Articles | Volume 20, issue 4
https://doi.org/10.5194/cp-20-991-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-991-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
No detectable influence of the carbonate ion effect on changes in stable carbon isotope ratios (δ13C) of shallow dwelling planktic foraminifera over the past 160 kyr
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Stefan Mulitza
MARUM – Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany
Related authors
Peter Köhler
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-63, https://doi.org/10.5194/cp-2024-63, 2024
Preprint under review for CP
Short summary
Short summary
Using a carbon cycle model I here show that the 405-kyr periodicity found in marine δ13C during the last 5 million years and the offset in atmospheric δ13CO2 between the last and the penultimate glacial maximum are probably related to each other. They can be explained by variations in the δ13C signature of weathered carbonate rock or of volcanically degassed CO2 which vary mainly with obliquity (41-kyr) suggesting that northern hemispheric land ice sheets are their ultimate drivers.
Peter U. Clark, Jeremy D. Shakun, Yair Rosenthal, Chenyu Zhu, Jonathan M. Gregory, Peter Köhler, Zhengyu Liu, Daniel P. Schrag, and Patrick J. Bartlein
EGUsphere, https://doi.org/10.5194/egusphere-2024-3010, https://doi.org/10.5194/egusphere-2024-3010, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We reconstruct changes in mean ocean temperature (ΔMOT) over the last 4.5 Myr. We find that the ratio of ΔMOT to changes in global mean sea surface temperature was around 0.5 before the Middle Pleistocene Transition but was 1 thereafter. We subtract our ΔMOT reconstruction from the global δ18O record to derive the δ18O of seawater. Finally, we develop a theoretical understanding of why the ratio of ΔMOT/ΔGMSST changed over the Plio-Pleistocene.
Martin Butzin, Ying Ye, Christoph Völker, Özgür Gürses, Judith Hauck, and Peter Köhler
Geosci. Model Dev., 17, 1709–1727, https://doi.org/10.5194/gmd-17-1709-2024, https://doi.org/10.5194/gmd-17-1709-2024, 2024
Short summary
Short summary
In this paper we describe the implementation of the carbon isotopes 13C and 14C into the marine biogeochemistry model FESOM2.1-REcoM3 and present results of long-term test simulations. Our model results are largely consistent with marine carbon isotope reconstructions for the pre-anthropogenic period, but also exhibit some discrepancies.
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Claudia Hinrichs, Peter Köhler, Christoph Völker, and Judith Hauck
Biogeosciences, 20, 3717–3735, https://doi.org/10.5194/bg-20-3717-2023, https://doi.org/10.5194/bg-20-3717-2023, 2023
Short summary
Short summary
This study evaluated the alkalinity distribution in 14 climate models and found that most models underestimate alkalinity at the surface and overestimate it in the deeper ocean. It highlights the need for better understanding and quantification of processes driving alkalinity distribution and calcium carbonate dissolution and the importance of accounting for biases in model results when evaluating potential ocean alkalinity enhancement experiments.
Ying Ye, Guy Munhoven, Peter Köhler, Martin Butzin, Judith Hauck, Özgür Gürses, and Christoph Völker
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-181, https://doi.org/10.5194/gmd-2023-181, 2023
Revised manuscript under review for GMD
Short summary
Short summary
Many biogeochemistry models assume all material reaching the seafloor is remineralized and returned to solution, which is sufficient for studies on short-term climate change. Under long-term climate change the storage of carbon in sediments slows down carbon cycling and influences feedbacks in the atmosphere-ocean-sediment system. Here we coupled a sediment model to an ocean biogeochemistry model and found a shift of carbon storage from the atmosphere to the ocean-sediment system.
Lennert B. Stap, Peter Köhler, and Gerrit Lohmann
Earth Syst. Dynam., 10, 333–345, https://doi.org/10.5194/esd-10-333-2019, https://doi.org/10.5194/esd-10-333-2019, 2019
Short summary
Short summary
Processes causing the same global-average radiative forcing might lead to different global temperature changes. We expand the theoretical framework by which we calculate paleoclimate sensitivity with an efficacy factor. Applying the revised approach to radiative forcing caused by CO2 and land ice albedo perturbations, inferred from data of the past 800 000 years, gives a new paleo-based estimate of climate sensitivity.
Peter Köhler, Christoph Nehrbass-Ahles, Jochen Schmitt, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 9, 363–387, https://doi.org/10.5194/essd-9-363-2017, https://doi.org/10.5194/essd-9-363-2017, 2017
Short summary
Short summary
We document our best available data compilation of published ice core records of the greenhouse gases CO2, CH4, and N2O and recent measurements on firn air and atmospheric samples covering the time window from 156 000 years BP to the beginning of the year 2016 CE. A smoothing spline method is applied to translate the discrete and irregularly spaced data points into continuous time series. The radiative forcing for each greenhouse gas is computed using well-established, simple formulations.
Peter Köhler, Lennert B. Stap, Anna S. von der Heydt, Bas de Boer, and Roderik S. W. van de Wal
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-23, https://doi.org/10.5194/cp-2016-23, 2016
Revised manuscript not accepted
Short summary
Short summary
Evidence indicate that specific equilibrium climate sensitivity, the global annual mean surface temperature change as a response to a change in radiative forcing, is state dependent. We here show that the interpretation of data in the state-dependent case is not straightforward. We analyse the differences of a point-wise approach and one based on a piece-wise linear analysis, combine both, compare with potential model results and apply the theoretical concepts to data of the last 800 kyr.
P. Köhler, B. de Boer, A. S. von der Heydt, L. B. Stap, and R. S. W. van de Wal
Clim. Past, 11, 1801–1823, https://doi.org/10.5194/cp-11-1801-2015, https://doi.org/10.5194/cp-11-1801-2015, 2015
Short summary
Short summary
We find that the specific equilibrium climate sensitivity due to radiative forcing of CO2 and land ice albedo has been state-dependent for the last 2.1Myr (most of the Pleistocene). Its value is ~45% larger during intermediate glaciated climates and interglacial periods than during Pleistocene full glacial conditions. The state dependency is mainly caused by a latitudinal dependency in ice sheet area changes. Due to uncertainties in CO2, firm conclusions for the Pliocene are not yet possible.
R. Schneider, J. Schmitt, P. Köhler, F. Joos, and H. Fischer
Clim. Past, 9, 2507–2523, https://doi.org/10.5194/cp-9-2507-2013, https://doi.org/10.5194/cp-9-2507-2013, 2013
R. S. W. van de Wal, B. de Boer, L. J. Lourens, P. Köhler, and R. Bintanja
Clim. Past, 7, 1459–1469, https://doi.org/10.5194/cp-7-1459-2011, https://doi.org/10.5194/cp-7-1459-2011, 2011
P. Köhler, G. Knorr, D. Buiron, A. Lourantou, and J. Chappellaz
Clim. Past, 7, 473–486, https://doi.org/10.5194/cp-7-473-2011, https://doi.org/10.5194/cp-7-473-2011, 2011
P. Köhler and A. Huth
Biogeosciences, 7, 2531–2543, https://doi.org/10.5194/bg-7-2531-2010, https://doi.org/10.5194/bg-7-2531-2010, 2010
P. Köhler
Clim. Past Discuss., https://doi.org/10.5194/cpd-6-1453-2010, https://doi.org/10.5194/cpd-6-1453-2010, 2010
Revised manuscript has not been submitted
P. Köhler and R. Bintanja
Clim. Past, 4, 311–332, https://doi.org/10.5194/cp-4-311-2008, https://doi.org/10.5194/cp-4-311-2008, 2008
P. Köhler, H. Fischer, J. Schmitt, and G. Munhoven
Biogeosciences, 3, 539–556, https://doi.org/10.5194/bg-3-539-2006, https://doi.org/10.5194/bg-3-539-2006, 2006
P. Köhler and H. Fischer
Clim. Past, 2, 57–78, https://doi.org/10.5194/cp-2-57-2006, https://doi.org/10.5194/cp-2-57-2006, 2006
Peter Köhler
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-63, https://doi.org/10.5194/cp-2024-63, 2024
Preprint under review for CP
Short summary
Short summary
Using a carbon cycle model I here show that the 405-kyr periodicity found in marine δ13C during the last 5 million years and the offset in atmospheric δ13CO2 between the last and the penultimate glacial maximum are probably related to each other. They can be explained by variations in the δ13C signature of weathered carbonate rock or of volcanically degassed CO2 which vary mainly with obliquity (41-kyr) suggesting that northern hemispheric land ice sheets are their ultimate drivers.
Peter U. Clark, Jeremy D. Shakun, Yair Rosenthal, Chenyu Zhu, Jonathan M. Gregory, Peter Köhler, Zhengyu Liu, Daniel P. Schrag, and Patrick J. Bartlein
EGUsphere, https://doi.org/10.5194/egusphere-2024-3010, https://doi.org/10.5194/egusphere-2024-3010, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We reconstruct changes in mean ocean temperature (ΔMOT) over the last 4.5 Myr. We find that the ratio of ΔMOT to changes in global mean sea surface temperature was around 0.5 before the Middle Pleistocene Transition but was 1 thereafter. We subtract our ΔMOT reconstruction from the global δ18O record to derive the δ18O of seawater. Finally, we develop a theoretical understanding of why the ratio of ΔMOT/ΔGMSST changed over the Plio-Pleistocene.
Martin Butzin, Ying Ye, Christoph Völker, Özgür Gürses, Judith Hauck, and Peter Köhler
Geosci. Model Dev., 17, 1709–1727, https://doi.org/10.5194/gmd-17-1709-2024, https://doi.org/10.5194/gmd-17-1709-2024, 2024
Short summary
Short summary
In this paper we describe the implementation of the carbon isotopes 13C and 14C into the marine biogeochemistry model FESOM2.1-REcoM3 and present results of long-term test simulations. Our model results are largely consistent with marine carbon isotope reconstructions for the pre-anthropogenic period, but also exhibit some discrepancies.
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Claudia Hinrichs, Peter Köhler, Christoph Völker, and Judith Hauck
Biogeosciences, 20, 3717–3735, https://doi.org/10.5194/bg-20-3717-2023, https://doi.org/10.5194/bg-20-3717-2023, 2023
Short summary
Short summary
This study evaluated the alkalinity distribution in 14 climate models and found that most models underestimate alkalinity at the surface and overestimate it in the deeper ocean. It highlights the need for better understanding and quantification of processes driving alkalinity distribution and calcium carbonate dissolution and the importance of accounting for biases in model results when evaluating potential ocean alkalinity enhancement experiments.
Ying Ye, Guy Munhoven, Peter Köhler, Martin Butzin, Judith Hauck, Özgür Gürses, and Christoph Völker
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-181, https://doi.org/10.5194/gmd-2023-181, 2023
Revised manuscript under review for GMD
Short summary
Short summary
Many biogeochemistry models assume all material reaching the seafloor is remineralized and returned to solution, which is sufficient for studies on short-term climate change. Under long-term climate change the storage of carbon in sediments slows down carbon cycling and influences feedbacks in the atmosphere-ocean-sediment system. Here we coupled a sediment model to an ocean biogeochemistry model and found a shift of carbon storage from the atmosphere to the ocean-sediment system.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
André Paul, Stefan Mulitza, Rüdiger Stein, and Martin Werner
Clim. Past, 17, 805–824, https://doi.org/10.5194/cp-17-805-2021, https://doi.org/10.5194/cp-17-805-2021, 2021
Short summary
Short summary
Maps and fields of near-sea-surface temperature differences between the past and present can be used to visualize and quantify climate changes and perform simulations with climate models. We used a statistical method to map sparse and scattered data for the Last Glacial Maximum time period (23 000 to 19 000 years before present) to a regular grid. The estimated global and tropical cooling would imply an equilibrium climate sensitivity in the lower to middle part of the currently accepted range.
Lukas Jonkers, Olivier Cartapanis, Michael Langner, Nick McKay, Stefan Mulitza, Anne Strack, and Michal Kucera
Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, https://doi.org/10.5194/essd-12-1053-2020, 2020
Michael Langner and Stefan Mulitza
Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019, https://doi.org/10.5194/cp-15-2067-2019, 2019
Short summary
Short summary
Collections of paleoclimate data provide valuable information on the functioning of the Earth system but are often difficult to manage due to the inconsistency of data formats and reconstruction methods. We present a software toolbox that combines a simple document-based database with functionality for the visualization and management of marine proxy data. The program allows the efficient homogenization of larger paleoceanographic data sets into quality-controlled and transparent data products.
Lennert B. Stap, Peter Köhler, and Gerrit Lohmann
Earth Syst. Dynam., 10, 333–345, https://doi.org/10.5194/esd-10-333-2019, https://doi.org/10.5194/esd-10-333-2019, 2019
Short summary
Short summary
Processes causing the same global-average radiative forcing might lead to different global temperature changes. We expand the theoretical framework by which we calculate paleoclimate sensitivity with an efficacy factor. Applying the revised approach to radiative forcing caused by CO2 and land ice albedo perturbations, inferred from data of the past 800 000 years, gives a new paleo-based estimate of climate sensitivity.
Charlotte Breitkreuz, André Paul, Stefan Mulitza, Javier García-Pintado, and Michael Schulz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-32, https://doi.org/10.5194/gmd-2019-32, 2019
Publication in GMD not foreseen
Short summary
Short summary
We present a technique for ocean state estimation based on the combination of a simple data assimilation method with a state reduction approach. The technique proves to be very efficient and successful in reducing the model-data misfit and reconstructing a target ocean circulation from synthetic observations. In an application to Last Glacial Maximum proxy data the model-data misfit is greatly reduced but some misfit remains. Two different ocean states are found with similar model-data misfit.
Rike Völpel, André Paul, Annegret Krandick, Stefan Mulitza, and Michael Schulz
Geosci. Model Dev., 10, 3125–3144, https://doi.org/10.5194/gmd-10-3125-2017, https://doi.org/10.5194/gmd-10-3125-2017, 2017
Short summary
Short summary
This study presents the implementation of stable water isotopes in the MITgcm and describes the results of an equilibrium simulation under pre-industrial conditions. The model compares well to observational data and measurements of plankton tow records and thus opens wide prospects for long-term simulations in a paleoclimatic context.
Peter Köhler, Christoph Nehrbass-Ahles, Jochen Schmitt, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 9, 363–387, https://doi.org/10.5194/essd-9-363-2017, https://doi.org/10.5194/essd-9-363-2017, 2017
Short summary
Short summary
We document our best available data compilation of published ice core records of the greenhouse gases CO2, CH4, and N2O and recent measurements on firn air and atmospheric samples covering the time window from 156 000 years BP to the beginning of the year 2016 CE. A smoothing spline method is applied to translate the discrete and irregularly spaced data points into continuous time series. The radiative forcing for each greenhouse gas is computed using well-established, simple formulations.
Raphaël Morard, Franck Lejzerowicz, Kate F. Darling, Béatrice Lecroq-Bennet, Mikkel Winther Pedersen, Ludovic Orlando, Jan Pawlowski, Stefan Mulitza, Colomban de Vargas, and Michal Kucera
Biogeosciences, 14, 2741–2754, https://doi.org/10.5194/bg-14-2741-2017, https://doi.org/10.5194/bg-14-2741-2017, 2017
Short summary
Short summary
The exploitation of deep-sea sedimentary archive relies on the recovery of mineralized skeletons of pelagic organisms. Planktonic groups leaving preserved remains represent only a fraction of the total marine diversity. Environmental DNA left by non-fossil organisms is a promising source of information for paleo-reconstructions. Here we show how planktonic-derived environmental DNA preserves ecological structure of planktonic communities. We use planktonic foraminifera as a case study.
Shuwen Sun, Enno Schefuß, Stefan Mulitza, Cristiano M. Chiessi, André O. Sawakuchi, Matthias Zabel, Paul A. Baker, Jens Hefter, and Gesine Mollenhauer
Biogeosciences, 14, 2495–2512, https://doi.org/10.5194/bg-14-2495-2017, https://doi.org/10.5194/bg-14-2495-2017, 2017
Peter Köhler, Lennert B. Stap, Anna S. von der Heydt, Bas de Boer, and Roderik S. W. van de Wal
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-23, https://doi.org/10.5194/cp-2016-23, 2016
Revised manuscript not accepted
Short summary
Short summary
Evidence indicate that specific equilibrium climate sensitivity, the global annual mean surface temperature change as a response to a change in radiative forcing, is state dependent. We here show that the interpretation of data in the state-dependent case is not straightforward. We analyse the differences of a point-wise approach and one based on a piece-wise linear analysis, combine both, compare with potential model results and apply the theoretical concepts to data of the last 800 kyr.
P. Köhler, B. de Boer, A. S. von der Heydt, L. B. Stap, and R. S. W. van de Wal
Clim. Past, 11, 1801–1823, https://doi.org/10.5194/cp-11-1801-2015, https://doi.org/10.5194/cp-11-1801-2015, 2015
Short summary
Short summary
We find that the specific equilibrium climate sensitivity due to radiative forcing of CO2 and land ice albedo has been state-dependent for the last 2.1Myr (most of the Pleistocene). Its value is ~45% larger during intermediate glaciated climates and interglacial periods than during Pleistocene full glacial conditions. The state dependency is mainly caused by a latitudinal dependency in ice sheet area changes. Due to uncertainties in CO2, firm conclusions for the Pliocene are not yet possible.
R. Schneider, J. Schmitt, P. Köhler, F. Joos, and H. Fischer
Clim. Past, 9, 2507–2523, https://doi.org/10.5194/cp-9-2507-2013, https://doi.org/10.5194/cp-9-2507-2013, 2013
J. A. Collins, A. Govin, S. Mulitza, D. Heslop, M. Zabel, J. Hartmann, U. Röhl, and G. Wefer
Clim. Past, 9, 1181–1191, https://doi.org/10.5194/cp-9-1181-2013, https://doi.org/10.5194/cp-9-1181-2013, 2013
R. S. W. van de Wal, B. de Boer, L. J. Lourens, P. Köhler, and R. Bintanja
Clim. Past, 7, 1459–1469, https://doi.org/10.5194/cp-7-1459-2011, https://doi.org/10.5194/cp-7-1459-2011, 2011
P. Köhler, G. Knorr, D. Buiron, A. Lourantou, and J. Chappellaz
Clim. Past, 7, 473–486, https://doi.org/10.5194/cp-7-473-2011, https://doi.org/10.5194/cp-7-473-2011, 2011
P. Köhler and A. Huth
Biogeosciences, 7, 2531–2543, https://doi.org/10.5194/bg-7-2531-2010, https://doi.org/10.5194/bg-7-2531-2010, 2010
P. Köhler
Clim. Past Discuss., https://doi.org/10.5194/cpd-6-1453-2010, https://doi.org/10.5194/cpd-6-1453-2010, 2010
Revised manuscript has not been submitted
P. Köhler and R. Bintanja
Clim. Past, 4, 311–332, https://doi.org/10.5194/cp-4-311-2008, https://doi.org/10.5194/cp-4-311-2008, 2008
P. Köhler, H. Fischer, J. Schmitt, and G. Munhoven
Biogeosciences, 3, 539–556, https://doi.org/10.5194/bg-3-539-2006, https://doi.org/10.5194/bg-3-539-2006, 2006
P. Köhler and H. Fischer
Clim. Past, 2, 57–78, https://doi.org/10.5194/cp-2-57-2006, https://doi.org/10.5194/cp-2-57-2006, 2006
Related subject area
Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Pleistocene
Deglacial export of pre-aged terrigenous carbon to the Bay of Biscay
Atmospheric CO2 estimates for the Miocene to Pleistocene based on foraminiferal δ11B at Ocean Drilling Program Sites 806 and 807 in the Western Equatorial Pacific
Nutrient utilization and diatom productivity changes in the low-latitude south-eastern Atlantic over the past 70 ka: response to Southern Ocean leakage
Coccolithophore productivity at the western Iberian Margin during the Middle Pleistocene (310–455 ka) – evidence from coccolith Sr∕Ca data
Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle
Eduardo Queiroz Alves, Wanyee Wong, Jens Hefter, Hendrik Grotheer, Tommaso Tesi, Torben Gentz, Karin Zonneveld, and Gesine Mollenhauer
Clim. Past, 20, 121–136, https://doi.org/10.5194/cp-20-121-2024, https://doi.org/10.5194/cp-20-121-2024, 2024
Short summary
Short summary
Our study reveals a previously unknown peat source for the massive influx of terrestrial organic matter that was exported from the European continent to the ocean during the last deglaciation. Our findings shed light on ancient terrestrial organic carbon mobilization, providing insights that are crucial for refining climate models.
Maxence Guillermic, Sambuddha Misra, Robert Eagle, and Aradhna Tripati
Clim. Past, 18, 183–207, https://doi.org/10.5194/cp-18-183-2022, https://doi.org/10.5194/cp-18-183-2022, 2022
Short summary
Short summary
Here we reconstruct atmospheric CO2 values across major climate transitions over the past 16 million years (Myr) from two sites in the West Pacific Warm Pool using a pH proxy on surface-dwelling foraminifera. We are able to reproduce pCO2 data from ice cores; therefore we apply the same framework to older samples to create a long-term pH and pCO2 reconstruction. We give quantitative constraints on pH and pCO2 changes over the main climate transitions of the last 16 Myr.
Katharine Hendry, Oscar Romero, and Vanessa Pashley
Clim. Past, 17, 603–614, https://doi.org/10.5194/cp-17-603-2021, https://doi.org/10.5194/cp-17-603-2021, 2021
Short summary
Short summary
Productive eastern boundary upwelling systems (EBUs) are characterized by abundant siliceous algae and diatoms, and they play a key role in carbon fixation. Understanding past shifts in diatom production is critical for predicting the impact of future climate change. We combine existing sediment archives from the Benguela EBU with new diatom isotope analyses and modelling to reconstruct late Quaternary silica cycling, which we suggest depends on both upwelling intensity and surface utilization.
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, https://doi.org/10.5194/cp-16-2017-2020, 2020
Olivier Cartapanis, Eric D. Galbraith, Daniele Bianchi, and Samuel L. Jaccard
Clim. Past, 14, 1819–1850, https://doi.org/10.5194/cp-14-1819-2018, https://doi.org/10.5194/cp-14-1819-2018, 2018
Short summary
Short summary
A data-based reconstruction of carbon-bearing deep-sea sediment shows significant changes in the global burial rate over the last glacial cycle. We calculate the impact of these deep-sea changes, as well as hypothetical changes in continental shelf burial and volcanic outgassing. Our results imply that these geological fluxes had a significant impact on ocean chemistry and the global carbon isotopic ratio, and that the natural carbon cycle was not in steady state during the Holocene.
Cited articles
Adegbie, A., Schneider, R., Röhl, U., and Wefer, G.: Glacial millennial-scale fluctuations in central African precipitation recorded in terrigenous sediment supply and freshwater signals offshore Cameroon, Palaeogeogr. Palaeocl., 197, 323–333, https://doi.org/10.1016/S0031-0182(03)00474-7, 2003. a
Adegbie, A. T.: Reconstruction of paleoenvironmental conditions in Equatorial Atlantic and the Gulf of Guinea Basins for the last 245.000 years, PhD thesis, Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 178, 113 pp., http://nbn-resolving.de/urn:nbn:de:gbv:46-ep000103077 (last access: 16 November 2023), 2001. a
Al-Rousan, S., Pätzold, J., Al-Moghrabi, S., and Wefer, G.: Invasion of anthropogenic CO2 recorded in planktonic foraminifera from the northern Gulf of Aqaba, Int. J. Earth Sci., 93, 1066–1076, https://doi.org/10.1007/s00531-004-0433-4, 2004. a
Andres, M. S.: Late quaternary paleoceanography of the Great Australian Bight: A geochemical and sedimentological study of cool-water carbonates, ODP Leg 182, Site 1127, PhD thesis, Swiss Federal Institute of Technology Zurich, Switzerland, https://doi.org/10.3929/ethz-a-004447516, 2002. a
Arz, H. W., Pätzold, J., and Wefer, G.: Correlated Millennial-Scale Changes in Surface Hydrography and Terrigenous Sediment Yield Inferred from Last-Glacial Marine Deposits off Northeastern Brazil, Quaternary Res., 50, 157–166, https://doi.org/10.1006/qres.1998.1992, 1998. a
Arz, H. W., Pätzold, J., and Wefer, G.: The deglacial history of the western tropical Atlantic as inferred from high resolution stable isotope records off northeastern Brazil, Earth Planet. Sc. Lett., 167, 105–117, https://doi.org/10.1016/S0012-821X(99)00025-4, 1999a. a
Arz, H. W., Pätzold, J., and Wefer, G.: Climatic changes during the last deglaciation recorded in sediment cores from the northeastern Brazilian Continental Margin, Geo-Mar. Lett., 19, 209–218, https://doi.org/10.1007/s003670050111, 1999b. a
Ausin, B., Haghipour, N., Wacker, L., Voelker, A. H. L., Hodell, D., Magill, C., Looser, N., Bernasconi, S. M., and Eglinton, T. I.: Radiocarbon Age Offsets Between Two Surface Dwelling Planktonic Foraminifera Species During Abrupt Climate Events in the SW Iberian Margin, Paleoceanography and Paleoclimatology, 34, 63–78, https://doi.org/10.1029/2018PA003490, 2019. a
Bachan, A., Lau, K. V., Saltzman, M. R., Thomas, E., Kump, L. R., and Payne, J. L.: A model for the decrease in amplitude of carbon isotope excursions across the Phanerozoic, Am. J. Sci., 317, 641–676, https://doi.org/10.2475/06.2017.01, 2017. a
Barth, A. M., Clark, P. U., Bill, N. S., He, F., and Pisias, N. G.: Climate evolution across the Mid-Brunhes Transition, Clim. Past, 14, 2071–2087, https://doi.org/10.5194/cp-14-2071-2018, 2018. a, b
Bauska, T. K., Baggenstos, D., Brook, E. J., Mix, A. C., Marcott, S. A., Petrenko, V. V., Schaefer, H., Severinghaus, J. P., and Lee, J. E.: Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation, P. Natl. Acad. Sci. USA, 113, 3465–3470, https://doi.org/10.1073/pnas.1513868113, 2016. a, b, c
Bauska, T. K., Brook, E. J., Marcott, S. A., Baggenstos, D., Shackleton, S., Severinghaus, J. P., and Petrenko, V. V.: Controls on Millennial-Scale Atmospheric CO2 Variability During the Last Glacial Period, Geophys. Res. Lett., 45, 7731–7740, https://doi.org/10.1029/2018GL077881, 2018. a, b
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present, Geophys. Res. Lett., 42, 542–549, https://doi.org/10.1002/2014GL061957, 2015. a
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011. a
Black, D., Thunell, R., Wejnert, K., and Astor, Y.: Carbon isotope composition of Caribbean Sea surface waters: Response to the uptake of anthropogenic CO2, Geophys. Res. Lett., 38, L16609, https://doi.org/10.1029/2011GL048538, 2011. a
Bostock, H. C., Opdyke, B. N., Gagan, M. K., and Fifield, L. K.: Carbon isotope evidence for changes in Antarctic Intermediate Water circulation and ocean ventilation in the southwest Pacific during the last glaciation, Paleoceanography, 19, PA4013, https://doi.org/10.1029/2004PA001047, 2004. a
Brandenburg, K. M., Rost, B., Van de Waal, D. B., Hoins, M., and Sluijs, A.: Physiological control on carbon isotope fractionation in marine phytoplankton, Biogeosciences, 19, 3305–3315, https://doi.org/10.5194/bg-19-3305-2022, 2022. a, b
Browaeys, J.: Linear fit with both uncertainties in x and in y, MATLAB Central File Exchange, [code], https://www.mathworks.com/matlabcentral/fileexchange/45711-linear-fit-with-both-uncertainties-in-x-and-in-y (last access: 16 October 2023), 2023. a
Buitenhuis, E. T., Le Quéré, C., Bednars̆ek, N., and Schiebel, R.: Large Contribution of Pteropods to Shallow CaCO3 Export, Global Biogeochem. Cy., 33, 458–468, https://doi.org/10.1029/2018GB006110, 2019. a
Butzin, M., Heaton, T. J., Köhler, P., and Lohmann, G.: A short note on marine reservoir age simulations used in IntCal20, Radiocarbon, 62, 865–871, https://doi.org/10.1017/RDC.2020.9, 2020. a
Chen, M.-T., Shiau, L.-J., Yu, P.-S., Chiu, T.-C., Chen, Y.-G., and Wei, K.-Y.: 500 000-Year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island), Palaeogeogr. Palaeocl., 197, 113–131, https://doi.org/10.1016/S0031-0182(03)00389-4, 2003. a
CLIMAP Project Members: Seasonal reconstructions of the earth's surface at the last glacial maximum, Map and chart series (Geological Society of America), Geological Society of America, Boulder, Colo., 1981. a
CLIMAP Project Members: CLIMAP 18K Database, IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series # 94-001, NOAA/NGDC Paleoclimatology Program, Boulder CO, USA, https://www.ncei.noaa.gov/pub/data/paleo/paleocean/climap/climap18/ (last access: 16 November 2023), 1994. a
Curry, W. B. and Crowley, T. J.: The δ13C of equatorial Atlantic surface waters: implications for ice age pCO2 levels, Paleoceanography, 2, 489–517, https://doi.org/10.1029/PA002i005p00489, 1987. a, b
Curry, W. B., Marchitto, T. M., Mcmanus, J. F., Oppo, D. W., and Laarkamp, K. L.: Millennial-scale Changes in Ventilation of the Thermocline, Intermediate, and Deep Waters of the Glacial North Atlantic, vol. 112 of Geophysical Monograph Series, American Geophysical Union (AGU), 59–76, https://doi.org/10.1029/GM112p0059, 1999. a
Daëron , M. and Gray , W. R.: Revisiting Oxygen-18 and Clumped Isotopes in Planktic and Benthic Foraminifera, Paleoceanography and Paleoclimatology, 38, e2023PA004660, https://doi.org/10.1029/2023PA004660, 2023. a
De Deckker, P., Moros, M., Perner, K., and Jansen, E.: Influence of the tropics and southern westerlies on glacial interhemispheric asymmetry, Nat. Geosci., 5, 266–269, https://doi.org/10.1038/ngeo1431, 2012. a
Deines, P.: The carbon isotope geochemistry of mantle xenoliths, Earth-Sci. Rev., 58, 247–278, https://doi.org/10.1016/S0012-8252(02)00064-8, 2002. a
Duplessy, J.-C.: (Table 2) Stable carbon and oxygen isotope ratios of Globigerinoides ruber from sediment core MD77-169, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.726202, 1982a. a
Duplessy, J.: North Atlantic deep water circulation during the last climate cycle, Bulletin de l'Institut de Geologie du Bassin d'Aquitaine, 31, 371–391, 1982b. a
Duplessy, J., Bard, E., Arnold, M., Shackleton, N., Duprat, J., and Labeyrie, L.: How fast did the ocean–atmosphere system run during the last deglaciation?, Earth Planet. Sc. Lett., 103, 27–40, https://doi.org/10.1016/0012-821X(91)90147-A, 1991. a
Dupont, L. and Kuhlmann, H.: Glacial-interglacial vegetation change in the Zambezi catchment, Quaternary Sci. Rev., 155, 127–135, https://doi.org/10.1016/j.quascirev.2016.11.019, 2017. a
Dürkoop, A.: Der Brasil-Strom im Spatquartär: Rekonstruktion der oberflächennahen Hydrographie während der letzten 400 000 Jahre, PhD thesis, Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 119, 121 pp., http://nbn-resolving.de/urn:nbn:de:gbv:46-00101414-14 (last access: 16 November 2023), 1998. a
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.: Stable isotope data of sediment core GeoB1503-1, PANGAEA, [data set], https://doi.org/10.1594/PANGAEA.223482, 1997a. a
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.: Stable isotope data of sediment core GeoB2125-1, PANGAEA, [data set], https://doi.org/10.1594/PANGAEA.223488, 1997b. a
Dürkoop, A., Hale, W., Mulitza, S., Pätzold, J., and Wefer, G.: Stable isotope data of sediment core GeoB2202-4, PANGAEA, [data set], https://doi.org/10.1594/PANGAEA.223489, 1997c. a
Dyez, K. A., Zahn, R., and Hall, I. R.: Multicentennial Agulhas leakage variability and links to North Atlantic climate during the past 80,000 years, Paleoceanography, 29, 1238–1248, https://doi.org/10.1002/2014PA002698, 2014. a
Eggleston, S., Schmitt, J., Bereiter, B., Schneider, R., and Fischer, H.: CO2 concentration and stable isotope ratios of three Antarctic ice cores covering the period from 149.4–1.5 kyr before 1950, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.859181, 2016b. a
Eide, M., Olsen, A., Ninnemann, U. S., and Eldevik, T.: A global estimate of the full oceanic 13C Suess effect since the preindustrial, Global Biogeochem. Cy., 31, 515–534, https://doi.org/10.1002/2016GB005472, 2017. a
Emiliani, C.: Pleistocene temperatures, J. Geol., 63, 539–578, 1955. a
Felis, T., Hinestrosa, G., Köhler, P., and Webster, J. M.: Role of the deglacial buildup of the Great Barrier Reef for the global carbon cycle, Geophys. Res. Lett., 49, e2021GL096495, https://doi.org/10.1029/2021GL096495, 2022. a
Fraile, I., Schulz, M., Mulitza, S., and Kucera, M.: Predicting the global distribution of planktonic foraminifera using a dynamic ecosystem model, Biogeosciences, 5, 891–911, https://doi.org/10.5194/bg-5-891-2008, 2008. a
Freimüller, J.: Eine hochauflösende planktische Isotopenaufzeichnung des Heinrich Event 1 im tropischen Südamerika, Bachelor thesis, Fachbereich Geowissenschaften, Universität Bremen, 2013. a
Ganopolski, A. and Brovkin, V.: Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity, Clim. Past, 13, 1695–1716, https://doi.org/10.5194/cp-13-1695-2017, 2017. a
Ge, H., Li, Q., and Cheng, X.: Late Quaternary high resolution monsoon records in planktonic stable isotopes from northern South China Sea, Earth Sci.: J. China Uni. Geosci., 35, 515–525, 2010 (in Chinese). a
Gemmeke, B.: Spätquartäre Variationen der Sauerstoffisotopen-Zusammensetztung des Oberflächenwassers im östlichen tropischen Nordatlantik, Bachelor thesis, Fachbereich Geowissenschaften, Universität Bremen, 2010. a
Gibbons, F. T., Oppo, D. W., Mohtadi, M., Rosenthal, Y., Cheng, J., Liu, Z., and Linsley, B. K.: Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian Oceans, Earth Planet. Sc. Lett., 387, 240–251, https://doi.org/10.1016/j.epsl.2013.11.032, 2014. a
Gingele, F., De Deckker, P., and Norman, M.: Late Pleistocene and Holocene climate of SE Australia reconstructed from dust and river loads deposited offshore the River Murray Mouth, Earth Planet. Sc. Lett., 255, 257–272, https://doi.org/10.1016/j.epsl.2006.12.019, 2007. a
Govil, P. and Divakar Naidu, P.: Variations of Indian monsoon precipitation during the last 32 kyr reflected in the surface hydrography of the Western Bay of Bengal, Quaternary Sci. Rev., 30, 3871–3879, https://doi.org/10.1016/j.quascirev.2011.10.004, 2011. a
Hale, W. and Pflaumann, U.: Stable isotopes on Globigerinoides ruber in sediment core GeoB2109-1, PANGAEA, [data set], https://doi.org/10.1594/PANGAEA.140002, 1999. a
Hauck, J., Zeising, M., Le Quéré, C., Gruber, N., Bakker, D. C. E., Bopp, L., Chau, T. T. T., Gürses, Ö., Ilyina, T., Landschützer, P., Lenton, A., Resplandy, L., Rödenbeck, C., Schwinger, J., and Séférian, R.: Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global Carbon Budget, Front. Mar. Sci., 7, 852, https://doi.org/10.3389/fmars.2020.571720, 2020. a
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E., Ramsey, C. B., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J. F., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.: Marine20 – the marine radiocarbon age calibration curve (0–55,000 cal BP), simulated data for IntCal20, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.914500, 2020a. a
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Ramsey, C. B., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.: Marine20 – the marine radiocarbon age calibration curve (0–55,000 cal BP), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68, 2020b. a
Holbourn, A., Kuhnt, W., Kawamura, H., Jian, Z., Grootes, P., Erlenkeuser, H., and Xu, J.: Orbitally paced paleoproductivity variations in the Timor Sea and Indonesian Throughflow variability during the last 460 kyr, Paleoceanography, 20, PA3002, https://doi.org/10.1029/2004PA001094, 2005. a
Hou, A., Bahr, A., Raddatz, J., Voigt, S., Greule, M., Albuquerque, A. L., Chiessi, C. M., and Friedrich, O.: Insolation and Greenhouse Gas Forcing of the South American Monsoon System Across Three Glacial-Interglacial Cycles, Geophys. Res. Lett., 47, e2020GL087948, https://doi.org/10.1029/2020GL087948, 2020. a
Hu, R., Bostock, H. C., Greaves, M., Piotrowski, A. M., and McCave, I. N.: Coupled evolution of stable carbon isotopes between the Southern Ocean and the atmosphere over the last 260 ka, Earth Planet. Sc. Lett., 538, 116215, https://doi.org/10.1016/j.epsl.2020.116215, 2020. a
Ivanova, E., Schiebel, R., Singh, A. D., Schmiedl, G., Niebler, H.-S., and Hemleben, C.: Primary production in the Arabian Sea during the last 135 000 years, Palaeogeogr. Palaeocl., 197, 61–82, https://doi.org/10.1016/S0031-0182(03)00386-9, 2003. a
Johnstone, H. J. H., Kiefer, T., Elderfield, H., and Schulz, M.: Calcite saturation, foraminiferal test mass, and Mg/Ca-based temperatures dissolution corrected using XDX – A 150 ka record from the western Indian Ocean, Geochem. Geophy. Geosy., 15, 781–797, https://doi.org/10.1002/2013GC004994, 2014. a
Jonkers, L. and Kučera, M.: Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies, Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, 2017. a
Jørgensen, B. B., Erez, J., Revsbech, P., and Cohen, Y.: Symbiotic photosynthesis in a planktonic foraminiferan, Globigerinoides sacculifer (Brady), studied with microelectrodes, Limnol. Oceanogr., 30, 1253–1267, https://doi.org/10.4319/lo.1985.30.6.1253, 1985. a
Keeling, C. D.: The Suess effect: 13Carbon-14Carbon interrelations, Environ. Int., 2, 229–300, https://doi.org/10.1016/0160-4120(79)90005-9, 1979. a
Keigwin, L. D.: Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic, Paleoceanography, 19, PA4012, https://doi.org/10.1029/2004PA001029, 2004. a
Kemle-von Mücke, S.: Oberflächenwasserstruktur und -zirkulation des Südostatlantiks im Spätquartär, PhD thesis, Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 55, 151 pp., http://nbn-resolving.de/urn:nbn:de:gbv:46-ep000106720 (last access: 16 November 2023), 1994. a
Khatiwala, S., Schmittner, A., and Muglia, J.: Air-sea disequilibrium enhances ocean carbon storage during glacial periods, Science Advances, 5, eaaw4981, https://doi.org/10.1126/sciadv.aaw4981, 2019. a
Kimoto, K.: Planktic Foraminifera, 129–178, Springer Japan, Tokyo, https://doi.org/10.1007/978-4-431-55130-0_7, 2015. a, b, c
Knaack, J.: Eine neue Transferfunktion zur Rekonstruktion der Paläoproduktivität aus Gemeinschaften mariner Diatomeen, PhD thesis, Geologisch-Paläontologisches Institut und Museum, Christian-Albrechts-Universität Kiel, 119 pp., https://doi.org/10.2312/reports-gpi.1997.83, 1997. a
Knaack, J.-J. and Sarnthein, M.: Stable isotopes of foraminifera of ODP Hole 108-658C, PANGAEA, [data set], https://doi.org/10.1594/PANGAEA.227736, 2005. a
Köhler, P.: Anthropogenic CO2 of high emission scenario compensated after 3500 years of ocean alkalinization with an annually constant dissolution of 5 Pg of olivine, Frontiers in Climate, 2, 575744, https://doi.org/10.3389/fclim.2020.575744, 2020. a
Köhler, P.: Plio-Pleistocene simulations from a global carbon cycle box model, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.940169, 2022. a
Köhler, P. and Fischer, H.: Simulating changes in the terrestrial biosphere during the last glacial interglacial transition, Global Planet. Change, 43, 33–55, https://doi.org/10.1016/j.gloplacha.2004.02.005, 2004. a
Köhler, P. and Mulitza, S.: Mono-specific non-polar stacks of δ13C and δ18O from the planktic foraminifera G. ruber and T. sacculifer and simulation results of the 13C cycle across the last glacial cycle, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.963761, 2023. a, b
Köhler, P., Fischer, H., Munhoven, G., and Zeebe, R. E.: Quantitative interpretation of atmospheric carbon records over the last glacial termination, Global Biogeochem. Cy., 19, GB4020, https://doi.org/10.1029/2004GB002345, 2005. a, b, c
Köhler, P., Fischer, H., and Schmitt, J.: Atmospheric δ13CO2 and its relation to pCO2 and deep ocean δ13C during the late Pleistocene, Paleoceanography, 25, PA1213, https://doi.org/10.1029/2008PA001703, 2010. a, b
Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F., and Fischer, H.: A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing, Earth Syst. Sci. Data, 9, 363–387, https://doi.org/10.5194/essd-9-363-2017, 2017a. a, b, c, d
Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F., and Fischer, H.: Compilations and splined-smoothed calculations of continuous records of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing since the penultimate glacial maximum, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.871273, 2017b. a
Köhler, P., Adolphi, F., Butzin, M., and Muscheler, R.: Toward reconciling radiocarbon production rates with carbon cycle changes of the last 55,000 years, Paleoceanography and Paleoclimatology, 37, e2021PA004314, https://doi.org/10.1029/2021PA004314, 2022. a
Kohn, M., Steinke, S., Baumann, K.-H., Donner, B., Meggers, H., and Zonneveld, K. A.: Stable oxygen isotopes from the calcareous-walled dinoflagellate Thoracosphaera heimii as a proxy for changes in mixed layer temperatures off NW Africa during the last 45,000 yr, Palaeogeogr. Palaeocl., 302, 311–322, https://doi.org/10.1016/j.palaeo.2011.01.019, 2011. a
Koutavas, A. and Lynch-Stieglitz, J.: Glacial-interglacial dynamics of the eastern equatorial Pacific cold tongue-Intertropical Convergence Zone system reconstructed from oxygen isotope records, Paleoceanography, 18, 1089, https://doi.org/10.1029/2003PA000894, 2003. a
Langner, M. and Mulitza, S.: Technical note: PaleoDataView – a software toolbox for the collection, homogenization and visualization of marine proxy data, Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019, 2019. a, b
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long term numerical solution for the insolation quantities of the Earth, Astron. Astrophys., 428, 261–285, https://doi.org/10.1051/0004-6361:20041335, 2004. a
Leech, P. J., Lynch-Stieglitz, J., and Zhang, R.: Western Pacific thermocline structure and the Pacific marine Intertropical Convergence Zone during the Last Glacial Maximum, Earth Planet. Sc. Lett., 363, 133–143, https://doi.org/10.1016/j.epsl.2012.12.026, 2013. a
Li, L., Wang, H., Li, J., Zhao, M., and Wang, P.: Changes in sea surface temperature in western South China Sea over the past 450 ka, Chinese Sci. Bull., 54, 3335–3343, https://doi.org/10.1007/s11434-009-0083-9, 2009. a
Li, Q., Zheng, F., Chen, M., Xiang, R., Qiao, P., Shao, L., and Cheng, X.: Glacial Paleoceanography off the Mouth of the Mekong River, Southern South China Sea, During the last 500 ka, Quaternary Res., 73, 563–572, https://doi.org/10.1016/j.yqres.2010.03.003, 2010. a
Linsley, B. K.: Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150,000 years, Nature, 380, 234–237, https://doi.org/10.1038/380234a0, 1996. a
Linsley, B. K., Dunbar, R. B., Dassié, E. P., Tangri, N., Wu, H. C., Brenner, L. D., and Wellington, G. M.: Coral carbon isotope sensitivity to growth rate and water depth with paleo-sea level implications, Nat. Commun., 10, 2056, https://doi.org/10.1038/s41467-019-10054-x, 2019. a
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005. a
Lisiecki, L. E. and Stern, J. V.: Regional and global benthic δ18O stacks for the last glacial cycle, Paleoceanography, 31, 1368–1394, https://doi.org/10.1002/2016PA003002, 2016. a, b
Liu, Q., Kandasamy, S., Zhai, W., Wang, H., Veeran, Y., Gao, A., and Chen, C.-T. A.: Temperature is a better predictor of stable carbon isotopic compositions in marine particulates than dissolved CO2 concentration, Commun. Earth Environ., 3, 303, https://doi.org/10.1038/s43247-022-00627-y, 2022. a
Lloyd, J. and Farquhar, G. D.: 13C discrimination during CO2 assimilation by the terrestrial biosphere, Oecologia, 99, 201–215, 1994. a
Lo, L., Chang, S.-P., Wei, K.-Y., Lee, S.-Y., Ou, T.-H., Chen, Y.-C., Chuang, C.-K., Mii, H.-S., Burr, G. S., Chen, M.-T., Tung, Y.-H., Tsai, M.-C., Hodell, D. A., and Shen, C.-C.: Nonlinear climatic sensitivity to greenhouse gases over past 4 glacial/interglacial cycles, Sci. Rep., 7, 4626, https://doi.org/10.1038/s41598-017-04031-x, 2017. a
Lorrain, A., Pethybridge, H., Cassar, N., Receveur, A., Allain, V., Bodin, N., Bopp, L., Choy, C. A., Duffy, L., Fry, B., Goñi, N., Graham, B. S., Hobday, A. J., Logan, J. M., Ménard, F., Menkes, C. E., Olson, R. J., Pagendam, D. E., Point, D., Revill, A. T., Somes, C. J., and Young, J. W.: Trends in tuna carbon isotopes suggest global changes in pelagic phytoplankton communities, Glob. Change Biol., 26, 458–470, https://doi.org/10.1111/gcb.14858, 2020. a
Lund, D., Hertzberg, J., and Lacerra, M.: Carbon isotope minima in the South Atlantic during the last deglaciation: evaluating the influence of air-sea gas exchange, Environ. Res. Lett., 14, 055004, https://doi.org/10.1088/1748-9326/ab126f, 2019. a
Lynch-Stieglitz, J., Polissar, P. J., Jacobel, A. W., Hovan, S. A., Pockalny, R. A., Lyle, M., Murray, R. W., Ravelo, A. C., Bova, S. C., Dunlea, A. G., Ford, H. L., Hertzberg, J. E., Wertman, C. A., Maloney, A. E., Shackford, J. K., Wejnert, K., and Xie, R. C.: Glacial-interglacial changes in central tropical Pacific surface seawater property gradients, Paleoceanography, 30, 423–438, https://doi.org/10.1002/2014PA002746, 2015. a
Lynch-Stieglitz, J., Valley, S. G., and Schmidt, M. W.: Temperature-dependent ocean-atmosphere equilibration of carbon isotopes in surface and intermediate waters over the deglaciation, Earth Planet. Sc. Lett., 506, 466–475, https://doi.org/10.1016/j.epsl.2018.11.024, 2019. a, b, c
Ma, W., Tian, J., Li, Q., and Wang, P.: Simulation of long eccentricity (400-kyr) cycle in ocean carbon reservoir during Miocene Climate Optimum: Weathering and nutrient response to orbital change, Geophys. Res. Lett., 38, L10701, https://doi.org/10.1029/2011GL047680, 2011. a
Marchal, O., Stocker, T. F., and Joos, F.: A latitude-depth, circulation-biogeochemical ocean model for paleoclimate studies. Development and sensitivities, Tellus B, 50, 290–316, https://doi.org/10.3402/tellusb.v50i3.16130, 1998. a
Meinecke, G.: Spätquartäre Oberflächenwassertemperaturen im östlichen äquatorialen Atlantik, PhD thesis, Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 29, 181 pp., http://nbn-resolving.de/urn:nbn:de:gbv:46-ep000101647 (last access: 16 November 2023), 1992. a
Meinecke, G.: Isotopes (G. sacculifer) of sediment core GeoB1112-4, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.54765, 1999. a
Menking, J., Shackleton, S., Barker, S., Bauska, T., Brook, E., Buffen, A., Dyonisius, M., Petrenko, V., and Severinghaus, J.: Taylor Glacier CO2 Isotope Data 74–59 kyr, U.S. Antarctic Program (USAP) Data Center [data set], https://doi.org/10.15784/601600, 2022a. a
Menking, J. A., Shackleton, S. A., Bauska, T. K., Buffen, A. M., Brook, E. J., Barker, S., Severinghaus, J. P., Dyonisius, M. N., and Petrenko, V. V.: Multiple carbon cycle mechanisms associated with the glaciation of Marine Isotope Stage 4, Nat. Commun., 13, 5443, https://doi.org/10.1038/s41467-022-33166-3, 2022b. a, b, c, d, e
Menviel, L., Joos, F., and Ritz, S.: Simulating atmospheric CO2, 13C and the marine carbon cycle during the Last Glacial-Interglacial cycle: possible role for a deepening of the mean remineralization depth and an increase in the oceanic nutrient inventory, Quaternary Sci. Rev., 56, 46–68, https://doi.org/10.1016/j.quascirev.2012.09.012, 2012. a
Menviel, L., Mouchet, A., Meissner, K. J., Joos, F., and England, M. H.: Impact of oceanic circulation changes on atmospheric δ13CO2, Global Biogeochem. Cy., 29, 1944–1961, https://doi.org/10.1002/2015GB005207, 2015. a
Michael, S., Helmut, E., von Grafenstein, R., and Schroeder, C.: Stable-isotope stratigraphy for the last 750,000 years; Meteor core 13519 from the eastern equatorial Atlantic, Meteor-Forschungsergebnisse Reihe C Geologie und Geophysik, C38, 9–24, 1984. a
Mohtadi, M., Lückge, A., Steinke, S., Groeneveld, J., Hebbeln, D., and Westphal, N.: Late Pleistocene surface and thermocline conditions of the eastern tropical Indian Ocean, Quaternary Sci. Rev., 29, 887–896, https://doi.org/10.1016/j.quascirev.2009.12.006, 2010a. a
Mohtadi, M., Steinke, S., Lückge, A., Groeneveld, J., and Hathorne, E. C.: Glacial to Holocene surface hydrography of the tropical eastern Indian Ocean, Earth Planet. Sc. Lett., 292, 89–97, https://doi.org/10.1016/j.epsl.2010.01.024, 2010b. a
Mohtadi, M., Oppo, D. W., Steinke, S., Stuut, J.-B. W., De Pol-Holz, R., Hebbeln, D., and Luckge, A.: Glacial to Holocene swings of the Australian-Indonesian monsoon, Nat. Geosci., 4, 540–544, https://doi.org/10.1038/ngeo1209, 2011. a
Mohtadi, M., Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang, X., Steinke, S., and Luckge, A.: North Atlantic forcing of tropical Indian Ocean climate, Nature, 509, 76–80, https://doi.org/10.1038/nature13196, 2014. a
Mojica Prieto, F. J. and Millero, F. J.: The values of pK1 + pK2 for the dissolution of carbonic acid in seawater, Geochim. Cosmochim. Ac., 66, 2529–2540, https://doi.org/10.1016/S0016-7037(02)00855-4, 2002. a
Monteagudo, M. M., Lynch-Stieglitz, J., Marchitto, T. M., and Schmidt, M. W.: Central Equatorial Pacific Cooling During the Last Glacial Maximum, Geophys. Res. Lett., 48, e2020GL088592, https://doi.org/10.1029/2020GL088592, 2021. a
Moros, M., De Deckker, P., Jansen, E., Perner, K., and Telford, R. J.: Holocene climate variability in the Southern Ocean recorded in a deep-sea sediment core off South Australia, Quaternary Sci. Rev., 28, 1932–1940, https://doi.org/10.1016/j.quascirev.2009.04.007, 2009. a
Mulitza, S.: Spätquartäre Variationen der oberflächennahen Hydrographie im westlichen äquatorialen Atlantik, PhD thesis, Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 57, 95 pp., http://nbn-resolving.de/urn:nbn:de:gbv:46-ep000101923 (last access: 16 November 2023), 1994. a
Mulitza, S.: Globigerinoides ruber (white) isotopes of sediment core GeoB2109-1, PANGAEA, [data set], https://doi.org/10.1594/PANGAEA.713179, 2009. a
Mulitza, S., Arz, H., von Mücke, S. K., Moss, C., Niebler, H.-S., Pätzold, J., and Segl, M.: The South Atlantic Carbon Isotope record of planktic foraminifera, in: Use of proxies in Paleoceanography: Examples from the South Atlantic, edited by Fischer, G. and Wefer, G. Springer Verlag, Berlin, Heidelberg, Germany, 427–445, https://doi.org/10.1007/978-3-642-58646-0_17, 1999. a
Mulitza, S., Bickert, T., Bostock, H. C., Chiessi, C. M., Donner, B., Govin, A., Harada, N., Huang, E., Johnstone, H. J. H., Kuhnert, H., Langner, M., Lamy, F., Lembke-Jene, L., Lisiecki, L. E., Lynch-Stieglitz, J., Max, L., Mohtadi, M., Mollenhauer, G., Muglia, J., Nürnberg, D., Paul, A., Rühlemann, C., Repschläger, J., Saraswat, R., Schmittner, A., Sikes, E. L., Spielhagen, R. F., and Tiedemann, R.: World Atlas of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios (WA_Foraminiferal_Isotopes_2022), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.936747, 2021. a
Mulitza, S., Bickert, T., Bostock, H. C., Chiessi, C. M., Donner, B., Govin, A., Harada, N., Huang, E., Johnstone, H., Kuhnert, H., Langner, M., Lamy, F., Lembke-Jene, L., Lisiecki, L., Lynch-Stieglitz, J., Max, L., Mohtadi, M., Mollenhauer, G., Muglia, J., Nürnberg, D., Paul, A., Rühlemann, C., Repschläger, J., Saraswat, R., Schmittner, A., Sikes, E. L., Spielhagen, R. F., and Tiedemann, R.: World Atlas of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios, Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, 2022. a, b, c, d, e, f
Munhoven, G.: Modelling glacial-interglacial atmospheric CO2 variations: the role of continental weathering, PhD thesis, Université de Liège, Liège, Belgium, http://hdl.handle.net/2268/161314 (last access: 16 November 2023), 1997. a
Munhoven, G. and François, L. M.: Glacial-interglacial variability of atmospheric CO2 due to changing continental silicate rock weathering: a model study, J. Geophys. Res., 101, 21423–21437, https://doi.org/10.1029/96JD01842, 1996. a
Naik, S. S. and Naidu, P. D.: Carbonate preservation during the `mystery interval' in the northern Indian Ocean, Geochem. J., 50, 357–362, https://doi.org/10.2343/geochemj.2.0420, 2016. a
Nederbragt, A. J.: The Effect of Seawater Carbonate Chemistry on the Stable Isotope Composition of Cibicidoides wuellerstorfi and Other Cibicidoides Species, Paleoceanography and Paleoclimatology, 38, e2023PA004667, https://doi.org/10.1029/2023PA004667, 2023. a
Oliver, K. I. C., Hoogakker, B. A. A., Crowhurst, S., Henderson, G. M., Rickaby, R. E. M., Edwards, N. R., and Elderfield, H.: A synthesis of marine sediment core δ13C data over the last 150 000 years, Clim. Past, 6, 645–673, https://doi.org/10.5194/cp-6-645-2010, 2010. a
Oppo, D. W. and Fairbanks, R. G.: Carbon isotope composition of tropcial surface water during the past 22,000 years, Paleoceanography, 4, 333–351, https://doi.org/10.1029/PA004i004p00333, 1989. a, b, c
Paillard, D.: The Plio-Pleistocene climatic evolution as a consequence of orbital forcing on the carbon cycle, Clim. Past, 13, 1259–1267, https://doi.org/10.5194/cp-13-1259-2017, 2017. a
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. H., Shackleton, N. J., k. Tripati, A., and Wade, B. S.: The heartbeat of the Oligocene climate system, Science, 314, 1894–1898, https://doi.org/10.1126/science.1133822, 2006. a
Parker, A. O., Schmidt, M. W., Jobe, Z. R., and Slowey, N. C.: A new perspective on West African hydroclimate during the last deglaciation, Earth Planet. Sc. Lett., 449, 79–88, https://doi.org/10.1016/j.epsl.2016.05.038, 2016. a
Patrick, A. and Thunell, R. C.: Tropical Pacific sea surface temperatures and upper water column thermal structure during the Last Glacial Maximum, Paleoceanography, 12, 649–657, https://doi.org/10.1029/97PA01553, 1997. a
Paul, A., Reimer, J. J. G., Fürstenau, J., Kinkel, H., and Betzler, C.: Relationship between Late Pleistocene sea-level variations, carbonate platform morphology and aragonite production (Maldives, Indian Ocean), Sedimentology, 59, 1640–1658, https://doi.org/10.1111/j.1365-3091.2011.01319.x, 2012. a
Peterson, C. D. and Lisiecki, L. E.: Deglacial carbon cycle changes observed in a compilation of 127 benthic δ13C time series (20–6 ka), Clim. Past, 14, 1229–1252, https://doi.org/10.5194/cp-14-1229-2018, 2018. a
Peterson, C. D., Lisiecki, L. E., and Stern, J. V.: Deglacial whole-ocean δ13C change estimated from 480 benthic foraminiferal records, Paleoceanography, 29, 549–563, https://doi.org/10.1002/2013PA002552, 2014. a, b, c
Pinho, T., Chiessi, C. M., Campos, M. C., Portilho-Ramos, R. C., Martínez-Méndez, G., Venancio, I. M., Nascimento, R. A., Crivellari, S., Albuquerque, A. L., Arz, H. W., Tiedemann, R., Bahr, A., and Mulitza, S.: Thermodynamic air-sea equilibration controls carbon isotopic composition of the South Atlantic thermocline during the last glacial period, Global Planet. Change, 229, 104223, https://doi.org/10.1016/j.gloplacha.2023.104223, 2023. a, b
Pöppelmeier, F., Baggenstos, D., Grimmer, M., Liu, Z., Schmitt, J., Fischer, H., and Stocker, T. F.: The Effect of Past Saturation Changes on Noble Gas Reconstructions of Mean Ocean Temperature, Geophys. Res. Lett., 50, e2022GL102055, https://doi.org/10.1029/2022GL102055, 2023. a, b
Portilho-Ramos, R. C., Cruz, A. P. S., Barbosa, C. F., Rathburn, A. E., Mulitza, S., Venancio, I. M., Schwenk, T., Rühlemann, C., Vidal, L., Chiessi, C. M., and Silveira, C. S.: Methane release from the southern Brazilian margin during the last glacial, Sci. Rep., 8, 5948, https://doi.org/10.1038/s41598-018-24420-0, 2018. a
Raza, T., Ahmad, S. M., Sahoo, M., Banerjee, B., Bal, I., Dash, S., Suseela, G., and Mukherjee, I.: Hydrographic changes in the southern Bay of Bengal during the last ∼65,000 y inferred from carbon and oxygen isotopes of foraminiferal fossil shells, Quatern. Int., 333, 77–85, https://doi.org/10.1016/j.quaint.2014.02.010, 2014. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org (last access: 16 November 2023), 2023. a
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, H., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adophi, F., Büntgen, U., Capano, M., Fahrni, S., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020. a
Richter, T.: Sedimentary fluxes at the Mid-Atlantic Ridge: sediment sources, accumulation rates, and geochemical characterisation, PhD thesis, GEOMAR-Report, 73, GEOMAR Research Center for Marine Geosciences, Christian-Albrechts-Universität in Kiel, 173 pp., Kiel, https://doi.org/10.3289/GEOMAR_REP_73_1998, 1998. a
Rohde, R. A. and Hausfather, Z.: The Berkeley Earth Land/Ocean Temperature Record, Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, 2020. a
Romahn, S.: Western Indian Ocean circulation and climate variability on different time scales: a study based on stable oxygen and carbon isotopes, benthic foraminiferal assemblages and Mg/Ca paleothermometry, PhD thesis, Fachbereich Geowissenschaften, Universität Bremen, 95 pp., http://nbn-resolving.de/urn:nbn:de:gbv:46-00104138-17 (last access: 16 November 2023), 2014. a, b
Romahn, S., Mackensen, A., Groeneveld, J., and Pätzold, J.: Deglacial intermediate water reorganization: new evidence from the Indian Ocean, Clim. Past, 10, 293–303, https://doi.org/10.5194/cp-10-293-2014, 2014. a
Roth, R. and Joos, F.: Model limits on the role of volcanic carbon emissions in regulating glacial-interglacial CO2 variations, Earth Planet. Sc. Lett., 329–330, 141–149, https://doi.org/10.1016/j.epsl.2012.02.019, 2012. a
Rubino, M., Etheridge, D. M., Trudinger, C. M., Allison, C. E., Battle, M. O., Langenfelds, R. L., Steele, L. P., Curran, M., Bender, M., White, J. W. C., Jenk, T. M., Blunier, T., and Francey, R. J.: A revised 1000-year atmospheric δ13C-CO2 record from Law Dome and South Pole, Antarctica, J. Geophys. Res.-Atmos., 118, 8482–8499, https://doi.org/10.1002/jgrd.50668, 2013. a
Rühlemann, C., Frank, M., Hale, W., Mangini, A., Mulitza, S., Müller, P., and Wefer, G.: Late Quaternary productivity changes in the western equatorial Atlantic: Evidence from 230Th-normalized carbonate and organic carbon accumulation rates, Mar. Geol., 135, 127–152, https://doi.org/10.1016/S0025-3227(96)00048-5, 1996. a
Russon, T., Paillard, D., and Elliot, M.: Potential origins of 400–500 kyr periodicities in the ocean carbon cycle: A box model approach, Global Biogeochem. Cy., 24, GB2013, https://doi.org/10.1029/2009GB003586, 2010. a
Sarnthein, M., Winn, K., Duplessy, J.-C., and Fontugne, M. R.: Global variations of surface ocean productivity in low and mid latitudes: Influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years, Paleoceanography, 3, 361–399, https://doi.org/10.1029/PA003i003p00361, 1988. a
Sarnthein, M., Winn, K., Jung, S. J. A., Duplessy, J. C., Labeyrie, L., Erlenkeuser, H., and Ganssen, G.: Changes in East Atlantic deepwater circulation over the last 30,000 years: eight time slice reconstruction, Paleoceanography, 99, 209–268, https://doi.org/10.1029/93PA03301, 1994. a
Schefuß, E., Schouten, S., and Schneider, R. R.: Climatic controls on central African hydrology during the past 20,000 years, Nature, 437, 1003–1006, https://doi.org/10.1038/nature03945, 2005. a
Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A., Chappellaz, J., Köhler, P., Joos, F., Stocker, T. F., Leuenberger, M., and Fischer, H.: Carbon isotope constraints on the deglacial CO2 rise from ice cores, Science, 336, 711–714, https://doi.org/10.1126/science.1217161, 2012. a
Schmittner, A., Gruber, N., Mix, A. C., Key, R. M., Tagliabue, A., and Westberry, T. K.: Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean, Biogeosciences, 10, 5793–5816, https://doi.org/10.5194/bg-10-5793-2013, 2013. a
Schmittner, A., Bostock, H. C., Cartapanis, O., Curry, W. B., Filipsson, H. L., Galbraith, E. D., Gottschalk, J., Herguera, J. C., Hoogakker, B., Jaccard, S. L., Lisiecki, L. E., Lund, D. C., Martínez-Méndez, G., Lynch-Stieglitz, J., Mackensen, A., Michel, E., Mix, A. C., Oppo, D. W., Peterson, C. D., Repschläger, J., Sikes, E. L., Spero, H. J., and Waelbroeck, C.: Calibration of the carbon isotope composition (δ13C) of benthic foraminifera, Paleoceanography, 32, 512–530, https://doi.org/10.1002/2016PA003072, 2017. a, b, c
Schneider, R.: Spätquartäre Produktivitätsänderungen im östlichen Angola-Becken: Reaktion auf Variationen im Passat-Monsun-Windsystem und in der Advektion des Benguela-Küstenstroms, PhD thesis, Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 21, 198 pp., Bremen, http://nbn-resolving.de/urn:nbn:de:gbv:46-ep000106678 (last access: 16 November 2023), 1991. a
Schneider, R., Schmitt, J., Köhler, P., Joos, F., and Fischer, H.: A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception, Clim. Past, 9, 2507–2523, https://doi.org/10.5194/cp-9-2507-2013, 2013. a, b, c
Shackleton, N., Le, J., Mix, A., and Hall, M.: Carbon isotope records from pacific surface waters and atmospheric carbon dioxide, Quaternary Sci. Rev., 11, 387–400, https://doi.org/10.1016/0277-3791(92)90021-Y, 1992. a
Shackleton, S., Seltzer, A., Baggenstos, D., and Lisiecki, L. E.: Benthic δ18O records Earth's energy imbalance, Nat. Geosci., 16, 797–802, https://doi.org/10.1038/s41561-023-01250-y, 2023. a
Shao, J., Stott, L. D., Menviel, L., Ridgwell, A., Ödalen, M., and Mohtadi, M.: The atmospheric bridge communicated the δ13C decline during the last deglaciation to the global upper ocean, Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021, 2021. a
Sirocko, F.: Zur Akkumulation von Staubsedimenten im nördlichen Indischen Ozean, Anzeiger der Klimageschichte Arabiens und Indiens: = Accumulation of eolian sediments in the northern Indian Ocean, record of the climatic history of Arabia and India, PhD thesis, Geolog.-Paläontolog. Inst. u. Museum, Christian-Albrechts-Univity, Kiel, Berichte. 27, 185 pp., https://doi.org/10.2312/reports-gpi.1989.27, 1989. a
Sirocko, F., Garbe-Schönberg, D., and Devey, C.: Processes controlling trace element geochemistry of Arabian Sea sediments during the last 25,000 years, Global Planet. Change, 26, 217–303, https://doi.org/10.1016/S0921-8181(00)00046-1, 2000. a
Slowey, N. C. and Curry, W. B.: Enhanced ventilation of the North Atlantic subtropical gyre thermocline during the last glaciation, Nature, 358, 665–668, https://doi.org/10.1038/358665a0, 1992. a
Smith, H. J., Fischer, H., Wahlen, M., Mastroianni, D., and Deck, B.: Dual modes of the carbon cycle since the Last Glacial Maximum, Nature, 400, 248–250, 1999. a
Spero, H. J.: Do planktic foraminifera accurately record shifts in the carbon isotopic composition of seawater ΣCO2?, Mar. Micropaleontol., 19, 275–285, https://doi.org/10.1016/0377-8398(92)90033-G, 1992. a
Spero, H. J. and Lea, D. W.: Intraspecific stable isotope variability in the planktic foraminifera Globigerinoides sacculifer: Results from laboratory experiments, Mar. Micropaleontol., 22, 221–234, https://doi.org/10.1016/0377-8398(93)90045-Y, 1993. a
Spero, H. J. and Williams, D. F.: Extracting environmental information from planktonic foraminiferal δ13C data, Nature, 335, 717–719, https://doi.org/10.1038/335717a0, 1988. a
Spero, H. J. and Williams, D. F.: Opening the carbon isotope “vital effect” black box 1. Seasonal temperatures in the euphotic zone, Paleoceanography, 4, 593–601, https://doi.org/10.1029/PA004i006p00593, 1989. a
Spero, H. J., Lerche, I., and Williams, D. F.: Opening the carbon isotope “vital effect” black box, 2, Quantitative model for interpreting foraminiferal carbon isotope data, Paleoceanography, 6, 639–655, https://doi.org/10.1029/91PA02022, 1991. a, b, c
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E.: Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature, 390, 497–500, https://doi.org/10.1038/37333, 1997. a, b, c
Spero, H. J., Bijma, J., Lea, D. W., and Russell, A. D.: Deconvolving Glacial Ocean Carbonate Chemistry from the Planktonic Foraminifera Carbon Isotope Record, in: Reconstructing Ocean History: A Window into the Future, edited by Abrantes, F. and Mix, A. C., Springer US, Boston, MA, 329–342, https://doi.org/10.1007/978-1-4615-4197-4_19, 1999. a, b, c, d, e, f, g, h, i, j
Spero, H. J., Mielke, K. M., Kalve, E. M., Lea, D. W., and Pak, D. K.: Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 ky, Paleoceanography, 18, 1022, https://doi.org/10.1029/2002PA000814, 2003. a
Stott, L., Poulsen, C., Lund, S., and Thunell, R.: Super ENSO and Global Climate Oscillations at Millennial Time Scales, Science, 297, 222–226, https://doi.org/10.1126/science.1071627, 2002. a
Stott, L., Timmermann, A., and Thunell, R.: Southern hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming, Science, 318, 435–438, https://doi.org/10.1126/science.1143791, 2007. a
The MathWorks Inc.: MATLAB Version: 9.14.0.2206163 (R2023a), Natick, Massachusetts, United States, https://www.mathworks.com (last access: 16 November 2023), 2023. a
Tian, J., Huang, E., and Pak, D. K.: East Asian winter monsoon variability over the last glacial cycle: Insights from a latitudinal sea-surface temperature gradient across the South China Sea, Palaeogeogr. Palaeocl., 292, 319–324, https://doi.org/10.1016/j.palaeo.2010.04.005, 2010. a
Tierney, J. E., deMenocal, P. B., and Zander, P. D.: A climatic context for the out-of-Africa migration, Geology, 45, 1023–1026, https://doi.org/10.1130/G39457.1, 2017. a
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and Poulsen, C. J.: Glacial cooling and climate sensitivity revisited, Nature, 584, 569–573, https://doi.org/10.1038/s41586-020-2617-x, 2020. a
Toledo, F. A., Costa, K. B., and Pivel, M. A.: Salinity changes in the western tropical South Atlantic during the last 30 kyr, Global Planet. Change, 57, 383–395, https://doi.org/10.1016/j.gloplacha.2007.01.001, 2007. a
Vahlenkamp, M.: The Anatomy of Heinrich Event 1 – A Multiproxy Study of Centennial to Millennial Scale Climate Change off Brazil, Master thesis, Fachbereich Geowissenschaften, Universität Bremen, 2013. a
Venancio, I. M., Mulitza, S., Govin, A., Santos, T. P., Lessa, D. O., Albuquerque, A. L. S., Chiessi, C. M., Tiedemann, R., Vahlenkamp, M., Bickert, T., and Schulz, M.: Millennial- to Orbital-Scale Responses of Western Equatorial Atlantic Thermocline Depth to Changes in the Trade Wind System Since the Last Interglacial, Paleoceanography and Paleoclimatology, 33, 1490–1507, https://doi.org/10.1029/2018PA003437, 2018. a
Vogel, J. C.: Variability of carbon isotope fractionation during photosynthesis, in: Stable isotopes and plant carbon–water relations, edited by Ehleringer, J. R., Hall, A. E., and Farquhar, G. D., Academic Press, San Diego, USA, 29–46, https://doi.org/10.1016/B978-0-08-091801-3.50010-6, 1993. a
von Rad, U., Schulz, H., Riech, V., den Dulk, M., Berner, U., and Sirocko, F.: Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30,000 years documented in laminated sediments off Pakistan, Palaeogeogr. Palaeocl., 152, 129–161, https://doi.org/10.1016/S0031-0182(99)00042-5, 1999. a
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., and Pflaumann, U.: East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea, Mar. Geol., 156, 245–284, https://doi.org/10.1016/S0025-3227(98)00182-0, 1999. a
Wang, P., Li, Q., Tian, J., Jian, Z., Liu, C., Li, L., and Ma, W.: Long-term cycles in the carbon reservoir of the Quaternary ocean: a perspective from the South China Sea, Nat. Sci. Rev., 1, 119–143, https://doi.org/10.1093/nsr/nwt028, 2014. a, b
Wang, P., Li, Q., Tian, J., He, J., Jian, Z., Ma, W., and Dang, H.: Monsoon influence on planktic δ18O records from the South China Sea, Quaternary Sci. Rev., 142, 26–39, https://doi.org/10.1016/j.quascirev.2016.04.009, 2016. a
Wang, Y. V., Leduc, G., Regenberg, M., Andersen, N., Larsen, T., Blanz, T., and Schneider, R. R.: Northern and southern hemisphere controls on seasonal sea surface temperatures in the Indian Ocean during the last deglaciation, Paleoceanography, 28, 619–632, https://doi.org/10.1002/palo.20053, 2013. a
Wefer, G., Berger, W. H., Bickert, T., Donner, B., Fischer, G., von Mücke, S. K., Meinecke, G., Müller, P. J., Mulitza, S., Niebler, H.-S., Pätzold, J., Schmidt, H., Schneider, R. R., and Segl, M.: Late Quaternary Surface Circulation of the South Atlantic: The Stable Isotope Record and Implications for Heat Transport and Productivity, Springer Berlin Heidelberg, Berlin, Heidelberg, 461–502, https://doi.org/10.1007/978-3-642-80353-6_25, 1996. a
Winn, K.: Density, carbon and stable isotope ratios of foraminifera from sediment core SO35-272, in: Winn, Kyaw; Werner, Friedrich; Erlenkeuser, Helmut (2013): Age model and stable isotope ratios of sediment cores from the South China Sea, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.807876, 2013. a
Wirtz, K., Smith, S. L., Mathis, M., and Taucher, J.: Vertically migrating phytoplankton fuel high oceanic primary production, Nat. Clim. Change, 12, 750–756, https://doi.org/10.1038/s41558-022-01430-5, 2022. a
Wolf-Gladrow, D. A., Bijma, J., and Zeebe, R. E.: Model simulation of the carbonate chemistry in the microenvironment of symbiont bearing foraminifera, Mar. Chem., 64, 181–198, https://doi.org/10.1016/S0304-4203(98)00074-7, 1999. a
Young, J. N., Bruggeman, J., Rickaby, R. E. M., Erez, J., and Conte, M.: Evidence for changes in carbon isotopic fractionation by phytoplankton between 1960 and 2010, Global Biogeochem. Cy., 27, 505–515, https://doi.org/10.1002/gbc.20045, 2013. a, b
Yun, K.-S., Timmermann, A., Lee, S.-S., Willeit, M., Ganopolski, A., and Jadhav, J.: A transient coupled general circulation model (CGCM) simulation of the past 3 million years, Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023, 2023. a
Zahn-Knoll, R.: Spätquatäre Entwicklung von Küstenauftrieb und Tiefenwasserzirkulation im Nordost-Atlantik. Rekonstruktion anhand stabiler Isotope kalkschaliger Foraminiferen, PhD thesis, Christian-Albrechts-Universität zu Kiel, 111 pp., https://oceanrep.geomar.de/id/eprint/40044/ (last access: 16 November 2023), 1986. a, b
Zeebe, R. E.: An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes, Geochim. Cosmochim. Ac., 63, 2001–2007, https://doi.org/10.1016/S0016-7037(99)00091-5, 1999. a, b
Zeebe, R. E., Bijma, J., and Wolf-Gladrow, D. A.: A diffusion-reaction model of carbon isotope fractionation in foraminifera, Mar. Chem., 64, 199–227, https://doi.org/10.1016/S0304-4203(98)00075-9, 1999. a, b
Zeebe, R. E., Bijma, J., Hönisch, B., Sanyal, A., Spero, H. J., and Wolf-Gladrow, D. A.: Vital effects and beyond: a modelling perspective on developing palaeoceanographical proxy relationships in foraminifera, in: Biogeochemical Controls on Palaeoceanographic Environmental Proxies, Geological Society of London, https://doi.org/10.1144/SP303.4, 2008. a, b
Zheng, B., Lucas, A. J., Franks, P. J. S., Schlosser, T. L., Anderson, C. R., Send, U., Davis, K., Barton, A. D., and Sosik, H. M.: Dinoflagellate vertical migration fuels an intense red tide, P. Natl. Acad. Sci. USA, 120, e2304590120, https://doi.org/10.1073/pnas.2304590120, 2023. a
Zimmermann, R.: Spätquartäre Geschichte der Oberflächenstratifizierung im Golf von Guinea anhand des Schwerelotkernes GeoB 4905-4, Bachelor thesis, Fachbereich Geowissenschaften, Universität Bremen, 2013. a
Ziveri, P., Stoll, H., Probert, I., Klaas, C., Geisen, M., Ganssen, G., and Young, J.: Stable isotope “vital effects” in coccolith calcite, Earth Planet. Sc. Lett., 210, 137–149, https://doi.org/10.1016/S0012-821X(03)00101-8, 2003. a
Short summary
We constructed 160 kyr long mono-specific stacks of δ13C and of δ18O from the wider tropics from the planktic foraminifera G. ruber and/or T. sacculifer and compared them with carbon cycle simulations using the BICYCLE-SE model. In our stacks and our model-based interpretation, we cannot detect a species-specific isotopic fractionation during hard-shell formation as a function of carbonate chemistry in the surrounding seawater, something which is called a carbonate ion effect.
We constructed 160 kyr long mono-specific stacks of δ13C and of δ18O from the wider tropics from...