No detectable influence of the carbonate ion effect on changes in stable carbon isotope ratios (δ^{13}C) of shallow dwelling planktic foraminifera over the past 160 kyr

Peter Köhler1 and Stefan Mulitza2

1Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
2MARUM – Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany

Correspondence: Peter Köhler (peter.koehler@awi.de)

Received: 18 October 2023 – Discussion started: 24 October 2023
Revised: 14 February 2024 – Accepted: 1 March 2024 – Published: 25 April 2024

Abstract. Laboratory experiments showed that the isotopic fractionation of δ^{13}C and of δ^{18}O during calcite formation of planktic foraminifera are species-specific functions of ambient CO$_3^{2-}$ concentration. This effect became known as the carbonate ion effect (CIE), whose role for the interpretation of marine sediment data will be investigated here in an in-depth analysis of the 13C cycle. For this investigation, we constructed new 160 kyr long mono-specific stacks of changes in both δ^{13}C and δ^{18}O from either the planktic foraminifera Globigerinoides ruber (rub) or Trilobatus sacculifer (sac) from 112 and 40 marine records, respectively, from the wider tropics (latitudes below 38°). Both mono-specific time series (δ^{13}C$_{rub}$) and (δ^{13}C$_{sac}$) are very similar to each other, and a linear regression through a scatter plot of both data sets has a slope of \sim0.99 – although the laboratory-based CIE for both species differs by a factor of nearly 2, implying that they should record distinctly different changes in δ^{13}C, if we accept that the carbonate ion concentration changes on glacial–interglacial timescales. For a deeper understanding of the 13C cycle, we use the Solid Earth version of the Box model of the Isotopic Carbon CYCLE (BICYCLE-SE) to calculate how surface-ocean CO$_3^{2-}$ should have varied over time in order to be able to calculate the potential offsets which would be caused by the CIE quantified in culture experiments. Our simulations are forced with atmospheric reconstructions of CO$_2$ and δ^{13}CO$_2$ derived from ice cores to obtain a carbon cycle which should at least at the surface ocean be as close as possible to expected conditions and which in the deep ocean largely agrees with the carbon isotope ratio of dissolved inorganic carbon (DIC), δ^{13}C$_{DIC}$, as reconstructed from benthic foraminifera. We find that both $\Delta(\delta^{13}$C$_{rub}$) and $\Delta(\delta^{13}$C$_{sac}$) agree better with changes in simulated δ^{13}C$_{DIC}$ when ignoring the CIE than those time series which were corrected for the CIE. The combination of data- and model-based evidence for the lack of a role for the CIE in $\Delta(\delta^{13}$C$_{rub}$) and $\Delta(\delta^{13}$C$_{sac}$) suggests that the CIE as measured in laboratory experiments is not directly transferable to the interpretation of marine sediment records. The much smaller CIE-to-glacial–interglacial-signal ratio in foraminifera δ^{18}O, when compared to δ^{13}C, prevents us from drawing robust conclusions on the role of the CIE in δ^{18}O as recorded in the hard shells of both species. However, theories propose that the CIE in both δ^{13}C and δ^{18}O depends on the pH in the surrounding water, suggesting that the CIE should be detectable in neither or both of the isotopes. Whether this lack of role of the CIE in the interpretation of planktic paleo-data is a general feature or is restricted to the two species investigated here needs to be checked with further data from other planktic foraminiferal species.

1 Introduction

For a reconstruction of past changes in the ocean and in the carbon cycle, various variables are measured in microfossils obtained from marine sediment cores. Among the most widely used are the stable carbon and oxygen isotope ratios, δ^{13}C and δ^{18}O, from hard shells of planktic and ben-
thic foraminifera. Since the publication of the first stable isotope time series (Emiliani, 1955) a vast number of stable isotope records have been published and to a large part compiled in the World Atlas of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios (Mulitza et al., 2022). One of the fundamental problems with the interpretation of foraminiferal isotope ratios is how and why a stable isotope signal was altered on its way from the seawater to the shell of living foraminifera. Are there vital and other effects necessary to be considered when interpreting the paleo-records (e.g. Bijma et al., 1999; Zeebe et al., 2008; Kimoto, 2015)?

The carbonate ion effect (CIE) is one of these potentially important effects that might alter the isotopic signal. The CIE implies that both δ13C and δ18O measured in hard shells of marine organisms undergo isotopic fractionation during calcite formation with the amplitude of the fractionation, among other factors, being a function of the carbonate ion concentration ([CO3²⁻]) of the surrounding seawater (Spero et al., 1997). The CIE has been found to be species-specific (Spero et al., 1999), ranging from −4.7 × 10⁻³‰ to −13.0 × 10⁻³‰ per µmol kg⁻¹ of [CO3²⁻] for δ13C and between −1.4 × 10⁻³‰ and −4.5 × 10⁻³‰ per µmol kg⁻¹ of [CO3²⁻] for δ18O in four planktic foraminifera. The CIE for δ13C has been explained for Orbulina universa, a spinose, symbiont-bearing species, by the pH-related distribution of dissolved inorganic carbon (DIC) into its three species: CO2, CO3²⁻ and HCO3⁻ (Wolf-Gladrow et al., 1999; Zeebe et al., 1999). The CIE on δ18O is also explained by the CO3²⁻ related varying pH (Zeebe, 1999). These theories, however, were unable to base the full amplitudes found in experiments solely on this effect. The CIE is maybe the most prominent isotopic fractionation effect which has to be considered when interpreting the paleo-records, but others, e.g. vital effects and dependency on light, temperature, pressure and shell size, have been put forward (e.g. Spero and Williams, 1988, 1989; Spero et al., 1991; Spero, 1992; Spero and Lea, 1993; Oppo and Fairbanks, 1989). The CIE is found to play a minor role when comparing late Holocene deep-ocean δ13C in benthic foraminifera, with δ13C of DIC (δ13CDIC) (Schmittner et al., 2017) being responsible for −2.6 × 10⁻³‰ per µmol kg⁻¹ of [CO3²⁻] disturbance in the recorded signal. In a recent study focusing on the benthic species Cibicidoides wuellerstorfi, −3.0 × 10⁻³‰ per µmol kg⁻¹ of [CO3²⁻] has been obtained for the late Holocene (Nederbragt, 2023). Both studies also found in addition to the CIE that δ13C_benthic was also partly controlled by other variables, mainly pressure (water depth) and temperature.

The CIE in planktic foraminifera is one of the reasons why the interpretation of the whole δ13C cycle over glacial–interglacial timescales is still challenging. In a compilation of foraminineral δ13C measurements covering the past 150 kyr, Oliver et al. (2010) find relatively large disagreements between different planktic δ13C records within a region compared to benthic records, consistent with large uncertainty attributed to the estimation of δ13CDIC from planktic species. Since benthic compilations are less affected by the CIE, they should, however, robustly constrain deep-ocean changes in δ13CDIC. A more recent compilation of benthic δ13C was given in Lisiecki (2014). Furthermore, δ13C of atmospheric CO2 (δ13CO2) is now available over the last 155 kyr (Eggelston et al., 2016a) from ice cores. So far, tight constraints on the change in surface-ocean δ13CDIC are missing from our understanding, but, in principle, this information should be recorded in the hard shells of planktic foraminifera, even if hidden under the CIE.

In this study, we therefore aim to construct a robust time series of orbital changes in surface-ocean δ13CDIC based on planktic foraminifera data. We compiled δ13C data largely based on Mulitza et al. (2022) covering the last 160 kyr. In order to be able to apply any species-specific CIE corrections, we compile mono-specific isotope records on the widely abundant shallow-dwelling planktic foraminifera species Globigerinoides ruber (G. ruber or rub) and Trilobatus sacculifer (T. sacculifer or sac) into stacks. Due to their spatial distribution (Fraile et al., 2008), this species selection leads effectively to the construction of Δ(δ13Crub) and Δ(δ13C sac) stacks based on sediment core data from latitudes smaller than 40°, potentially informing us about mean changes of δ13CDIC on orbital timescales in the surface of the wider tropical ocean. Accompanied stacks of Δ(δ18Orub) and Δ(δ18O sac) from the same cores will add further information on the CIE in δ18O.

A first surface-ocean δ13C stack based on data from T. sacculifer obtained from five equatorial Atlantic records has been constructed by Curry and Crowley (1987) without any knowledge on the CIE. Furthermore, Spero et al. (1999) used data from G. ruber and T. sacculifer from a single core in the Indian Ocean and the lab-based size of their species-specific CIE to deconvolve surface-ocean [CO3²⁻]. Here we will use our new mono-specific δ13C stacks, which, due to the underlying number of records, have a much higher signal-to-noise ratio to test the robustness of their findings.

In the following, we will investigate the connection of δ13C in the atmosphere and ocean in closer detail in order to improve our understanding of the 13C cycle. The remainder of the article is structured as follows. Firstly (Sect. 2.1), we describe the construction of our mono-specific δ13C anomaly stacks, Δ(δ13Crub) and Δ(δ13C sac) (and of the accompanied δ18O anomalies). Some published benthic δ13C data are also needed for our understanding (Sect. 2.2). For a deeper interpretation, the global isotope-enabled carbon cycle model, the Solid Earth version of the Box model of the Isotopic Carbon cYCLE (BICYCLE-SE) (Köhler and Munhoven, 2020), which has been proven to simulate glacial–interglacial (G–IG) in the carbon cycle reasonably well, is used. The model is briefly described in Sect. 2.3, including a completely revised parametrisation of the 13C cycle. In Sect. 3.1, we discuss what we already know from data on the δ13C cycle and the role the CIE might play. We then analyse the simulated δ13C.
cycle in our model results in Sect. 3.2. This enables us to evaluate (Sect. 3.3) if our stacks, $\Delta(\delta^{13}C_{rub})$ and $\Delta(\delta^{13}C_{sac})$, are good representations of changes in $\delta^{13}C_{DIC}$ in the wider tropical surface ocean or if corrections such as the CIE need to be applied. Finally, we briefly discuss the CIE in $\delta^{18}O_{rub}$ and $\delta^{18}O_{sac}$ (Sect. 3.4) before we come to our conclusions (Sect. 4).

2 Methods

2.1 Constructing new mono-specific stacks from planktic foraminifera

2.1.1 Data source and age modelling

To construct time series of low-latitude $\delta^{13}C$ variations through the past 160 kyr, we selected 112 and 40 $\delta^{13}C$ records of the shallow-dwelling planktic foraminifera *G. ruber* and *T. sacculifer*, respectively, predominantly from the World Atlas of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios (Mulitza et al., 2022). A list of the isotope records contributing to our stacks with relevant metadata, references to the original publications and data sources is provided in Table S1. All data citations are summarized in a condensed way in Appendix A. In three sediment cores, time series from both *G. ruber* (white) and *G. ruber* (pink) contribute to our *G. ruber* stacks, while data from 22 cores contain mono-specific data from both *G. ruber* and *T. sacculifer*. All combined, our data selection is based on material from 127 sediment cores. The core sites cover a latitudinal range from 37.6° N to 36.7° S for *G. ruber* and from 32.8° N to 31.3° S for *T. sacculifer* in all major ocean basins (Fig. 1), although the contributions from individual cores (and therefore the latitudinal range) changed over time (Fig. 2c). Our age models are based on either radiocarbon ages or oxygen isotope stratigraphy or a combination of both methods. To calibrate radiocarbon ages, we first subtracted a simulated local reservoir age from the nearest grid box of the modelling ocean, we rely on the published *δ13C* stack constructed from six deep Pacific cores as contained in Lisiecki (2014). The six cores are all ODP cores (677, 846, 849, 1123, 1143 and 1208) from between 2700 and 3500 m water depth, located between 42° S and 36° N. The deep Pacific $\delta^{13}C$ stack should

2.1.2 Stacking of down-core isotope records

Although the size class used for stable isotope measurements can vary considerably among records, it is common practice to use a fairly constant shell size down-core to minimise size-related effects on both oxygen and carbon isotope ratios (e.g. Oppo and Fairbanks, 1989). To provide a common baseline, we corrected all isotope records by their individual mean values for the period from 21 to 19 kyr BP marked as Last Glacial Maximum (LGM) in various plots. To produce final isotope stacks, we averaged all corrected time series and calculated the standard error (SE) of the means at 1 kyr intervals. The final mono-specific stacks of both $\delta^{18}O$ and $\delta^{13}C$ anomalies based on *G. ruber* and *T. sacculifer* are plotted in Fig. 2a, b. The oxygen isotope stacks are also shown here to give a clear reference for G-IG changes: $\delta^{18}O$ has its maxima during peak glacial times and its minima during peak interglacials. In Sect. 3.4 we will come back to these data to discuss the CIE in $\delta^{18}O_{rub}$ and $\delta^{18}O_{sac}$. To test the extent to which the data distribution affects the stacks, we generated two versions of the stacks: one based on all records (Fig. 2a–d) and an alternative based only on records which contain both Terminations (T1 + T2; Fig. 2e–h). The stack counts (Fig. 2d, h) show that the two versions differ mainly in the younger half and that they are identical beyond 85 kyr BP. The latitudinal ranges in the younger half are slightly smaller for the compilations T1 + T2 than when all cores are compiled, but the mean latitudes of all cores are throughout the covered time window of the last 160 kyr in all cases (for both species and for both compilations) close to the Equator (Fig. 2d, g). This consistency in the mean latitude suggests that the incoming light which varied in its annual mean values between $\sim 420 W m^{-2}$ at the Equator and $\sim 330 W m^{-2}$ around latitudes of 40° (Laskar et al., 2004) should only marginally affect the isotopic fractionation (e.g. Spero et al., 1991).

2.2 Benthic $\delta^{13}C$

The focus of this study is the $\delta^{13}C$ of the surface ocean. However, for a rough comparison of $\delta^{13}C$ changes in the deep ocean, we rely on the published $\delta^{13}C$ stack constructed from six deep Pacific cores as contained in Lisiecki (2014). The six cores are all ODP cores (677, 846, 849, 1123, 1143 and 1208) from between 2700 and 3500 m water depth, located between 42° S and 36° N. The deep Pacific $\delta^{13}C$ stack should
Figure 1. Location of the 127 sediment cores from which data have been compiled for this study. Data from the planktic species *G. ruber* have been included in 87 cores, and in 18 cores data from *T. sacculifer* have been included, while 22 cores provide mono-specific data from both species.

cover the most-depleted end member of the marine δ^{13}C cycle (Fig. 3d) and should give some indication how δ^{13}C in the deep ocean is performing in our simulations. More details on the stack are found in Lisiecki (2014).

2.3 The carbon cycle model BICYCLE-SE

2.3.1 Brief model description

At the core of BICYCLE – the Box model of the Isotopic Carbon cYCLE – sits an ocean (O) with 10 boxes and a terrestrial biosphere consisting of 7 boxes (B) together with a 1-box atmosphere (A), in which the concentration of carbon (as DIC in the ocean, as pCO_2 in the atmosphere and as organic carbon in the biosphere) and both of the isotopes δ^{13}C and δ^{14}C are traced (Köhler et al., 2005). Furthermore, in the ocean alkalinity, PO$_4^{3-}$ as a macro-nutrient and O$_2$ are represented. From the two variables in the marine carbonate system (DIC and alkalinity), all other variables (CO$_2$, HCO$_3^-$, CO$_3^{2-}$ and pH) are calculated according to Zeebe and Wolf-Gladrow (2001) with updates of the dissociation constants pK$_1$ and pK$_2$ (Mojica Prieto and Millero, 2002). The 10 ocean boxes distinguish 100 m deep equatorial (or wider tropical) surface waters in the Atlantic and Indo-Pacific from 1000 m deep surface-ocean boxes in the high latitudes (North Atlantic, Southern Ocean and North Pacific). The 10 ocean boxes distinguish 100 m deep equatorial (or wider tropical) surface waters in the Atlantic and Indo-Pacific from 1000 m deep surface-ocean boxes in the high latitudes (North Atlantic, Southern Ocean and North Pacific).

In the model, wider tropical boxes range from 40° S to 40° N in the Indo-Pacific and to 50° N in the Atlantic, rather similar to the latitudinal coverage of the sediment cores from which $\Delta(\delta^{13}$C$_{rub}$) and $\Delta(\delta^{13}$C$_{sac}$) have been constructed. Deep-ocean boxes represent all waters below 1 km in the three basins: Atlantic, Southern Ocean and Indo-Pacific. In the equatorial regions the waters between 100 and 1000 m depth are described by intermediate boxes. The terrestrial biosphere (Köhler and Fischer, 2004) distinguishes C$_3$ and C$_4$ photosynthesis of grasses and trees and soil carbon with different turnover times of up to 1000 years.

The model extension towards the version BICYCLE-SE used here, which can take care of solid Earth processes, is sketched in Fig. 4. The main improvement documented in detail in Köhler and Munhoven (2020) is the implementation of a sediment module, which captures early diagenesis in an 8 cm deep sedimentary mixed layer (M), under which numerous historical layers are implemented. In effect, we now simulate the subsystem of the global carbon cycle consisting of atmosphere, ocean, terrestrial biosphere and sedimentary mixed layer (AOBM) within BICYCLE-SE. In each of the three ocean basins (Atlantic, Southern Ocean and Indo-Pacific) the pressure-dependent carbonate system is calculated for every 100 m water depth, and, depending on the over- or undersaturation of the carbonate ion concentration, CaCO$_3$ is either accumulated or dissolved. The parametrisation and realisation of the sedimentary processes directly follow Munhoven and François (1996) and Munhoven (1997). The carbon isotopes in the sedimentary mixed layer are only followed in aggregated boxes (one for each of the three ocean basins).
Figure 2. Stacks of anomalies in (a, e) δ¹⁸O and (b, f) δ¹³C from the planktic species G. ruber and T. sacculifer across the last 160 kyr. Mean anomalies (±1 SE) are calculated with respect to the mean of 21–19 kyr BP (vertical blue band). Details of underlying data are found in Table S1. (c, g) Latitudinal distribution of cores contributing to the stack (mean and full range) and (d, h) stack count. Either data from all cores for each species are compiled (a–d) or (e–h) they are compiled from a reduced core selection, in which contributing cores cover both Termination 1 and 2 (T1 + T2).

Equipping BICYCLE with a process-based sediment module enables the revised model version, BICYCLE-SE, to address questions related to changes in solid Earth carbon fluxes in detail and in the long term. Roughly speaking, the following processes are considered. CO₂ outgassing from volcanoes on land, hot-spot island volcanoes and mid-ocean ridge (MOR) hydrothermal activity is realised as partly being dependent on the changing sea level. Coral reef growth is a known shallow-water carbonate sink, which to some extent also follows sea level rise. The weathering of silicate or carbonate rocks on land consumes different amounts of atmospheric CO₂, with both leading to bicarbonate fluxes into the ocean. These solid Earth processes are not directly coupled with each other. Their implementation in the model might therefore lead to temporal offsets in various variables, to which the sediment module might react in a carbonate compensation feedback. Further details on the model and the time-dependent forcing are found in Köhler and Munhoven (2020). Part of this brief model description has been taken from Köhler (2020).

2.3.2 Complete formulation of the ¹³C cycle in BICYCLE-SE

The following isotopic fractionations are now considered in the BICYCLE-SE model. For this study the whole δ¹³C cy-
Figure 3. Carbon cycle time series of the last 160 kyr, including the Penultimate Glacial Maximum (PGM) and the Last Glacial Maximum (LGM) and Terminations 1 and 2 (T1 and T2). Spline of atmospheric CO$_2$ (a) and δ^{13}CO$_2$ (b) based on data from various ice cores (grey, $\pm 1\sigma$ around the mean; Köhler et al., 2017a; Eggleston et al., 2016a) and highly resolved recent data from the “horizontal ice core” approach in Taylor Glacier (yellow; Bauska et al., 2016, 2018; Menking et al., 2022b). (c) $\Delta(\delta^{13}C_{rub})$ and $\Delta(\delta^{13}C_{sac})$ averaging signals in the wider tropical surface ocean (this study, largely based on Mulitza et al., 2022). (d) Deep-ocean δ^{13}C from benthic foraminifera stacked from six Pacific cores (Lisiecki, 2014).

cle has been revised. While isotopic fractionations are given here in the $\epsilon_{(A-B)}$-notation (in %) they are implemented after Zeebe and Wolf-Gladrow (2001) in the model as fractionation factors $\alpha_{(A-B)}$. Both are related following

$$\epsilon_{(A-B)} = 1000 \cdot (\alpha_{(A-B)} - 1). \quad (1)$$

Furthermore, $\alpha_{(A-B)}$ is related to δ^{13}C in reservoirs A and B:

$$\alpha_{(A-B)} = \frac{\delta^{13}C_A + 1000}{\delta^{13}C_B + 1000}. \quad (2)$$

There is no convention if the initial or final reservoir is given as A or B here; however, here, A is always the final reservoir and B is the initial reservoir of the fractionation process. In some cases, a specific process instead of two reservoirs is mentioned in the subscript, e.g. $\epsilon_{(a-o)}$ and $\epsilon_{(o-a)}$ for the atmosphere–ocean gas exchange, for which not only the two different reservoirs but also the direction of the flux play a role in the size of the isotopic fractionation. In that case, the quantified fractionation implies an isotopic depletion connected with the related process for $\epsilon < 0$ %.

Air–sea gas exchange. Using the measurements from Zhang et al. (1995) we formulate, following in most parts Marchal et al. (1998), for the isotopic fractionation during gas exchange to consist of contributions
from equilibrium (α^{eq}) and kinetic (α^{k}) fractionation ($\alpha^{total} = \alpha^{eq} \cdot \alpha^{k}$). For the atmosphere-to-ocean CO$_2$ flux, a temperature-dependent equilibrium fractionation of $\varepsilon_{a \rightarrow o}^{eq} = \varepsilon_{aq}^{eq}$, with ε_{aq}^{eq} being the relative shares of CO$_2$, HCO$_3^-$ and CO$_3^{2-}$ in DIC in the representative ocean box. Furthermore, from the available measurements in Zhang et al. (1995), we derive $\alpha_{aq \rightarrow DIC} = \alpha_{aq \rightarrow DIC} = \sum_i f_i \epsilon_{aq \rightarrow DIC}^i$, with f_i being the relative shares of CO$_2$, HCO$_3^-$ and CO$_3^{2-}$ in DIC in the representative ocean box. Using average preindustrial δ^{13}C$_{POC}$ of $+2.5\%$ (Schmittner et al., 2013) as a starting value and the δ^{13}C$_{POC}$ in Verwega et al. (2021) of -22%, -24% and -28% for low, high northern and high southern latitudes, respectively, and approximating $\epsilon_{aq \rightarrow DIC}$ \approx δ^{13}C$_{POC}$ $- \delta^{13}$C$_{DIC}$, we come up with the following isotopic fractionation $\epsilon_{aq \rightarrow DIC}$ of -24.5%, -26.5% and -30.5% accordingly. This approximation is motivated by the high uncertainties in δ^{13}C$_{POC}$ as documented in Verwega et al. (2021).

Marine biology. The preindustrial marine export production of organic carbon at 100 m water depth is set to 10 PgC yr$^{-1}$ (which in the model can increase in glacial periods due to iron fertilisation in the Southern Ocean up to 13 PgC yr$^{-1}$; Fig. S1d) with a fixed molar ratio of organic C:CaCO$_3$ of 10:1. Existing data on fractionation during marine organic matter production (marine photosynthesis) are rather weak in determining if and how it depends on CO$_2$ (Young et al., 2013; Brandenburg et al., 2022; Liu et al., 2022). Furthermore, as discussed in Brandenburg et al. (2022), some species might contain so-called carbon concentrating mechanisms and use not CO$_2$ but HCO$_3^-$ as the source of their carbon, in which case a completely different isotopic fractionation during marine photosynthesis ($\epsilon_{DIC \rightarrow DIC}$) would follow. We base our initial formulation of $\epsilon_{DIC \rightarrow DIC}$ on the data compilation of δ^{13}C$_{POC}$ in Verwega et al. (2021), who found a dependency on latitude. Using average preindustrial δ^{13}C$_{POC}$ of $+2.5\%$ (Schmittner et al., 2013) as a starting value and the δ^{13}C$_{POC}$ in Verwega et al. (2021) of -22%, -24% and -28% for low, high northern and high southern latitudes, respectively, and approximating $\epsilon_{DIC \rightarrow DIC}$ \approx δ^{13}C$_{POC}$, we come up with the following isotopic fractionation $\epsilon_{DIC \rightarrow DIC}$ of -24.5%, -26.5% and -30.5% accordingly. This approximation is motivated by the high uncertainties in δ^{13}C$_{POC}$ as documented in Verwega et al. (2021).

The spread in δ^{13}C$_{POC}$ in the data of Verwega et al. (2021) is huge, ranging from -15% to -35%. Furthermore, they confirmed the finding of earlier studies (Young et al., 2013; Lorrain et al., 2020) that δ^{13}C$_{POC}$ becomes much more depleted over time than what is explainable by the 13C Suess effect (Keeling, 1979). Between 1960 and 2010 δ^{13}C$_{POC}$ decreased by about $3\pm4\%$. The Suess effect shows a decrease in atmo-
spheric $\delta^{13}CO_2$ of about $1.5\%e$ during that time (Rubino et al., 2013), and it is known that in the ocean the Suess effect is decreasing with depth (Eide et al., 2017). At the same time, the global mean temperature rose by about 0.8 K (Rohde and Hausfather, 2020). This shift in $\delta^{13}C_{POC}$ is probably caused by a shift in the composition of the phytoplankton communities. We therefore use the values derived in the previous paragraph from Verwega et al. (2021) as our preindustrial parameter values of $\epsilon(C_{ag-DIC})$, to which we add a temperature-dependent part of $-1.5\%e$ for any K the sea surface temperature in the relevant surface-ocean box disagrees with from its preindustrial value. The assumed value fits in the range of recent temperature-dependent $\delta^{13}C_{POC}$ found in Verwega et al. (2021) and has been obtained by tuning to simulate $\delta^{13}CO_2$ at preindustrial times to be similar to its values at the LGM, as seen in the ice core data (Fig. 3b). This leads to $\epsilon(C_{ag-DIC})$ at the LGM of $-19.3\%e$, $-20.4\%e$ and $-24.4\%e$ for low, high northern or high southern latitudes, respectively.

Data are also rather uncertain for the isotopic fractionation during the formation of CaCO$_3$. We assume, in agreement with Buitenhuis et al. (2019), that 65% of the CaCO$_3$ exported in the abyss consists of aragonite and 35% of calcite. Calcite is either produced by coccolithophores or planktic foraminifera. Some coccolithophore species suggest an enrichment, while others suggest a depletion in $\delta^{13}C$ in their shells with respect to $\delta^{13}C_{DIC}$ in the surrounding water (Ziveri et al., 2003). For planktic foraminifera, the CIE is one of various possible processes of isotopic fractionation hypothesised to occur during hard-shell formation (Bijma et al., 1999; Zeebe et al., 2008; Kimoto, 2015). Isotopic fractionation factors are in comparison to $\epsilon(C_{ag-DIC})$ rather small and, in the case of the CIE, species-specific (Spero et al., 1999). We therefore choose in the model to set the fractionation during calcite production to be neutral with respect to ^{13}C, thus $\epsilon(cal-DIC) = 0\%e$, but we will consider the CIE in post-processing when comparing simulations with reconstructions. For simplicity and due to missing further evidence for fractionation during aragonite production, $\epsilon(ara-DIC)$ was also kept at 0%e. More generally, we keep $\epsilon(CaCO_3-DIC) = 0\%e$.

The shallow-water sink of carbonate in corals is assumed to have a $\delta^{13}C$ that follows after an isotopic fraction of $\epsilon(corals-DIC) = -2\%e$ from the $\delta^{13}C$ of the DIC in the surface waters. This value is based on a combination of recent data, paleo-data from the Great Barrier Reef and insights from simulations (Linsley et al., 2019; Felis et al., 2022).

Terrestrial biosphere. On land, isotopic fractionation is only assumed to occur during photosynthesis, with $\epsilon(C_3-CO_2) = -19\%e$ and $\epsilon(C_4-CO_2) = -5\%e$ for C$_3$ (all woody plants and some grasses) and C$_4$ (some other

External fluxes to the AOBM subsystem. The volcanic CO$_2$ outgassing flux is assumed to have a fixed $\delta^{13}C$ signature ($\delta^{13}C_{V}$) of $-5.0\%e$, the typical mean value for volcanic outgassing (Deines, 2002; Roth and Joos, 2012), but note that the uncertainty is $\pm3\%e$.

From the two weathering fluxes based on either silicate or carbonate rocks, only the latter has a contribution which brings new carbon into the system. Here, 50% of the carbon that is entering the ocean as bicarbonate (the weathering product) has a $\delta^{13}C$ signature ($\delta^{13}C_{Rock}$) of $+2\%e$, which is identical to the most likely $\delta^{13}C$ values in carbonate rocks formed during the Phanerozoic (Bachan et al., 2017). The carbon for the other half of the carbonate weathering flux and for all of the silicate weathering flux is assumed to come from CO$_2$ in the soil environment. We therefore assume that this CO$_2$ is dominated by soil respiration fluxes; therefore, a $\delta^{13}C$ signature that corresponds to the mean value of the two soil carbon boxes is assumed here.

To balance the inflow of ^{13}C via volcanism and weathering, the model has been tuned for long-term stable mean $\delta^{13}C$ values in the AOBM subsystem by the following sink: about 6% of the organic carbon that is exported from the surface boxes into the abyss is assumed to be lost in the sediment. Note that this number has been tuned with the previous version of the ^{13}C cycle in operation (Köhler and Munhoven, 2020), but it has not been revised thereafter.

2.3.3 Simulation setup and scenarios

The BICYCLE-SE model simulates the global carbon cycle as a function of changing time-dependent physical boundary conditions (forcing), which are nearly identical to the simulations published in Köhler and Munhoven (2020) and which are also described in that study in detail. Briefly, ocean circulation is prescribed from modern data of the WOCE experiment, while its main temporal changes are restricted to (a) the AMOC, which is reduced from modern/interglacial 16 to 10 Sv during glacial periods (Fig. S1b), and (b) Southern Ocean (SO) vertical deep mixing, which is a function of SO sea surface temperature (Fig. S1c). Ocean and land temperatures are prescribed from reconstructions (Fig. S1e), and ocean salinity is varied as a function of the prescribed sea level (Fig. S1a). Additionally, aeolian input in the SO is assumed to follow dust fluxes measured in Antarctic ice cores, which might change marine biology in the SO from an iron-limited to an iron-unlimited regime, increasing glacial export production of organic matter to the deep ocean (Fig. S1d). The standard scenario used here, SEi, is, apart from the revised $\delta^{13}C$ cycle, nearly identical to the scenario SE in Köhler and Munhoven (2020). The only difference here
is that in the application we revised the applied equatorial sea surface temperature (SST). It has been based in previous applications on changes in planktic δ18O in only one ODP record. Now we use the SST stack from Barth et al. (2018), which is based on a compilation of SSTs from 15 non-polar sediment cores. This leads to only minor changes in atmospheric CO₂ of less than 5 ppm, but it is important for the 13C cycle and its temperature dependencies (isotopic fractionation during atmosphere–ocean gas exchange and during carbon uptake by the marine biology). Simulations are started from interglacial conditions around 210 kyr BP. Scenario SEi0 is only performed to illustrate how the implementation of the temperature dependency in ε(Corg-DIC) improves the simulated 13C cycle, illustrated by plotting atmospheric δ13CO₂ against data in Fig. 5b.

Simulated changes in the atmospheric record are already not too far away from the reconstructions in scenario SEi, especially in CO₂ (Fig. 5a). However, to bring the carbon cycle in the atmosphere and the surface ocean as close as possible to the reconstructions as possible, we perform additional simulations in which the atmospheric δ13CO₂ alone (scenario C1) or together with atmospheric CO₂ (scenario C1CO2) is forced by the reconstructions. Here, we use the splines as plotted in Fig. 3a, b (Eggleston et al., 2016a; Köhler et al., 2017a) and ignore the higher resolved data from Taylor Glacier, since these more abrupt changes in δ13CO₂ are either covered to a large extent during the last 50 kyr in the dynamics of the spline (Bauska et al., 2016, 2018) or are probably not recorded in our marine sediment records around 70 kyr BP (Menking et al., 2022b). This implies that internally calculated fluxes are overwritten by changes that are necessary to keep the simulated atmospheric carbon variables identical to the reconstructions. This approach is typically applied in CO₂-concentration-driven present-day or future ocean carbon cycle simulations (e.g. Hauck et al., 2020). It has already been used in BICYCLE-SE for 14C to obtain radiocarbon in the surface ocean as close to the data as possible during the construction of the most recent marine radiocarbon calibration curve Marine20 (Heaton et al., 2020b) and subsequent studies (Köhler et al., 2022). However, since atmospheric CO₂ and δ13CO₂ are normally prognostic variables of the model and their calculated changes should be derived from the model’s differential equations followed by a proper integration scheme, this approach slightly violates the mass conservation. It nevertheless guarantees that simulated surface-ocean variables of the carbon cycle within the model realm are as consistent as possible with the atmospheric reconstructions. An overview of the applied simulation scenarios is compiled in Table 1.

2.4 Data analysis

Linear regression was performed with the software MATLAB (The MathWorks Inc., 2023). The uncertainties of the fits are approximated by root-mean-square errors calculated after $s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - f_i)^2}$, with f_i being the calculated values according to the linear regression equations. In cases in which the uncertainties in both variables should be considered, we used the function “línfcfit”, version 1.2.0.0 (Browaeys, 2023). The frequency analysis was performed using R (R Core Team, 2023), including the function “coh” from the R package seewave, version 2.2.3, calculating coherence.

3 Results and discussion

3.1 Overview on 13C cycle changes over the last 160 kyr

Reconstructed changes in the late Quaternary carbon cycle are still not completely understood. The ice cores give us a precise picture of atmospheric CO₂ (Bereiter et al., 2015; Köhler et al., 2017a) (Fig. 3a), which in the meantime has also been met reasonably well with various different carbon cycle models (e.g. Menmvel et al., 2012; Ganopolski and Brovkin, 2017; Khatiwala et al., 2019; Köhler and Munhoven, 2020). These findings suggest that the main processes responsible for the observed changes on orbital timescales might indeed have been identified, although results are to some extent model-dependent and improvements in details are certainly necessary.

The corresponding atmospheric δ13CO₂ now available over the last 155 kyr (Eggleston et al., 2016a), is, however, still waiting for a process-based interpretation of all its features (Fig. 3b). Since δ13CO₂ helps to pinpoint processes responsible for CO₂ changes, any simulation that is able to explain one without the other might need to be interpreted with caution. Models suggest that especially physical and biological processes in the Southern Ocean processes robustly influence δ13CO₂, while the impact of the Atlantic meridional overturning circulation (AMOC) on δ13CO₂ seems to be model-dependent (Menviel et al., 2015). Consequently, the abrupt drop in δ13CO₂ at the onset of Termination 1 (T1) (Smith et al., 1999; Schmitt et al., 2012) is nowadays understood to be caused by marine processes, while subsequent δ13CO₂ changes during T1 and its recovery during the Holocene to LGM-like values were potentially related to a mixture of oceanic and terrestrial processes (Köhler et al., 2005; Bauska et al., 2016).

Two largely unexplained features stand out in the 155 kyr δ13CO₂ record. Firstly, there is a long-term trend of +0.45 ‰ from the Penultimate Glacial Maximum (PGM) and the Last Glacial Maximum (LGM). When first discovered (Schneider et al., 2013), it was hypothesised that changes in the isotopic composition of solid Earth fluxes or of their intensities or long-term peat build-up might be responsible for them. Secondly, a 0.5 ‰ deep and nearly 20 kyr long minimum centred around 58 kyr BP happened, rather unrelated with CO₂ changes. Eggleston et al. (2016a) hypothesise that the δ13CO₂ minimum might have been partially caused by a change in ocean stratification between Marine Isotope

Stage (MIS) 4 and MIS 3, allowing a different amount of isotopically light carbon to be stored in the deep ocean. Recently, high-resolution data of δ^{13}CO$_2$ from Taylor Glacier covering 74 to 59.5 kyr BP, including MIS 4 and the drop into the δ^{13}CO$_2$ minimum, have been published (Menking et al., 2022b), showing more variability and, between 66 and 60 kyr BP with -1%, a change twice as large as that previously contained in the smoothed record of Eggleston et al. (2016a). Menking et al. (2022b) also first performed model simulations in order to understand which processes might be responsible for the reconstructed changes in the carbon cycle. However, to our knowledge, none of the ideas put forward in Schneider et al. (2013) for the long-term trend in δ^{13}CO$_2$ have so far been convincingly and successfully verified with carbon cycle model simulation. Furthermore, 400–500 kyr variability in δ^{13}C related to slow eccentricity changes found throughout the Cenozoic (e.g. Pälike et al., 2006; Russon et al., 2010; Ma et al., 2011; Wang et al., 2014; Paillard, 2017) might be superimposed on faster variations, making a process-based understanding of observed changes in δ^{13}CO$_2$ even more challenging.

Figure 5. Simulation results and comparison to data splines for (a) atmospheric CO$_2$ and (b) atmospheric δ^{13}CO$_2$. Results for scenario SEi (standard) and SEi0 are shown. The latter differs from the standard run by a lack of temperature dependency in ε(C$_{org}$–DIC).

Table 1. Overview of simulation scenarios.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEi</td>
<td>Standard run for BICYCLE-SE with updated 13C cycle</td>
</tr>
<tr>
<td>SEi0</td>
<td>Similar to SEi, but without temperature-dependent contribution to ε(C$_{org}$–DIC)</td>
</tr>
<tr>
<td>C1</td>
<td>Similar to SEi, but atmospheric δ^{13}CO$_2$ is prescribed from data (Eggleston et al., 2016a)</td>
</tr>
<tr>
<td>C1CO2</td>
<td>Similar to SEi, but atmospheric records (δ^{13}CO$_2$, CO$_2$) are prescribed from data (Eggleston et al., 2016a; Köhler et al., 2017a)</td>
</tr>
</tbody>
</table>

Sediment cores covering the Anthropocene clearly show that the δ^{13}C of G. riber and T. sacculifer shells (δ^{13}C$_{rub}$ and δ^{13}C$_{sac}$) faithfully reflects changes in δ^{13}C$_{DIC}$ caused by the δ^{13}C Suess effect (Al-Rousan et al., 2004; Black et al., 2011), albeit with a notable offset. This offset might be influenced by the CIE (e.g. Spero et al., 1997), light intensity (e.g. Spero et al., 1991) and the size of the foraminiferal shells (e.g. Oppo and Fairbanks, 1989). Our new mono-specific stacks from the wider tropical surface ocean of $\Delta(\delta^{13}$C$_{rub}$) and $\Delta(\delta^{13}$C$_{sac}$) (Fig. 3c) contain a G-IG rise of 0.25 ‰ across T1 but of only 0.15 ‰ across T2, while atmospheric δ^{13}CO$_2$ at the same time rose by 0.1 ‰ (T2) or stayed constant (T1) (Fig. 3b), showing local minima during terminations in both records. Deep-ocean benthic δ^{13}C (Fig. 3d) is approximated here by a stack from six deep Pacific cores (Lisiecki, 2014), which contains a G-IG rise of 0.45 ‰ across both T1 and T2. This value is on the upper end of the 95 % confidence interval of compilations of marine δ^{13}C changes across T1 (Peterson et al., 2014; Peterson and Lisiecki, 2018), which suggests a representation of global ocean-wide changes. The marine time series, both from the surface ocean and the deep ocean, also contain wide and deep minima around 60 kyr BP, simi-
larly to the smoothed atmospheric δ¹³C₂O₂ data of Eggleston et al. (2016a) but differently to the more highly resolved Taylor Glacier δ¹³C₂O₂ of Menking et al. (2022b). Furthermore, all marine δ¹³C data, similarly to the atmospheric δ¹³C₂O₂, contain a long-term rise from the PGM to the LGM (about +0.33‰ in the wider tropical surface ocean and +0.18‰ in the deep Pacific; Fig. 3), which might be potentially connected to the 400–500 kyr variability.

Before we start with a deeper model-based interpretation of the δ¹³C cycle, we have a closer look at our new isotope stacks. The size of the CIE as detected from laboratory experiments in both species differs by a factor of nearly 2: a change of −0.0089‰ and −0.0047‰ in δ¹³C per µmol kg⁻¹ of [CO₂] for G. ruber and T. sacculifer, respectively, and a change of −0.0022‰ and −0.0014‰ in δ¹⁸O per µmol kg⁻¹ of [CO₂] for G. ruber and T. sacculifer, respectively (Spero et al., 1999). Therefore, if the CIE plays a role in how the isotopes of the surface ocean are recorded in the foraminifera shells on orbital timescales, then the two monospecific time series in both δ¹³C and δ¹⁸O should differ. At first glance (Fig. 2a, b) the time series are remarkable similar. A more quantitative evaluation is obtained by calculating the linear regression from scatter plots when results based on one species are plotted against those of the other. Doing so (Fig. 6) reveals for δ¹³C that, on average, changes are identically recorded in both species. In other words, the linear slope of Δ(δ¹³Crub) against Δ(δ¹³Csac) is 0.98 (r² = 0.95, s = 0.04‰), or 0.99±0.03 (r² = 0.95) when considering the uncertainties of our stack during regression. For δ¹⁸O the agreement is only slightly worse: the regression slope of Δδ¹⁸Orub against Δδ¹⁸O sac is 0.96 (r² = 0.96, s = 0.09‰), or 0.98±0.01 (r² = 0.96) with uncertainties. Since Δ(δ¹³Crub) and Δ(δ¹³Csac) are on average recording virtually the same changes, it is difficult to image how the species-specific CIE can play a role here. Due to the small amplitudes of the CIE in δ¹⁸O, it is as yet inconclusive if the CIE plays a role for Δ(δ¹⁸Orub) versus Δ(δ¹⁸O sac).

3.2 Simulated δ¹³C cycle using the BICYCLE-SE model

General dynamics of the global carbon cycle in the BICYCLE-SE model have been analysed in detail in Köhler and Münchowen (2020). We focus here on the revised δ¹³C cycle but see how atmospheric CO₂ in scenario SEi meets the ice core data in Fig. 5a. Note that some analysis of δ¹³C in the precursor model BICYCLE without solid Earth contributions has been described in Köhler et al. (2010), who showed that the model misses variations in δ¹³C related to periodicities longer than 100 kyr.

Atmospheric δ¹³C₂O₂ (Eggleston et al., 2016a) is met by the results from scenario SEi only roughly, including some millennial-scale variations around 50–30 kyr BP and the transition from the LGM to preindustrial, showing some deficit in the second half of T1 and in the Holocene (Fig. 5b). The PGM-to-LGM trend of 0.45‰ and the minimum around 60 kyr BP are both largely unexplained in this simulation. The attribution of changes in δ¹³C₂O₂ to individual processes in the ocean and land carbon cycle has been done before for the precursor model BICYCLE (Köhler et al., 2005, 2010) and is not repeated here, since the misfit to the data indicates some fundamental shortcomings.

The way in which simulated changes in atmospheric δ¹³C₂O₂ compare to simulated changes in various marine δ¹³CDIC time series is shown for scenario SEi in Fig. 7a, b. Both global mean surface δ¹³CDIC and wider tropical surface δ¹³CDIC show clear similarities with atmospheric δ¹³C₂O₂. Here, surface values are area-weighted averages covering either the global ocean or the two equatorial ocean boxes in the case of the wider tropics, which spatially cover a similar area to the sediment cores used for our new stacks, Δ(δ¹³Crub) and Δ(δ¹³Csac). During glacial times and the onset of deglaciations, the dynamics in the global mean surface δ¹³CDIC (cyan line in Fig. 7a) are in close agreement with δ¹³C₂O₂ in the atmosphere (broken black line in Fig. 7a), while for the later part of the deglaciations and the interglacials the dynamics in the wider tropical surface δ¹³CDIC (magenta line in Fig. 7a) fit better to δ¹³C₂O₂ in the atmosphere. This difference is probably explained by the dynamics in the polar oceans. During glacial times, the Southern Ocean is highly stratified with little vertical exchange between the surface ocean and the deep ocean. This stratification breaks down during the terminations and in the interglacials, allowing a faster exchange of tracers between the surface ocean and the deep ocean, leading to smaller surface-to-deep gradients in δ¹³CDIC in the polar oceans. In other words, the lower deep-ocean δ¹³CDIC values have a larger impact on polar surface δ¹³CDIC during interglacials than during glacial times, leading to a divergence in δ¹³CDIC in the global mean surface and in the wider tropical surface ocean. The scatter plots between atmospheric δ¹³C₂O₂ and either global mean surface or wider tropical surface-ocean δ¹³CDIC show that the latter has the higher correlation (Fig. S2; r² = 0.82 vs. r² = 0.59). Furthermore, frequency analysis showed that the coherence between atmospheric δ¹³C₂O₂ and wider tropical surface-ocean δ¹³CDIC is in periodicities slower than 20 kyr higher than between atmospheric δ¹³C₂O₂ and global mean surface-ocean δ¹³CDIC (Fig. S3a). This implies that simulations which agree in atmospheric δ¹³C₂O₂ with reconstructions (which will be achieved later on in scenarios C1 and C1CO₂) should contain a very likely realisation of δ¹³CDIC in the wider tropical surface ocean. A comparison of these simulated time series with our new monospecific δ¹³C stacks should therefore enable us to address if and how δ¹³C has been modified during hard-shell formation. For scenario SEi the misfit in simulated wider tropical surface-ocean δ¹³CDIC and the new δ¹³C reconstructions (Fig. 7a) is large, but it is as yet unclear if this discrepancy can be explained by the CIE or by other processes.

To understand how representative the reconstructed δ¹³C stack from benthic foraminifera in six deep Pacific cores
agreement in simulated and reconstructed atmospheric CO
surface ocean might have looked like. Furthermore, the close
δ
have shown that, once changes in the atmospheric
(Fig. 5a) suggests that the assumed carbon cycle changes in
δ
a reasonable answer for what
are met by the simulations, the model should then also give
in the deep ocean might have changed. This suggests that the reconstructions are potentially
cluded. This suggests that the reconstructions are potentially
foraminifera as deduced in Schmittner et al. (2017) is not in-
ever, be aware that in Peterson et al. (2014) the CIE in benthic
proposed a mean ocean rise in
δ
(23–19 kyr BP), similarly as in Peterson et al. (2014), who
compares
δ
smaller G-IG amplitudes of 0.53 ‰ across T1. This number
positive in
δ
shows larger G-IG amplitudes than
δ
is offset by 0.2 ‰–0.4 ‰ towards more positive values and
δ
the most depleted values. The mean deep-ocean
δ
in the mean deep ocean and in the mean ocean (Fig. 7b).
Here, deep-ocean results from the model refer to ocean boxes
that contain waters deeper than 1 km. As expected, the deep
Indo-Pacific contains the end member of the
δ
construction in the
δ
C cycle, where linear regressions between simulations and reconstructions found no correlation at all
(r² ≤ 0.02; Fig. S4a, b), is not easily fixed. To improve our
results, we force the model with the atmospheric records
(scenario C1 only using
δ
CO and scenario C1CO2 using
both
δ
CO and CO) to have conditions in the surface
ocean as close to reconstructions as possible. Doing so
leads to even tighter correlations between simulated atmos-
pheric
δ
CO and simulated
δ
DIC in the surface ocean than what we obtained for scenario SEi: the
r² correlations between these variables are in scenarios C1 and C1CO2, with
prescribed atmospheric
δ
CO ≥ 0.77 and ≥ 0.88 for global
mean surface
δ
DIC and wider tropical surface
δ
DIC, respectively (Fig. S2). Again, the coherence is higher be-
tween atmospheric
δ
CO and the wider tropical surface-
oncean
δ
DIC than between atmospheric
δ
CO and the global mean surface-ocean
δ
DIC (Fig. S3b). Furthermore, in both scenarios, the changes in simulated
δ
DIC in the wider tropical surface ocean agree remarkably well
(r² between 0.76 and 0.78; Fig. S4c–f) with changes in our new
stacks
δ
C (rub) and
δ
C (sac) without consideration of
the CIE (Fig. 7c), at least on orbital timescales. This effect is also seen by the rise in coherence between simulated wider tropical surface
δ
DIC and both our stacks from less than

Figure 6. Scatter plot of our new stacks, (a) \(\Delta(\delta^{13}C_{rub})\) versus \(\Delta(\delta^{13}C_{sac})\) and (b) \(\Delta(\delta^{18}O_{rub})\) versus \(\Delta(\delta^{18}O_{sac})\). Data stacks without corrections for the CIE are plotted. The time series are restricted to data from the last 150 kyr to allow a comparison later on with simulation results, which were based on the only 155 kyr long atmospheric \(\delta^{13}CO_2\) record. Linear regressions using only the mean values and also when using uncertainties in both \(x\) and \(y\) are performed. The root-mean-square error is depicted by \(s\).

(Lisiecki, 2014) might be, we compare it with various different simulated time series: \(\delta^{13}C_{DIC}\) in the deep Indo-Pacific, in the mean deep ocean and in the mean ocean (Fig. 7b). Here, deep-ocean results from the model refer to ocean boxes
that contain waters deeper than 1 km. As expected, the deep
Indo-Pacific contains the end member of the \(\delta^{13}C\) cycle with the most depleted values. The mean deep-ocean \(\delta^{13}C_{DIC}\) is offset by 0.2 % to 0.4 % towards more positive values and shows larger G-IG amplitudes than \(\delta^{13}C_{DIC}\) does in the deep Indo-Pacific. The mean ocean is again 0.2 % to 0.4 % more positive in \(\delta^{13}C_{DIC}\) than the mean deep ocean, again with smaller G-IG amplitudes of 0.53 % across T1. This number compares \(\delta^{13}C_{DIC}\) in the last 6 kyr with the mean at the LGM (23–19 kyr BP), similarly as in Peterson et al. (2014), who
proposed a mean ocean rise in \(\delta^{13}C\) by 0.34 ± 0.19 %. However, be aware that in Peterson et al. (2014) the CIE in benthic foraminifera as deduced in Schmittner et al. (2017) is not in-
cluded. This suggests that the reconstructions are potentially
recording a smaller G-IG change in \(\delta^{13}C\) than how \(\delta^{13}C_{DIC}\) in the deep ocean might have changed. When discussing the results of scenario SEi (Fig. 7a), we have shown that, once changes in the atmospheric \(\delta^{13}CO_2\) are met by the simulations, the model should then also give a reasonable answer for what \(\delta^{13}C_{DIC}\) in the wider tropical surface ocean might have looked like. Furthermore, the close agreement in simulated and reconstructed atmospheric CO2 (Fig. 5a) suggests that the assumed carbon cycle changes in our approach might be one possible realisation that is not too far away from the real-world changes. However, the mis-
fit between simulation results from scenario SEi and recon-
struction in the \(\delta^{13}C\) cycle, where linear regressions between simulations and reconstructions found no correlation at all
(r² ≤ 0.02; Fig. S4a, b), is not easily fixed. To improve our
results, we force the model with the atmospheric records
(scenario C1 only using \(\delta^{13}CO_2\) and scenario C1CO2 using
both \(\delta^{13}CO_2\) and CO) to have conditions in the surface
ocean as close to reconstructions as possible. Doing so
leads to even tighter correlations between simulated atmos-
pheric \(\delta^{13}CO_2\) and simulated \(\delta^{13}DIC\) in the surface ocean than what we obtained for scenario SEi: the
r² correlations between these variables are in scenarios C1 and C1CO2, with
prescribed atmospheric \(\delta^{13}CO_2\) ≥ 0.77 and ≥ 0.88 for global
mean surface \(\delta^{13}DIC\) and wider tropical surface \(\delta^{13}DIC\), respectively (Fig. S2). Again, the coherence is higher be-
tween atmospheric \(\delta^{13}CO_2\) and the wider tropical surface-
oncean \(\delta^{13}DIC\) than between atmospheric \(\delta^{13}CO_2\) and the global mean surface-ocean \(\delta^{13}DIC\) (Fig. S3b). Furthermore, in both scenarios, the changes in simulated \(\delta^{13}DIC\) in the wider tropical surface ocean agree remarkably well
(r² between 0.76 and 0.78; Fig. S4c–f) with changes in our new
stacks \(\Delta(\delta^{13}C_{rub})\) and \(\Delta(\delta^{13}C_{sac})\) without consideration of
the CIE (Fig. 7c), at least on orbital timescales. This effect is also seen by the rise in coherence between simulated wider tropical surface \(\delta^{13}DIC\) and both our stacks from less than

Clim. Past, 20, 991–1015, 2024
https://doi.org/10.5194/cp-20-991-2024
Figure 7. Simulated surface- and deeper-ocean δ^{13}C time series from scenario SEi (a, b) and scenarios C1 and C1CO2 (c, d) compared with reconstructions. (a, c) Simulated δ^{13}CDIC in the global mean surface ocean and in the wider tropical surface ocean together with simulated atmospheric δ^{13}CO$_2$ (right y axis) are plotted together with our new stacks from the wider tropical surface ocean, with $\Delta(\delta^{13}$C$_{rub})$ and $\Delta(\delta^{13}$C$_{sac})$ shifted by $+2.65\%$ to meet simulated surface δ^{13}CDIC at the LGM. In panels (b) and (d), simulated δ^{13}CDIC for the deep Indo-Pacific (I-Pac), the mean deep ocean and the mean global ocean are plotted together with δ^{13}C from benthic foraminifera stacked from six cores in the deep Pacific (dPac) (Lisiecki, 2014). In panels (e) and (d), the scenarios C1 (closed lines) and C1CO2 (broken lines) are plotted together. Most of the time the differences between both are so small that the lines are indistinguishable.

0.1 (scenario SEi) to higher than 0.7 (scenario C1CO2) in the 41 and 100 kyr bands (Fig. S3c, d), while in the precession bands (19 and 23 kyr) the coherence stayed below 0.6. Some more abrupt changes contained in the simulations are not recorded in the reconstructions, probably because bioturbation in the surface sediments, together with the stacking procedure, prevent our marine records from successfully resolving millennial-scale features. Thus, our forcing of atmospheric carbon records with data therefore seems to be a promising approach to obtain simulated surface ocean in agreement with reconstructions for the low-frequency bands (41 kyr and beyond), while it seems to fail for precession and faster changes. When forcing atmospheric δ^{13}CO$_2$ by data, the temperature-dependent isotopic fractionation during marine photosynthesis in $\varepsilon(C_{org} - DIC)$ is only of minor importance for the simulated surface-ocean δ^{13}CDIC. If this effect is switched off, the δ^{13}CDIC in the wider tropical surface ocean differs in general by less than 0.05 $\%$ from the values in scenario C1.

Furthermore, deep-ocean δ^{13}C$_{DIC}$ is now, on an orbital timescale, also in better agreement with the data (Fig. 7d), the r^2 of a linear regression between simulated deep Indo-Pacific δ^{13}CDIC and the reconstructed deep Pacific rises from 0.49 for scenario SEi to 0.77 and above for the scenarios forced by atmospheric carbon records (Fig. S5), although the rise in mean ocean δ^{13}C$_{DIC}$ during T1 has now been increased to 0.59 $\%$. Considering a CIE of $-2.6 \times 10^{-3} \%$ per μmol kg$^{-1}$ of [CO$_3^2-$] disturbance for epibenthic foraminifera (Schmit-
tner et al., 2017), simulated variations in deep-ocean [CO$_3^{2-}$] of $+20 \mu$mol kg$^{-1}$ (Köhler and Munhoven, 2020) would translate to a comparably small reduction in Pacific benthic δ^{13}C of up to 0.05‰. While the timing of changes in deep-ocean [CO$_3^{2-}$] with highest values during the deglaciation is crucial to assess how such a benthic CIE would reduce the existing data–model mismatch, a more thorough assessment of the benthic CIE would require the comprehensive compilation of benthic δ^{13}C time series in different ocean basins, which is beyond the scope of this study. Note that the approximated amplitude of this benthic CIE is close to the measurement error of benthic δ^{13}C.

3.3 The importance of the carbonate ion effect for wider tropical surface-ocean δ^{13}C

Although the initial analysis of our results when forced with atmospheric records already suggests only a minor, if any, role for the CIE in the interpretation of stacked mono-specific δ^{13}C on orbital timescales, in the following section we make a more quantitative assessment. The CIE has not yet been implemented in the 13C cycle of the model, but it is only investigated here in post-processing. The carbonate ion concentration of either global mean surface waters or wider tropical mean surface waters in our simulations is tightly anti-correlated with atmospheric CO$_2$ ($r^2 \geq 0.93$; Fig. S6), which is a consequence of the marine carbonate system (Zeebe and Wolf-Gladrow, 2001). Both scenarios C1 and C1CO2 lead to rather similar results here, which suggests that the CO$_2$ forcing in scenario C1CO2 and its violation of mass conservation are perturbing the carbon cycle only slightly. To stay as closely as possible to the reconstructions, we nevertheless continue in the following section by using results from scenario C1CO2, but results differ only slightly when based in scenario C1; thus our conclusions are independent from this choice.

Thus, CO$_3^{2-}$ in the wider tropical surface ocean in the simulation typically falls from maximum glacial values of $\sim 320 \mu$mol kg$^{-1}$ to interglacial minima of $\sim 250 \mu$mol kg$^{-1}$ across both Terminations 1 and 2 (Fig. 8a). This translates into a potential CIE of about 0.62‰ (Fig. 8b) for G. ruber when we use the slope of $m = -0.0089$‰ per μmol kg$^{-1}$ change in [CO$_3^{2-}$] and of 0.33‰ for T. sacculifer (slope of $m = -0.0047$‰ per μmol kg$^{-1}$ change in [CO$_3^{2-}$]) (Spero et al., 1999). The y axis intercepts of the complete regressions for the CIE is determined in order to have a maximum agreement between reconstructions and simulations during the LGM. When comparing the potential CIE to the simulated LGM-to-preindustrial (PRE) amplitude of only 0.16‰ in wider tropical surface waters (Fig. 8c), the CIE-to-GIG ratios are between a factor of 2 and 4, and CIE signals should clearly stand out in the paleo-records. If we add this CIE to our simulated mean equatorial surface-ocean δ^{13}C$_{DIC}$ (Fig. 8c), we end up with time series, which should compare well with the mono-species stacks of $\Delta(\delta^{13}$C$_{rub})$ and $\Delta(\delta^{13}$C$_{sac})$ (Fig. 8d). However, this is not the case. The r^2 in the linear regressions between CIE-corrected δ^{13}C$_{DIC}$ in wider tropical surface waters and reconstructions is reduced to 0.54 (G. ruber) and 0.68 (T. sacculifer), while it had been ≥ 0.76 without CIE correction (Figs. S4, S7). When plotting results as hypothetically recorded in both species against each other, we obtain a slope of 1.26 (Fig. S8a). The slope between the stacked mono-specific δ^{13}C time series without further correction for a CIE was ~ 0.99 (Fig. 6a). The consideration of the CIE did not lead to time series which agree better with each other. Thus, we conclude that both species, G. ruber and T. sacculifer, are already good recorders of changes in δ^{13}C$_{DIC}$ in wider tropical surface-ocean waters on orbital timescales.

3.4 Carbonate ion effect in δ^{18}O

The focus of this study is on stable carbon isotope δ^{13}C. However, during the construction of our mono-specific wider tropical stacks of $\Delta(\delta^{13}$C$_{rub})$ and $\Delta(\delta^{13}$C$_{sac})$, the corresponding stacks of $\Delta(\delta^{18}$O$_{rub})$ and $\Delta(\delta^{18}$O$_{sac})$ are easily generated by-products initially used to cross-check the applied age models. However, these δ^{18}O data give us the possibility to also have a closer look at the role of the CIE in the recording of oxygen isotopes in foraminiferal shells. For that endeavour, we need a background time series of δ^{18}O which represents the signals when not modified by the CIE. Such a mean δ^{18}O in the wider tropical surface ocean should record the same sea-level-related variations as the average global ocean, but it might differ in the recorded temperature effect if the change in the average wider tropical sea surface temperature differed from the mean ocean temperature (MOT) change. Pöppelmeier et al. (2023) showed that the LGM-to-PRE change in the MOT derived from the model-based interpretation of noble gas reconstructions in ice cores is 2.1 ± 0.7 K. The reconstructed rise in the MOT is slightly higher when ignoring the effect of past saturation changes on noble gases (Shackleton et al., 2023). The data assimilation effort in LGM temperature changes by Tierney et al. (2020) is broadly in agreement with the MOT change of Pöppelmeier et al. (2023) and proposes that the tropical (30° S to 30° N) sea surface was around 2.6 K colder at the LGM than at the PRE, agreeing within the uncertainties with the MOT change. To a first order, we therefore assume that the planktic foraminifera should record the same temperature effect in δ^{18}O as contained in the mean ocean. Thus, the global ocean δ^{18}O calculated from stacking benthic time series (Lisiecki and Stern, 2016) represents the CIE-free background against which we compare our new $\Delta(\delta^{18}$O$_{rub})$ and $\Delta(\delta^{18}$O$_{sac})$ stacks.

From the simulated LGM-to-PRE change in mean wider tropical surface-ocean CO$_2^{−}$ of about -70μmol kg$^{-1}$ (Fig. 8e) and the laboratory-based amplitudes of the CIE (~ 0.0022‰ and ~ 0.0014‰ change in δ^{18}O per μmol kg$^{-1}$ for G. ruber and T. sacculifer, respectively) (Spero et al.,
Figure 8. Calculating the suggested carbonate ion effects (CIE) on *G. ruber* and *T. sacculifer*. The left-hand column shows the effects on $\delta^{13}C$, while the right column shows the effects on $\delta^{18}O$. (a, e) Surface-ocean [CO$_2$]. (b, f) Potential CIE using slopes from Spero et al. (1999). (c, g) Surface-ocean conditions when ignoring the CIE or (d, h) when considering the CIE. Mean anomalies (\pm1 SE) of the isotope stacks are calculated with respect to the mean of 21–19 kyr BP (vertical blue band). Simulations use the results from scenario C1CO2. Different surface-ocean areas are distinguished: North Atlantic (NAtl; north of 50° N), equatorial Atlantic (EqAtl; 40° S–50° N), Southern Ocean (SO; south of 40° S), equatorial Indo-Pacific (EqIPac; 40° S–40° N) and North Pacific (NPac; north of 40° N). The mean wider tropical ocean in the model is the mean from the equatorial boxes (eq-mean).

We determined that $\Delta(\delta^{18}O_{rub})$ and $\Delta(\delta^{18}O_{sac})$ should record the changes since the LGM by $+0.15\ ‰$ and $+0.10\ ‰$ differently than how $\delta^{18}O$ in the surface waters truly changed (Fig. 8f). Compared to the G-IG amplitude in mean ocean $\delta^{18}O$ of $-1.65\ ‰$ (Fig. 8g), these potential CIEs represent corrections of $-9\ ‰$ and $-6\ ‰$, a difference of $3\ ‰$ which might be difficult to detect in the paleo-records. A linear regression through a scatter plot of $\delta^{18}O + $ CIE$_{rub}$ versus $\delta^{18}O + $ CIE$_{sac}$ has a slope of 0.97 ($r^2 = 1.00$; Fig. 8b), which is indistinguishable from the slope obtained from regression through the data stacks (Fig. 6b), while the slope when considering the CIE should move to unity (indicating that both species were recording the same signal underneath the CIE) if the effect plays an important role during data interpretation. The evidence for or against the CIE in $\delta^{18}O$ from both data and models is therefore inconclusive.
4 Conclusions

The CIE for $\delta^{13}C$ and $\delta^{18}O$ recorded in planktic foraminifera was first identified in laboratory experiments (Spero et al., 1997, 1999), and it was, based on theory, suggested for both isotopes that the underlying processes are directly related to the pH in the surrounding seawater during hard-shell formation (Zeebe et al., 1999; Zeebe, 1999). However, these theoretical studies were already unable to confirm the full range of the CIE as contained in the experiments. Furthermore, according to Bijma et al. (1999), it is impossible to determine if pH or $[\text{CO}_3^{2-}]$ is responsible for the observed fractionation effects. If this theoretical understanding is correct, we would expect to see the CIE in neither or both isotopes in the our mono-specific stacks. Thus, although the interpretation of $\delta^{18}O$ with respect to the CIE is uncertain due to the signal-to-noise ratio, we argue, based on the clear evidence of a lack of the CIE in the recording of $\delta^{13}C$ in G. ruber and T. sacculifer, that there is probably also no significant CIE contained in the $\delta^{18}O$ time series of both species. This finding argues against the suggestion of Spero et al. (1999) that the CIE and $\delta^{13}C$ time series from G. ruber and T. sacculifer might be used to calculate a record of surface-ocean $[\text{CO}_3^{2-}]$. Furthermore, we suggest using our new stack of $\Delta(\delta^{13}C_{\text{rub}})$ as representative of $\delta^{13}C_{\text{DIC}}$ in the wider tropical surface ocean.

Various possible explanations for the lack of a CIE on orbital timescales exist. Firstly, it might be that the isotopic fractionation during hard-shell formation in G. ruber and T. sacculifer is rather insensitive to $[\text{CO}_3^{2-}]$ in the range of interest ($250–320 \mu\text{mol kg}^{-1}$). Such an insensitivity has been suggested for other species (Bijma et al., 1999), but, due to a lack of published data (the slopes of the CIE in G. ruber and T. sacculifer were only summarised in Spero et al. (1999), while underlying experiments have never been published in the peer-reviewed literature), it cannot be properly checked for the two species investigated here. Secondly, not the CIE, but alternatively the incorporation of respired CO$_2$ (depleted in $\delta^{13}C$) during shell formation, might be responsible for the observed isotope data in laboratory experiments performed with Orbulina universa and Globigerina bulloides (Bijma et al., 1999). This process might also play a role in G. ruber and T. sacculifer, but it would only explain observed effects in $\delta^{13}C$ and not in $\delta^{18}O$. However, since our stacks are inconclusive with respect to the CIE and $\delta^{18}O$, they might be of relevance here. A third explanation might be related to homeostasis. In symbiont-bearing planktic foraminifera, such as G. ruber and T. sacculifer, the pH at the shell surface critically depends on photosynthesis and hence light levels and symbiont density (Jørgensen et al., 1985). In order to facilitate calcification, G. ruber and T. sacculifer may actively influence the pH at the shell surface by seeking specific (optimum) light levels through vertical migration, thereby keeping the CIE constant over time. Planktic foraminifera are known to move vertically in the water column (e.g. Kimoto, 2015). Vertical migration to optimise both nutrient uptake and light has been proposed to play an important role in phytoplankton by modelling (Wirtz et al., 2022), an effect which has recently been supported by field data (Zheng et al., 2023).

We speculate that similar behaviour could occur in the two planktic foraminifera species. Indeed, Jonkers and Kučera (2017) and Daëron and Gray (2023) found that $\delta^{18}O$ in various planktic foraminifera (including G. ruber and T. sacculifer) is best explained by also considering calcification in waters deeper than their expected living depth.

It is too early to be able to generalise our finding that on orbital timescales the CIE plays no role in the interpretation of signals in planktic foraminifera in paleo-records. For that endeavour, more mono-specific stacks are necessary, preferably from conceptually different foraminifera species without symbionts or spines, as these might potentially show a different behaviour with respect to light (and pH) optimisation. However, our findings might suggest that previous studies on planktic $\delta^{13}C$, which ignored the CIE (e.g. Lynch-Stieglitz et al., 2019; Lund et al., 2019), might not be biased.

Our carbon cycle simulations confirm that atmospheric $\delta^{13}CO_2$ and mean surface-ocean $\delta^{13}C_{\text{DIC}}$ are tightly related to each other, highlighting the importance of air–sea gas exchange for carbon isotopes. This is not entirely new, and it has already been discussed before (e.g. Lynch-Stieglitz et al., 2019; Shao et al., 2021; Pinho et al., 2023). However, the $\delta^{13}C$ cycle is more complex than stated previously (Lynch-Stieglitz et al., 2019; Hu et al., 2020; Pinho et al., 2023). These studies suggested that one might calculate a mean surface-ocean $\delta^{13}C_{\text{DIC}}$ as a function of atmospheric $\delta^{13}CO_2$ and a temperature-dependent fractionation during gas exchange. We assumed here, based on modern data from Vergara et al. (2021), that species composition, and therefore isotopic fractionation during marine photosynthesis, might also be temperature-dependent, having an important impact on surface-ocean $\delta^{13}C_{\text{DIC}}$. Furthermore, our simulation results show that $\delta^{13}C_{\text{DIC}}$ in polar oceans and in the wider tropical surface ocean have a different and time-dependent relation to atmospheric $\delta^{13}CO_2$.

Finally, since our simulations were forced by atmospheric carbon records, we are unable to identify specific processes being responsible for the simulated changes in the $\delta^{13}C$ cycle. Recent climate simulations (Yun et al., 2023) emphasise the importance of the 405 kyr eccentricity cycle in tropical hydroclimate. It therefore seems reasonable that the missing long-term variability in $\delta^{13}C$ in our setup might indeed be connected to weathering fluxes, as proposed before (e.g. Schneider et al., 2013; Wang et al., 2014), something which needs to be tested in more detail in future carbon cycle simulation studies.
Appendix A

The following citations contain the original publications for the data used to produce our stacks. More details are found in Table S1: Adegbie et al. (2003); Adegbie (2001); Andres (2002); Arz et al. (1998); Arz et al. (1999a); Arz et al. (1999b); Ausin et al. (2019); Bostock et al. (2004); Chen et al. (2003); CLIMAP Project Members (1981); Curry and Crowley (1987); Curry et al. (1999); De Deckker et al. (2012); Duplessy (1982b); Duplessy et al. (1991); Dupont and Kuhlmann (2017); Dürkoop (1998); Dürkoop et al. (1997a); Dürkoop et al. (1997b); Dürkoop et al. (1997c); Dyez et al. (2014); Freimüller (2013); Ge et al. (2010); Gemmeke (2010); Gibbons et al. (2014); Gingele et al. (2007); Govil and Divakar Naidu (2011); Hale and Pflaumann (1999); Holbourn et al. (2005); Hou et al. (2020); Ivanova et al. (2003); Johnstone et al. (2014); Keigwin (2004); Kemle-von Mücke (1994); Knaack (1997); Knaack and Sarnthein (2005); Kohn et al. (2011); Koutavas and Lynch-Stieglitz (2003); Leech et al. (2013); Li et al. (2009); Li et al. (2010); Linsley (1996); Lo et al. (2017); Lynch-Stieglitz et al. (2015); Meinecke (1992); Michael et al. (1984); Mohtadi et al. (2010a); Mohtadi et al. (2010b); Mohtadi et al. (2011); Mohtadi et al. (2014); Monteagudo et al. (2021); Moros et al. (2009); Mulitza (1994); Mulitza (2009); Mulitza et al. (1999); Mulitza et al. (2022); Naik and Naidu (2016); Parker et al. (2016); Patrick and Thunell (1997); Paul et al. (2012); Portilho-Ramos et al. (2018); Raza et al. (2014); Richter (1998); Romahn (2014); Romahn et al. (2014); Ruhlmann et al. (1996); Sarnthein et al. (1988); Sarnthein et al. (1994); Schefuß et al. (2005); Schneider (1991); Shackleton et al. (1992); Sirocko (1989); Sirocko et al. (2000); Slowey (1990); Slowey and Curry (1992); Spero et al. (2003); Stott et al. (2002); Stott et al. (2007); Tian et al. (2010); Tierney et al. (2017); Toleda et al. (2007); Vahlenkamp (2013); Venancio et al. (2018); von Rad et al. (1999); Wang et al. (1999); Wang et al. (2016); Wang et al. (2013); Wefer et al. (1996); Winn (2013); Zahn-Knoll (1986); Zimmermann (2013).

Code and data availability. PaleoDataView was used for planktic data processing (Langner and Mulitza, 2019). In Table S1, metadata on the data selection are contained, including references to the original publications, which are also contained in Appendix A in a condensed view. Most of the data from the planktic foraminifera *G. ruber* and *T. sacculifer* are already contained in the World Atlas of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios (https://doi.org/10.1594/PANGAEA.936747, Mulitza et al., 2021; Mulitza et al., 2022). The data sets not yet contained in the World Atlas can be found at https://doi.org/10.1594/PANGAEA.726202 (Duplessy, 1982a), https://www.ncei.noaa.gov/pub/data/paleo/paleocean/climap/climap18/ (CLIMAP Project Members, 1994) and https://doi.org/10.1594/PANGAEA.54765 (Meinecke, 1999) as well as in the three theses following in parentheses (Zahn-Knoll, 1986; Slowey, 1990; Romahn, 2014), from which data have been manually extracted from tables. Simulation results and the data contributing to our data compilation including raw data, the BACON settings and a netCDF file of the PaleoDataView Collection are available at PANGAEA (https://doi.org/10.1594/PANGAEA.963761, Köhler and Mulitza, 2023). Data for atmospheric CO$_2$ and δ^{13}CO$_2$ are found in Eggleston et al. (2016b) (https://doi.org/10.1594/PANGAEA.859181), Köhler et al. (2017b) (https://doi.org/10.1594/PANGAEA.871273) and Menking et al. (2022a) (https://doi.org/10.15784/601600). The stack of deep Pacific benthic δ^{13}C is contained in Köhler (2022) (https://doi.org/10.1594/PANGAEA.940169).

Supplement. The supplement related to this article is available online at: https://doi.org/10.5194/cp-20-991-2024-supplement.

Author contributions. PK designed the study, performed the simulations, analysed the data and led the writing of the draft. SM generated the age models and the planktic time series and contributed to the writing of the draft.

Competing interests. The contact author has declared that neither of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors.

Acknowledgements. This work is supported by the German Federal Ministry of Education and Research (BMBF) as a Research for Sustainability initiative (FONA; https://www.fona.de/de/, last access: 18 April 2024) through the PalMod project. We thank Peter U. Clark for providing the SST data connected to Barth et al. (2018) and Jelle Bijma for discussions.

Financial support. This research has been supported by the Bundesministerium für Bildung und Forschung (grant no. 01LP1922A).

The article processing charges for this open-access publication were covered by the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.

Review statement. This paper was edited by Luc Beaufort and reviewed by Andreas Schmittner and one anonymous referee.
References

CLIMAP Project Members: Seasonal reconstructions of the earth’s surface at the last glacial maximum, Map and chart series (Geological Society of America), Geological Society of America, Boulder, Colo., 1981.

Curry, W. B. and Crowley, T. J.: The δ^{13}C of equatorial Atlantic surface waters: implications for ice age pCO₂ levels, Paleoceanog-

Duplessy, J.-C.: (Table 2) Stable carbon and oxygen isotope ratios of Globigerinoides ruber from sediment core MD77-169, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.726202, 1982a.

Khatiwala, S., Schmittner, A., and Muglia, J.: Air-sea...

Keigwin, L. D.: Radiocarbon and stable isotope constraints on...

Keeling, C. D.: The Suess effect:...

Jørgensen, B. B., Erez, J., Revsbech, P., and Cohen, Y.:...

Jonkers, L. and Kučera, M.: Quantifying the effect of seasonal...

Ivanova, E., Schiebel, R., Singh, A. D., Schmiedl, G., Niebler, H.- ...

Kohn, M., Steinke, S., Baumann, K.-H., Donner, B., Meggers, H., and Zonneveld, K. A.: Stable oxygen isotopes from the calcareous-walled dinoflagellate Thoracosphaera heimi as a proxy for changes in mixed layer temperatures off NW Africa.

Paul, A., Reimer, J. J. G., Fürstenau, J., Kinkel, H., and Betzler, C.: Relationship between Late Pleistocene sea-level variations, carbonate platform morphology and aragonite produc-

