.org/10.1080/01916122.2018.1434696, 2019.
Eldrett, J. S., Harding, I. C., Firth, J. V., and Roberts, A. P.: Magnetostratigraphic calibration of Eocene–Oligocene dinoflagellate cyst biostratigraphy from the Norwegian–Greenland Sea, Mar. Geol., 204, 91–127, https://doi.org/10.1016/S0025-3227(03)00357-8, 2004.
Eldrett, J. S., Greenwood, D. R., Harding, I. C., and Huber, M.: Increased seasonality through the Eocene to Oligocene transition in northern high latitudes, Nature, 459, 969–973, https://doi.org/10.1038/nature08069, 2009.
Ferreira, E. P., Alves, C. F., Sanjinés, A. E. S., and Alves, M. C.: Ascidian spicules of Quaternary sediments from the lower slope of the Campos Basin (Brazil), Quatern. Int., 508, 116–124, https://doi.org/10.1016/j.quaint.2018.11.008, 2019.
Fioroni, C., Villa, G., Persico, D., and Jovane, L.: Middle Eocene-Lower Oligocene calcareous nannofossil biostratigraphy and paleoceanographic implications from Site 711 (equatorial Indian Ocean), Mar. Micropaleontol., 118, 50–62, https://doi.org/10.1016/j.marmicro.2015.06.001, 2015.
Frieling, J. and Sluijs, A.: Towards quantitative environmental reconstructions from ancient non-analogue microfossil assemblages: Ecological preferences of Paleocene–Eocene dinoflagellates, Earth-Sci. Rev., 185, 956–973, https://doi.org/10.1016/j.earscirev.2018.08.014, 2018.
Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev. Earth Planet. Sc., 24, 225–262, https://doi.org/10.1146/annurev.earth.24.1.225, 1996.
Gavrilov, Y. O., Shchepetova, E. V., Shcherbinina, E. A., Golovanova, O. V., Nedumov, R. I., and Pokrovsky, B. G.: Sedimentary environments and geochemistry of Upper Eocene and Lower Oligocene rocks in the northeastern Caucasus, Lithol. Miner. Resour., 52, 447–466, https://doi.org/10.1134/S0024490217060037, 2017.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. E. (Eds.): The geologic time scale, Boston, USA, 1144 pp., ISBN 978-0-444-59425-9, 2012.
Guerreiro, C., Cachão, M., and Drago, T.: Calcareous nannoplankton as a tracer of the marine influence on the NW coast of Portugal over the last 14000 years, J. Nannoplankton Res., 27, 159–172, https://doi.org/10.58998/jnr2107, 2005.
Haidar, A. T. and Thierstein, H. R.: Coccolithophore dynamics off Bermuda (N. Atlantic), Deep-Sea Res. Pt. II, 48, 1925–1956, https://doi.org/10.1016/S0967-0645(00)00169-7, 2001.
Haq, B. U.: Biogeographic history of Miocene calcareous nannoplankton and paleoceanography of the Atlantic Ocean, Micropaleontology, 26, 414–443, https://doi.org/10.2307/1485353, 1980.
Hegewald, A. and Jokat, W.: Relative sea level variations in the Chukchi region-Arctic Ocean-since the late Eocene, Geophys. Res. Lett., 40, 803–807, https://doi.org/10.1002/grl.50182, 2013.
Hou, M., Zhuang, G., Ellwood, B. B., Liu, X. L., and Wu, M.: Enhanced precipitation in the Gulf of Mexico during the Eocene–Oligocene transition driven by interhemispherical temperature asymmetry, Geol. Soc. Am. Bull., 134, 2335–2344, https://doi.org/10.1130/B36103.1, 2022.
Houben, A. J., van Mourik, C. A., Montanari, A., Coccioni, R., and Brinkhuis, H.: The Eocene–Oligocene transition: Changes in sea level, temperature or both?, Palaeogeogr. Palaeocl., 335, 75–83, https://doi.org/10.1016/j.palaeo.2011.04.008, 2012.
Hutchinson, D. K., de Boer, A. M., Coxall, H. K., Caballero, R., Nilsson, J., and Baatsen, M.: Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1, Clim. Past, 14, 789–810, https://doi.org/10.5194/cp-14-789-2018, 2018.
Hutchinson, D. K., Coxall, H. K., O'Regan, M., Nilsson, J., Caballero, R., and de Boer, A. M.: Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition, Nat. Commun., 10, 3797, https://doi.org/10.1038/s41467-019-11828-z, 2019.
Hutchinson, D. K., Coxall, H. K., Lunt, D. J., Steinthorsdottir, M., de Boer, A. M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-Asser, A. T., Kunzmann, L., Ladant, J.-B., Lear, C. H., Moraweck, K., Pearson, P. N., Piga, E., Pound, M. J., Salzmann, U., Scher, H. D., Sijp, W. P., Śliwińska, K. K., Wilson, P. A., and Zhang, Z.: The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons, Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, 2021.
Hyeong, K., Kuroda, J., Seo, I., and Wilson, P. A.: Response of the Pacific inter-tropical convergence zone to global cooling and initiation of Antarctic glaciation across the Eocene Oligocene Transition, Sci. Rep., 6, 30647, https://doi.org/10.1038/srep30647, 2016.
Iakovleva, A. I.: Organic walled dinoflagellate cyst biostratigraphy of the Bartonian/Priabonian GSSP Alano di Piave section, NE Italy, Rev. Palaeobot. Palyno., 332, 105233, https://doi.org/10.1016/j.revpalbo.2024.105233, 2025.
Iakovleva, A. I., Zakrevskaya, E. Y., and Shcherbinina, E. A.: Middle Eocene to earliest Oligocene dinoflagellate cysts from southern Armenia: biostratigraphy and palaeoecology, Palynology, 48, 2343902, https://doi.org/10.1080/01916122.2024.2343902, 2024.
Jaramillo-Vogel, D., Strasser, A., Frijia, G., and Spezzaferri, S.: Neritic isotope and sedimentary records of the Eocene–Oligocene greenhouse–icehouse transition: The Calcare di Nago Formation (northern Italy) in a global context, Palaeogeogr. Palaeocl., 369, 361–376, https://doi.org/10.1016/j.palaeo.2012.11.003, 2013.
Jarsve, E. M., Eidvin, T., Nystuen, J. P., Faleide, J. I., Gabrielsen, R. H., and Thyberg, B. I.: The Oligocene succession in the eastern North Sea: basin development and depositional systems, Geol. Mag., 152, 668–693, https://doi.org/10.1017/S0016756814000570, 2015.
Jones, A. P., Dunkley Jones, T., Coxall, H., Pearson, P. N., Nala, D., and Hoggett, M.: Low-latitude calcareous nannofossil response in the Indo-Pacific warm pool across the Eocene-Oligocene transition of Java, Indonesia, Paleoceanogr. Paleocl., 34, 1833–1847, https://doi.org/10.1029/2019PA003597, 2019.
Jovane, L., Florindo, F., Sprovieri, M., and Pälike, H.: Astronomic calibration of the late Eocene/early Oligocene Massignano section (central Italy), Geochem. Geophy. Geosy., 7, 1–10, https://doi.org/10.1029/2005GC001195, 2006.
Jovane, L., Sprovieri, M., Florindo, F., Acton, G., Coccioni, R., Dall'Antonia, B., and Dinarès-Turell, J.: Eocene-Oligocene paleoceanographic changes in the stratotype section, Massignano, Italy: Clues from rock magnetism and stable isotopes, J. Geophys. Res.-Sol. Ea., 112, B11101, https://doi.org/10.1029/2007JB004963, 2007.
Katz, M. E., Miller, K. G., Wright, J. D., Wade, B. S., Browning, J. V., Cramer, B. S., and Rosenthal, Y.: Stepwise transition from the Eocene greenhouse to the Oligocene icehouse, Nat. Geosci, 1, 329–334, https://doi.org/10.1038/ngeo179, 2008.
Kim, S. L., Eberle, J. J., Bell, D. M., Fox, D. A., and Padilla, A.: Evidence from shark teeth for a brackish Arctic Ocean in the Eocene greenhouse, Geology, 42, 695–698, https://doi.org/10.1130/G35675.1, 2014.
Kocsis, L., Ozsvárt, P., Becker, D., Ziegler, R., Scherler, L., and Codrea, V.: Orogeny forced terrestrial climate variation during the late Eocene–early Oligocene in Europe, Geology, 42, 727–730, https://doi.org/10.1130/G35673.1, 2014.
Konno, S., Harada, N., Narita, H., and Jordan, R. W.: Living Braarudosphaera bigelowii (Gran & Braarud) Deflandre in the Bering Sea, J. Nannoplankton Res., 29, 78–87, https://doi.org/10.58998/jnr2152, 2007.
Langton, S. J., Rabideaux, N. M., Borrelli, C., and Katz, M. E.: Southeastern Atlantic deep-water evolution during the late-middle Eocene to earliest Oligocene (Ocean Drilling program site 1263 and Deep Sea Drilling project site 366), Geosphere, 12, 1032–1047, https://doi.org/10.1130/GES01268.1, 2016.
Less, G., Özcan, E., and Okay, A.: Stratigraphy and larger foraminifera of the Middle Eocene to Lower Oligocene shallow-marine units in the northern and eastern parts of the Thrace Basin, NW Turkey, Turk. J. Earth Sci., 20, 793–845, https://doi.org/10.3906/yer-1010-53, 2011.
Li, S., Xing, Y., Valdes, P. J., Huang, Y., Su, T., Farnsworth, A., Lunt, D. J., Tang, H., Kennedy, A. T., and Zhou, Z.: Oligocene climate signals and forcings in Eurasia revealed by plant macrofossil and modelling results, Gondwana Res., 61, 115–127, https://doi.org/10.1016/j.gr.2018.04.015, 2018.
Licht, A., Folch, A., Sylvestre, F., Yacoub, A. N., Cogné, N., Abderamane, M., Guihou, A., Kisne, N. M., Fleury, J., Rochette, P., Nké, B. E. B., Zagalo, A. H., Poujol M., and Deschamps, P.: Provenance of aeolian sands from the southeastern Sahara from a detrital zircon perspective, Quaternary Sci. Rev., 328, 108539, https://doi.org/10.1016/j.quascirev.2024.108539, 2024.
Mahboub, I., Slimani, H., Toufiq, A., Chekar, M., Djeya, K. L., Jbari, H., and Chakir, S.: Middle Eocene to early Oligocene dinoflagellate cyst biostratigraphy and paleoenvironmental interpretations of the Ben Attaya section at Taza, eastern External Rif, Morocco, J. Afr. Earth Sci., 149, 154–169, https://doi.org/10.1016/j.jafrearsci.2018.08.006, 2019.
Marchev, P., Raicheva, R., Jicha, B., Guillong, M., Ivanova, R., Bachmann, O., Spikings, R., Okay, A., and Ozsvárt, P: The large Rupelian Rhodope Massif eruptions as the source of airfall tuffs in SE, S and Central Europe: 40Ar/39Ar and U–Pb age constraints, Int. J. Earth Sci., 113, 1619–1641, https://doi.org/10.1007/s00531-024-02457-z, 2024.
Marino, M. and Flores, J. A.: Middle Eocene to early Oligocene calcareous nannofossil stratigraphy at Leg 177 Site 1090, Mar. Micropaleontol., 45, 383–398, https://doi.org/10.1016/S0377-8398(02)00036-1, 2002.
Marret, F. and De Vernal, A.: Dinoflagellate cysts as proxies of environmental, ocean and climate changes in the Atlantic realm during the quaternary, Front. Ecol. Environ., 12, 1378931, https://doi.org/10.3389/fevo.2024.1378931, 2024
Martini, E.: Standard Tertiary and Quaternary calcareous nannoplankton zonation, in: Proceedings second planktonic conference, Rome, Italy, 1970, 739–785, 1971.
Miller, K. G., Wright, J. D., and Fairbanks, R. G.: Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion, J. Geophys. Res.-Sol. Ea., 96, 6829–6848, https://doi.org/10.1029/90JB02015, 1991.
Miller, K. G., Browning, J. V., Aubry, M. P., Wade, B. S., Katz, M. E., Kulpecz, A. A., and Wright, J. D.: Eocene–Oligocene global climate and sea-level changes: St. Stephens Quarry, Alabama, Geol. Soc. Am. Bull., 120, 34–53, https://doi.org/10.1130/B26105.1, 2008.
Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records, Sci. Adv., 6, eaaz1346, https://doi.org/10.1126/sciadv.aaz1346, 2020.
Monechi, S., Buccianti, A., and Gardin, S.: Biotic signals from nannoflora across the iridium anomaly in the upper Eocene of the Massignano section: evidence from statistical analysis, Mar. Micropaleontol., 39, 219–237, https://doi.org/10.1016/S0377-8398(00)00022-0, 2000.
Natal'in, B. and Say, A. G.: Eocene–Oligocene stratigraphy and structural history of the Karaburun area, southwestern Black Sea coast, Turkey: transition from extension to compression, Geol. Mag., 152, 1104–1122, https://doi.org/10.1017/S0016756815000229, 2015.
Okay, A. I. and Nikishin, A. M.: Tectonic evolution of the southern margin of Laurasia in the Black Sea region, Int. Geol. Rev., 57, 1051–1076, https://doi.org/10.1080/00206814.2015.1010609, 2015.
Okay, A. I., Özcan, E., Hakyemez, A., Siyako, M., Sunal, G., and Kylander-Clark, A. R.: The Thrace Basin and the Black Sea: the Eocene–Oligocene marine connection, Geol. Mag., 156, 39–61, https://doi.org/10.1017/S0016756817000772, 2019.
Okay, A. I., Simmons, M. D., Özcan, E., Starkie, S., Bidgood, M. D., and Kylander-Clark, A. R.: Eocene-Oligocene succession at Kıyıköy (Midye) on the Black Sea coast in Thrace, Turk. J. Earth. Sci., 29, 139–153, https://doi.org/10.3906/yer-1907-5, 2020.
O'Regan, M., Williams, C. J., Frey, K. E., and Jakobsson, M.: A synthesis of the long-term paleoclimatic evolution of the Arctic, Oceanography, 24, 66–80, https://doi.org/10.5670/oceanog.2011.57, 2011.
Ozsvárt, P., Kocsis, L., Nyerges, A., Győri, O., and Pálfy, J.: The eocene-oligocene climate transition in the central Paratethys, Palaeogeogr. Palaeocl., 459, 471–487, https://doi.org/10.1016/j.palaeo.2016.07.034, 2016.
Palcu, D. V. and Krijgsman, W.: The dire straits of Paratethys: Gateways to the anoxic giant of Eurasia, in: Straits and Seaways: Controls, Processes and Implications in Modern and Ancient Systems, edited by: Rossi, V. M., Longhitano, S. G., Olariu, C., and Chiocci, F. L., Geological Society, London, Special Publications, 523, https://doi.org/10.1144/SP523-2021-73, 2023.
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The heartbeat of the Oligocene climate system, Science, 314, 1894–1898, https://doi.org/10.1126/science.1133822, 2006.
Pearson, P. N., McMillan, I. K., Wade, B. S., Jones, T. D., Coxall, H. K., Bown, P. R., and Lear, C. H.: Extinction and environmental change across the Eocene-Oligocene boundary in Tanzania, Geology, 36, 179–182, https://doi.org/10.1130/G24308A.1, 2008.
Pekar, S. and Miller, K. G.: New Jersey Oligocene “Icehouse” sequences (ODP Leg 150X) correlated with global δ18O and Exxon eustatic records, Geology, 24, 567–570, https://doi.org/10.1130/0091-7613(1996)024<0567:NJOISO>2.3.CO;2, 1996.
Pekar, S. F., Christie-Blick, N., Kominz, M. A., and Miller, K. G.: Calibration between eustatic estimates from backstripping and oxygen isotopic records for the Oligocene, Geology, 30, 903–906, https://doi.org/10.1130/0091-7613(2002)030<0903:CBEEFB>2.0.CO;2, 2002.
Peleo-Alampay, A. M., Mead, G. A., and Wei, W.: Unusual Oligocene Braarudosphaera-rich layers of the South Atlantic and their palaeoceanographic implications, J. Nannoplankton Res., 21, 17–26, https://doi.org/10.58998/jnr2190, 1999.
Perch-Nielsen, K.: Cenozoic calcareous nannofossils, in: Plankton Stratigraphy, edited by: Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., Cambridge University Press, Cambridge, UK, 427–554, ISBN-10:0521235766, 1985.
Pross, J. and Brinkhuis, H.: Organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene, a synopsis of concepts, Paläontol. Z., 79, 53–59, https://doi.org/10.1007/BF03021753, 2005.
Popov, S. V., Akhmetiev, M. A., Bugrova, E. M., Lopatin, A. V., Amitrov, O. V., Andreyeva-Grigorovich, A. S., Zaporozhets, N. I., Zherikhin, V. V., Krasheninnikov, V. A., Nikolaeva, I. A., Sytchevskaya, E. K., and Shcherba, I. G.: Biogeography of the Northern Peri-Tethys from the Late Eocene to the Early Miocene: Part 2. Early Oligocene, Paleontol. J., 36, 185–259, 2002.
Popov, S. V., Rozanov, A. Y., Rögl, F., Steininger, F. F., Shcherba, I. G., and Kovac, M.: Lithological-paleogeographic maps of Paratethys, CFS Courier Forschungsinstitut Senckenberg, Stuttgart, 250, 46 pp., ISBN 978-3-510-61370-0, 2004.
Popov, S. V., Antipov, M. P., Zastrozhnov, A. S., Kurina, E. E., and Pinchuk, T. N.: Sea-level fluctuations on the northern shelf of the Eastern Paratethys in the Oligocene-Neogene, Stratigr. Geol. Correl., 18, 200–224, https://doi.org/10.1134/S0869593810020073, 2010.
Raffi, I., Catelli, V., Fioroni, C., Righi, D., Villa, G., and Persico, D.: Calcareous nannofossils from the Paleogene Southern Ocean (IODP Site U1553, Campbell Plateau), Newsl. Stratigr., 57, 475–495, https://doi.org/10.1127/nos/2024/0854, 2024.
Sachsenhofer, R. F., Popov, S. V., Bechtel, A., Coric, S., Francu, J., Gratzer, R., Grunert, P., Kotarba, M., Mayer, J., Pupp, M., Rupprecht B. J., and Vincent, S. J.: Oligocene and Lower Miocene source rocks in the Paratethys: palaeogeographical and stratigraphic controls, Geological Society, London, Special Publications, 464, 267–306, https://doi.org/10.1144/SP464.1, 2018.
Salamy, K. A. and Zachos, J. C.: Latest Eocene–Early Oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data, Palaeogeogr. Palaeocl., 145, 61–77, https://doi.org/10.1016/S0031-0182(98)00093-5, 1999.
Sancay, R. H. and Batı, Z.: Late Eocene to Early Oligocene palynostratigraphy of the Western Black Sea, Eastern Paratethys, Turk. J. Earth Sci., 29, 115–138, https://doi.org/10.3906/yer-1905-10, 2020.
Scher, H. D., Bohaty, S. M., Zachos, J. C., and Delaney, M. L.: Two-stepping into the icehouse: East Antarctic weathering during progressive ice-sheet expansion at the Eocene–Oligocene transition, Geology, 39, 383–386, https://doi.org/10.1130/G31726.1, 2011.
Schulz, H. M., Bechtel, A., and Sachsenhofer, R. F: The birth of the Paratethys during the Early Oligocene: from Tethys to an ancient Black Sea analogue?, Global Planet. Change, 49, 163–176, https://doi.org/10.1016/j.gloplacha.2005.07.001, 2005.
Simmons, M. D., Bidgood, M. D., Connell, P. G., Coric, S., Okay, A. I., Shaw, D., Tulan, E., Mayer, J., and Tari, G. C.: Biostratigraphy and paleoenvironments of the Oligocene succession (İhsaniye Formation) at Karaburun (NW Turkey), Turk. J. Earth Sci., 29, 28–63, https://doi.org/10.3906/yer-1907-7, 2020.
Slimani, H., Mahboub, I., Toufiq, A., Jbari, H., Chakir, S., and Tahiri, A.: Bartonian to Priabonian dinoflagellate cyst biostratigraphy and paleoenvironments of the M'karcha section in the Southern Tethys margin (Rif Chain, Northern Morocco), Mar. Micropaleontol., 153, 101785, https://doi.org/10.1016/j.marmicro.2019.101785, 2019.
Slimani, H. and Chekar, M.: Dinoflagellate-based age control and biostratigraphic correlations of the Eocene and Oligocene (Lutetian–Chattian) sediments in the El Habt tectonic Unit, western External Rif Chain, Morocco (NW Africa), Newsl. Stratigr., 56, 257–305, https://doi.org/10.1127/nos/2022/0704, 2023.
Śliwińska, K. K.: Early Oligocene dinocysts as a tool for palaeoenvironment reconstruction and stratigraphical framework – a case study from a North Sea well, J. Micropalaeontol., 38, 143–176, https://doi.org/10.5194/jm-38-143-2019, 2019.
Śliwińska, K. K. and Heilmann-Clausen, C.: Early Oligocene cooling reflected by the dinoflagellate cyst Svalbardella cooksoniae, Palaeogeogr. Palaeocl., 305, 138–149, https://doi.org/10.1016/j.palaeo.2011.02.027, 2011.
Śliwińska, K. K., Thomsen, E., Schouten, S., Schoon, P. L., and Heilmann-Clausen, C.: Climate-and gateway-driven cooling of Late Eocene to earliest Oligocene sea surface temperatures in the North Sea Basin, Sci. Rep., 9, 4458, https://doi.org/10.1038/s41598-019-41013-7, 2019.
Slotnick, B. S. and Schellenberg, S. A.: Biotic response of Tethyan bathyal ostracodes through the Eocene–Oligocene Transition: The composite faunal record from the Massicore and Massignano Global Stratotype Section and Point (east central Italy), Mar. Micropaleontol., 103, 68–84, https://doi.org/10.1016/j.marmicro.2013.03.005, 2013.
Sluijs, A. and Brinkhuis, H.: High Arctic late Paleocene and early Eocene dinoflagellate cysts, J. Micropalaeontol., 43, 441–474, https://doi.org/10.5194/jm-43-441-2024, 2024.
Sluijs, A., Pross, J., and Brinkhuis, H.: From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene, Earth-Sci. Rev., 68, 281–315, https://doi.org/10.1016/j.earscirev.2004.06.001, 2005.
Soták, J.: Paleoenvironmental changes across the Eocene-Oligocene boundary: insights from the Central-Carpathian Paleogene Basin, Geol. Carpath., 61, 393–418, https://doi.org/10.2478/v10096-010-0024-1, 2010.
Soutter, E. L., Kane, I. A., Martínez-Doñate, A., Boyce, A. J., Stacey, J., and Castelltort, S.: The Eocene-Oligocene climate transition in the Alpine foreland basin: Paleoenvironmental change recorded in submarine fans, Palaeogeogr. Palaeocl., 600, 111064, https://doi.org/10.1016/j.palaeo.2022.111064, 2022.
Stärz, M., Jokat, W., Knorr, G., and Lohmann, G.: Threshold in North Atlantic-Arctic Ocean circulation controlled by the subsidence of the Greenland-Scotland Ridge, Nat. Commun., 8, 15681, https://doi.org/10.1038/ncomms15681, 2017.
Stockmarr, J.: Determination of spore concentration with an electronic particle counter, Danmarks Geol. Undersøl., Raekke, 15, 87–89, https://doi.org/10.22008/gpub/38152, 1973.
Stover, L. E. and Hardenbol, J.: Dinoflagellates and depositional sequences in the lower Oligocene (Rupelian) Boom clay formation, Belgium, Bulletin de la Société belge de Géologie, 102, 5–77, 1993.
Straume, E. O., Steinberger, B., Becker, T. W., and Faccenna, C.: Impact of mantle convection and dynamic topography on the Cenozoic paleogeography of Central Eurasia and the West Siberian Seaway, Earth. Planet. Sc. Lett., 630, 118615, https://doi.org/10.1016/j.epsl.2024.118615, 2024.
Street, C. and Bown, P. R.: Palaeobiogeography of early Cretaceous (Berriasian–Barremian) calcareous nannoplankton, Mar. Micropaleontol., 39, 265–291, https://doi.org/10.1016/S0377-8398(00)00024-4, 2000.
Švábenická, L.: Braarudosphaera-rich sediments in the Turonian of the Bohemian Cretaceous Basin, Czech Republic, Cretaceous Res., 20, 773–782, https://doi.org/10.1006/cres.1999.0182, 1999.
Thierstein, H. R., Cortés, M. Y., and Haidar, A. T.: Plankton community behavior on ecological and evolutionary time-scales: when models confront evidence, in: Coccolithophores: from molecular processes to global impact, edited by: Thierstein, H. R. and Young, J. R., Springer, Berlin Heidelberg, 455–479, https://doi.org/10.1007/978-3-662-06278-4_17, 2004.
Toffanin, F., Agnini, C., Rio, D., Acton, G., and Westerhold, T.: Middle Eocene to early Oligocene calcareous nannofossil biostratigraphy at IODP Site U1333 (equatorial Pacific), Micropaleontology, 59, 69–82, http://www.jstor.org/stable/24413317, 2013.
Toledo, F. A., Cachão, M., Costa, K. B., and Pivel, M. A.: Planktonic foraminifera, calcareous nannoplankton and ascidian variations during the last 25 kyr in the Southwestern Atlantic: A paleoproductivity signature?, Mar. Micropaleontol., 64, 67–79, https://doi.org/10.1016/j.marmicro.2007.03.001, 2007.
Tulan, E., Sachsenhofer, R. F., Tari, G., Flecker, R., Fairbank, V., Pupp, M., and Ickert, R. B.: Source rock potential and depositional environment of the Lower Oligocene İhsaniyeFormation in NW Turkey (Thrace, Karaburun), Turk. J. Earth Sci., 29, 64–84, https://doi.org/10.3906/yer-1906-14, 2020.
Turgut, S.: Evolution of the Thrace sedimentary basin and its hydrocarbon prospectivity, in: Generation, accumulation, and production of Europe's hydrocarbons, edited by: Spencer, M. A., Springer Berlin, Heidelberg, 415–437, ISBN 978-3-662-07417-6, 1991.
Vahlenkamp, M., Niezgodzki, I., De Vleeschouwer, D., Lohmann, G., Bickert, T., and Pälike, H.: Ocean and climate response to North Atlantic seaway changes at the onset of long-term Eocene cooling, Earth Planet. Sc. Lett., 498, 185–195, https://doi.org/10.1016/j.epsl.2018.06.031, 2018.
van Der Boon, A., van der Ploeg, R., Cramwinckel, M. J., Kuiper, K. F., Popov, S. V., Tabachnikova, I. P., Palcu, D. V., and Krijgsman, W.: Integrated stratigraphy of the Eocene-Oligocene deposits of the northern Caucasus (Belaya River, Russia): Intermittent oxygen-depleted episodes in the Peri-Tethys and Paratethys, Palaeogeogr. Palaeocl., 536, 109395, https://doi.org/10.1016/j.palaeo.2019.109395, 2019.
Van Mourik, C. A. and Brinkhuis, H.: The Massignano Eocene-Oligocene golden spike section revisited, Stratigraphy, 2, 13–30, https://doi.org/10.29041/strat.02.1.01, 2005.
Van Simaeys, S., Brinkhuis, H., Pross, J., Williams, G. L., and Zachos, J. C.: Arctic dinoflagellate migrations mark the strongest Oligocene glaciations, Geology, 33, 709–712, https://doi.org/10.1130/G21634.1, 2005.
Varol, O.: Didemnid ascidian spicules from the Arabian Peninsula, J. Nannoplankton Res., 28, 35–55, https://doi.org/10.58998/jnr2258, 2006.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geosci. Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Vermeesch, P.: On the treatment of discordant detrital zircon U–Pb data, Geochronology, 3, 247–257, https://doi.org/10.5194/gchron-3-247-2021, 2021.
Viganò, A., Coxall, H. K., Holmström, M., Vinco, M., Lear, C. H., and Agnini, C.: Calcareous nannofossils across the Eocene-Oligocene transition at Site 756 (Ninetyeast Ridge, Indian Ocean): implications for biostratigraphy and paleoceanographic clues, Newsl. Stratigr., 56, 187–223, https://doi.org/10.1127/nos/2022/0725, 2023a.
Viganò, A., Westerhold, T., Bown, P. R., Jones, T. D., and Agnini, C.: Calcareous nannofossils across the Eocene-Oligocene transition: Preservation signals and biostratigraphic remarks from ODP Site 1209 (NW Pacific, Shatsky Rise) and IODP Hole U1411B (NW Atlantic Ocean, Newfoundland Ridge), Palaeogeogr. Palaeocl., 629, 111778, https://doi.org/10.1016/j.palaeo.2023.111778, 2023b.
Viganò, A., Dallanave, E., Alegret, L., Westerhold, T., Sutherland, R., Dickens, G. R., Newsam, C., and Agnini, C.: Calcareous nannofossil biostratigraphy and biochronology across the Eocene-Oligocene transition: the record at IODP Site U1509 (Tasman Sea) and a global overview, Newsl. Stratigr., 57, 1–23, https://doi.org/10.1127/nos/2023/0751, 2024a.
Viganò, A., Dallanave, E., Alegret, L., Westerhold, T., Sutherland, R., Dickens, G. R., Newsam, C., and Agnini, C.: Calcareous nannofossils and paleoclimatic evolution across the Eocene-Oligocene transition at IODP Site U1509, Tasman Sea, Southwest Pacific Ocean, Paleoceanogr. Paleoclimatol., 39, e2023PA004738, https://doi.org/10.1029/2023PA004738, 2024b.
Villa, G., Fioroni, C., Pea, L., Bohaty, S., and Persico, D.: Middle Eocene–late Oligocene climate variability: calcareous nannofossil response at Kerguelen Plateau, Site 748, Mar. Micropaleontol., 69, 173–192, https://doi.org/10.1016/j.marmicro.2008.07.006, 2008.
Villa, G., Fioroni, C., Persico, D., Roberts, A. P., and Florindo, F.: Middle Eocene to late Oligocene Antarctic glaciation/deglaciation and Southern Ocean productivity, Paleoceanogr. Paleocl., 29, 223–237, https://doi.org/10.1002/2013PA002518, 2014.
Villa, G., Florindo, F., Persico, D., Lurcock, P., de Martini, A. P., Jovane, L., and Fioroni, C.: Integrated calcareous nannofossil and magnetostratigraphic record of ODP Site 709: Middle Eocene to late Oligocene paleoclimate and paleoceanography of the Equatorial Indian Ocean, Mar. Micropaleontol., 169, 102051, https://doi.org/10.1016/j.marmicro.2021.102051, 2021.
Waddell, L. M. and Moore, T. C.: Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate, Paleoceanography, 23, 1–14, https://doi.org/10.1029/2007PA001451, 2008.
Wade, B. S. and Bown, P. R.: Calcareous nannofossils in extreme environments: the Messinian salinity crisis, Polemi Basin, Cyprus, Palaeogeogr. Palaeocl., 233, 271–286, https://doi.org/10.1016/j.palaeo.2005.10.007, 2006.
Wade, B. S. and Pälike, H.: Oligocene climate dynamics, Paleoceanography, 19, 1–16 https://doi.org/10.1029/2004PA001042, 2004.
Wei, W. and Wise Jr., S. W.: Biogeographic gradients of middle Eocene-Oligocene calcareous nannoplankton in the South Atlantic Ocean, Palaeogeogr. Palaeocl., 79, 29–61, https://doi.org/10.1016/0031-0182(90)90104-F, 1990.
Wei, W., Villa, G., and Wise Jr., S. W.: Paleoceanographic implications of Eocene-Oligocene calcareous nannofossils from sites 711 and 748 in the Indian Ocean, Proc. Ocean Drill. Progr. Sci. Res., 120, 979–999, https://doi.org/10.2973/odp.proc.sr.120.199.1992, 1992.
Williams, G. L., Fensome, R. A., and MacRae, R. A.: The Lentin and Williams Index of Fossil Dinoflagellate 2019 Edition, AASP Contributions Series Number, 50, 1173, ISSN 0160-8843, 2019.
Winter, A. and Siesser, W. G. (Eds).: Coccolithophores, Cambridge Univ. Press, Cambridge, 242 pp., ISBN 0-521-38050-2, 1994.
Yücel, A. O., Özcan, E., and Erbil, Ü.: Latest Priabonian larger benthic foraminiferal assemblages at the demise of theSoğucak Carbonate Platform (Thrace Basin and Black Sea shelf, NW Turkey): implications for the shallow marine biostratigraphy, Turk. J. Earth Sci., 29, 85–114, https://doi.org/10.3906/yer-1904-19, 2020.
Zachos, J. C., Quinn, T. M., and Salamy, K. A.: High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition, Paleoceanography, 11, 251–266, https://doi.org/10.1029/96PA00571, 1996.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Ziveri, P., Baumann, K. H., Böckel, B., Bollmann, J., and Young, J. R.: Biogeography of selected Holocene coccoliths in the Atlantic Ocean, in: Coccolithophores: from molecular processes to global impact, edited by: Thierstein, H. R. and Young, J. R., Springer, Berlin Heidelberg, 403–428, https://doi.org/10.1007/978-3-662-06278-4_15, 2004.
Zonneveld, K. A., Marret, F., Versteegh, G. J., Bogus, K., Bonnet, S., Bouimetarhan, I., Crouch, E., de Vernal, A., Elshanawany, R., Edwards, L., Esper, O., Forke, S., Grøsfjeld, K., Henry, M., Holzwarth, U., Kielt, J.-F., Kim, S.-Y., Ladouceur, S., Ledu, D., Chen, L., Limoges, A., Londeix, L., Hu, S.-H., Mahmoud, M. S., Marino, G., Matsouka, K., Matthiessen, J., Mildenhal, D. C., Mudie, P., Neil, H. L., Pospelova, V., Qi, Y., Radi, T., Richerol, T., Rochon, A., Sangiorgi, F., Solignac, S., Turon, J.-L., Verleye, T., Wang, Y., Wang, Z., and Young, M.: Atlas of modern dinoflagellate cyst distribution based on 2405 data points, Rev. Palaeobot. Palyno., 191, 1–197, https://doi.org/10.1016/j.revpalbo.2012.08.003, 2013.
Short summary
The Eocene–Oligocene Transition (EOT) marked global cooling and Antarctic glaciation, but its impact on marginal seas is less known. This study analyzes the Karaburun section in the eastern Paratethys, using biostratigraphy and geochemistry to reveal boreal water ingress due to Arctic–Atlantic gateway closure. Findings highlight the interplay of global and regional climate dynamics in shaping marginal marine environments.
The Eocene–Oligocene Transition (EOT) marked global cooling and Antarctic glaciation, but its...