Articles | Volume 20, issue 2
https://doi.org/10.5194/cp-20-349-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-349-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bayesian multi-proxy reconstruction of early Eocene latitudinal temperature gradients
Kilian Eichenseer
CORRESPONDING AUTHOR
Department of Earth Sciences, Durham University, South Road, DH1 3LE, Durham, United Kingdom
Lewis A. Jones
Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310 Vigo, Spain
Related subject area
Subject: Climate Modelling | Archive: Marine Archives | Timescale: Cenozoic
Climate variability, heat distribution, and polar amplification in the warm unipolar “icehouse” of the Oligocene
The role of atmospheric CO2 in controlling sea surface temperature change during the Pliocene
Resilient Antarctic monsoonal climate prevented ice growth during the Eocene
Amplified surface warming in the south-west Pacific during the mid-Pliocene (3.3–3.0 Ma) and future implications
Sea surface temperature evolution of the North Atlantic Ocean across the Eocene–Oligocene transition
The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data
The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5
Sensitivity of Pliocene climate simulations in MRI-CGCM2.3 to respective boundary conditions
Could the Pliocene constrain the equilibrium climate sensitivity?
Palaeogeographic controls on climate and proxy interpretation
On the effect of orbital forcing on mid-Pliocene climate, vegetation and ice sheets
Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project
A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Lauren E. Burton, Alan M. Haywood, Julia C. Tindall, Aisling M. Dolan, Daniel J. Hill, Erin L. McClymont, Sze Ling Ho, and Heather L. Ford
Clim. Past, 20, 1177–1194, https://doi.org/10.5194/cp-20-1177-2024, https://doi.org/10.5194/cp-20-1177-2024, 2024
Short summary
Short summary
The Pliocene (~ 3 million years ago) is of interest because its warm climate is similar to projections of the future. We explore the role of atmospheric carbon dioxide in forcing sea surface temperature during the Pliocene by combining climate model outputs with palaeoclimate proxy data. We investigate whether this role changes seasonally and also use our data to suggest a new estimate of Pliocene climate sensitivity. More data are needed to further explore the results presented.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Georgia R. Grant, Jonny H. T. Williams, Sebastian Naeher, Osamu Seki, Erin L. McClymont, Molly O. Patterson, Alan M. Haywood, Erik Behrens, Masanobu Yamamoto, and Katelyn Johnson
Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023, https://doi.org/10.5194/cp-19-1359-2023, 2023
Short summary
Short summary
Regional warming will differ from global warming, and climate models perform poorly in the Southern Ocean. We reconstruct sea surface temperatures in the south-west Pacific during the mid-Pliocene, a time 3 million years ago that represents the long-term outcomes of 3 °C warming, which is expected for the future. Comparing these results to climate model simulations, we show that the south-west Pacific region will warm by 1 °C above the global average if atmospheric CO2 remains above 350 ppm.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Youichi Kamae, Kohei Yoshida, and Hiroaki Ueda
Clim. Past, 12, 1619–1634, https://doi.org/10.5194/cp-12-1619-2016, https://doi.org/10.5194/cp-12-1619-2016, 2016
Short summary
Short summary
Climate model simulations conducted in previous studies tended to underestimate the late-Pliocene higher-latitude warming suggested by proxy evidences. We explore how prescribed trace gases, ice sheets, vegetation, lakes and orography affect the Pliocene climate simulation based on a protocol of the PlioMIP Phase 2. The revised boundary forcing data lead to amplified higher-latitude warming that is qualitatively consistent with the paleoenvironment reconstructions.
J. C. Hargreaves and J. D. Annan
Clim. Past, 12, 1591–1599, https://doi.org/10.5194/cp-12-1591-2016, https://doi.org/10.5194/cp-12-1591-2016, 2016
Short summary
Short summary
The mid-Pliocene Warm Period, 3 million years ago, was the most recent interval with high greenhouse gases. By modelling the period with the same models used for future projections, we can link the past and future climates. Here we use data from the mid-Pliocene to produce a tentative result for equilibrium climate sensitivity. We show that there are considerable uncertainties that strongly influence the result, but we are optimistic that these may be reduced in the next few years.
Daniel J. Lunt, Alex Farnsworth, Claire Loptson, Gavin L. Foster, Paul Markwick, Charlotte L. O'Brien, Richard D. Pancost, Stuart A. Robinson, and Neil Wrobel
Clim. Past, 12, 1181–1198, https://doi.org/10.5194/cp-12-1181-2016, https://doi.org/10.5194/cp-12-1181-2016, 2016
Short summary
Short summary
We explore the influence of changing geography from the period ~ 150 million years ago to ~ 35 million years ago, using a set of 19 climate model simulations. We find that without any CO2 change, the global mean temperature is remarkably constant, but that regionally there are significant changes in temperature which we link back to changes in ocean circulation. Finally, we explore the implications of our findings for the interpretation of geological indicators of past temperatures.
M. Willeit, A. Ganopolski, and G. Feulner
Clim. Past, 9, 1749–1759, https://doi.org/10.5194/cp-9-1749-2013, https://doi.org/10.5194/cp-9-1749-2013, 2013
A. M. Haywood, D. J. Hill, A. M. Dolan, B. L. Otto-Bliesner, F. Bragg, W.-L. Chan, M. A. Chandler, C. Contoux, H. J. Dowsett, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, A. Abe-Ouchi, S. J. Pickering, G. Ramstein, N. A. Rosenbloom, U. Salzmann, L. Sohl, C. Stepanek, H. Ueda, Q. Yan, and Z. Zhang
Clim. Past, 9, 191–209, https://doi.org/10.5194/cp-9-191-2013, https://doi.org/10.5194/cp-9-191-2013, 2013
D. J. Lunt, T. Dunkley Jones, M. Heinemann, M. Huber, A. LeGrande, A. Winguth, C. Loptson, J. Marotzke, C. D. Roberts, J. Tindall, P. Valdes, and C. Winguth
Clim. Past, 8, 1717–1736, https://doi.org/10.5194/cp-8-1717-2012, https://doi.org/10.5194/cp-8-1717-2012, 2012
Cited articles
Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A., and De Clerck, O.: Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling, Global Ecol. Biogeogr., 27, 277–284, https://doi.org/10.1111/geb.12693, 2018.
Beer, J., Abreu, J., and Steinhilber, F.: Sun and planets from a climate point of view, Proceedings of the International Astronomical Union, 4, 29–43, 2008.
Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G.-J., Zachos, J. C., and Brinkhuis, H.: Early Palaeogene temperature evolution of the southwest Pacific Ocean, Nature, 461, 776–779, https://doi.org/10.1038/nature08399, 2009.
Buffan, L., Jones, L. A., Domeier, M., Scotese, C. R., Zahirovic, S., and Varela, S.: Mind the uncertainty: Global plate model choice impacts deep-time palaeobiological studies, Meth. Ecol. Evol., 14, 3007–3019, https://doi.org/10.1111/2041-210X.14204, 2023.
Burgener, L., Hyland, E., Reich, B. J., and Scotese, C.: Cretaceous climates: Mapping paleo-köppen climatic zones using a bayesian statistical analysis of lithologic, paleontologic, and geochemical proxies, Palaeogeogr. Palaeocl., 613, 111373, https://doi.org/10.1016/j.palaeo.2022.111373, 2023.
Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J., and Otto-Bliesner, B. L.: Pliocene and Eocene provide best analogs for near-future climates, P. Natl. Acad. Sci. USA, 115, 13288–13293, https://doi.org/10.1073/pnas.1809600115, 2018.
Caballero, R. and Huber, M.: State-dependent climate sensitivity in past warm climates and its implications for future climate projections, P. Natl. Acad. Sci. USA, 110, 14162–14167, 2013.
Chandra, R., Cripps, S., Butterworth, N., and Muller, R. D.: Precipitation reconstruction from climate-sensitive lithologies using Bayesian machine learning, Environ. Model. Softw., 139, 105002, https://doi.org/10.1016/j.envsoft.2021.105002, 2021.
Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K., Bohaty, S. M., Frieling, J., Goldner, A., Hilgen, F. J., Kip, E. L., Peterse, F., van der Ploeg, R., Röhl, U., Schouten, S., and Sluijs, A.: Synchronous tropical and polar temperature evolution in the eocene, Nature, 559, 382–386, https://doi.org/10.1038/s41586-018-0272-2, 2018.
Davies, A., Hunter, S. J., Gréselle, B., Haywood, A. M., and Robson, C.: Evidence for seasonality in early Eocene high latitude sea-surface temperatures, Earth Planet. Sc. Lett., 519, 274–283, 2019.
Eichenseer, K. and Jones, L. A.: Bayesian multi-proxy reconstruction of early Eocene latitudinal temperature gradients, Zenodo [data set and code], https://doi.org/10.5281/zenodo.8402530, 2023.
Evans, D., Sagoo, N., Renema, W., Cotton, L. J., Müller, W., Todd, J. A., Saraswati, P. K., Stassen, P., Ziegler, M., Pearson, P. N., Valdes, P. J., and Hagit, P. A.: Eocene greenhouse climate revealed by coupled clumped isotope-mg/ca thermometry, P. Natl. Acad. Sci. USA, 115, 1174–1179, 2018.
Fauquette, S., Suc, J., Jiménez-Moreno, G., Micheels, A., and JOSTS, A.: Latitudinal climatic gradients in the western european and mediterranean regions from the mid-miocene (c. 15 ma) to the, in: Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies, edited by: Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N., Geological Society of London, London, UK, https://doi.org/10.1144/TMS002.22, 2007.
Frakes, L. A., Francis, J. E., and Syktus, J. I.: Climate modes of the Phanerozoic, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511628948, 1992.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.: Bayesian data analysis, Chapman and Hall/CRC, New York, USA, https://doi.org/10.1201/b16018, 2013.
Gelman, A., Goodrich, B., Gabry, J., and Vehtari, A.: R-squared for Bayesian regression models, Am. Stat., 2019.
Gilks, W. R., Richardson, S., and Spiegelhalter, D.: Markov chain monte carlo in practice, Chapman and Hall/CRC, New York, USA, https://doi.org/10.1201/b14835, 1995.
Greenwood, D., Keefe, R., Reichgelt, T., and Webb, J.: Eocene paleobotanical altimetry of victoria's eastern uplands, Aust. J. Earth Sci., 64, 625–637, 2017.
Greenwood, D. R. and Wing, S. L.: Eocene continental climates and latitudinal temperature gradients, Geology, 23, 1044, https://doi.org/10.1130/0091-7613(1995)023<1044:ECCALT>2.3.CO;2, 1995.
Grossman, E. L. and Joachimski, M. M.: Ocean temperatures through the phanerozoic reassessed, Sci. Rep.-UK, 12, 8938, https://doi.org/10.1038/s41598-022-11493-1, 2022.
Hansen, J., Sato, M., Russell, G., and Kharecha, P.: Climate sensitivity, sea level and atmospheric carbon dioxide, Philos. T. Roy. Soc. A, 371, 20120294, https://doi.org/10.1098/rsta.2012.0294, 2013.
Hoegh-Guldberg, O.: Coral reef ecosystems and anthropogenic climate change, Reg. Environ. Change, 11, 215–227, 2011.
Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel, M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Lourens, L., Meckler, A. N., Naafs, B. D. A., Pälike, H., Pancost, R. D., Pearson, P. N., Röhl, U., Royer, D. L., Salzmann, U., Schubert, B. A., Seebeck, H., Sluijs, A., Speijer, R. P., Stassen, P., Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos, J. C., Zhang, Y. G., Huber, M., and Lunt, D. J.: The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database, Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, 2019.
Huber, M. and Caballero, R.: The early Eocene equable climate problem revisited, Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, 2011.
Inglis, G. N., Bragg, F., Burls, N. J., Cramwinckel, M. J., Evans, D., Foster, G. L., Huber, M., Lunt, D. J., Siler, N., Steinig, S., Tierney, J. E., Wilkinson, R., Anagnostou, E., de Boer, A. M., Dunkley Jones, T., Edgar, K. M., Hollis, C. J., Hutchinson, D. K., and Pancost, R. D.: Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene, Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, 2020.
Ivany, L. C. and Judd, E. J.: Deciphering temperature seasonality in Earth's ancient oceans, Annu. Rev. Earth Pl. Sc., 50, 123–152, 2022.
Johannes, R., Wiebe, W., Crossland, C., Rimmer, D., and Smith, S.: Latitudinal limits of coral reef growth, Marine ecology progress series, Oldendorf, 11, 105–111, https://doi.org/10.3354/meps011105, 1983.
Jones, L. A. and Eichenseer, K.: Uneven spatial sampling distorts reconstructions of Phanerozoic seawater temperature, Geology, 50, 238–242, https://doi.org/10.1130/G49132.1, 2022.
Jones, L. A., Mannion, P. D., Farnsworth, A., Bragg, F., and Lunt, D. J.: Climatic and tectonic drivers shaped the tropical distribution of coral reefs, Nat. Commun., 13, 1–10, 2022.
Jones, L. A., Gearty, W., Allen, B. J., Eichenseer, K., Dean, C. D., Galván, S., Kouvari, M., Godoy, P. L., Nicholl, C., Buffan, L., Flannery-Sutherland, J. T., Dillon, E. M., and Chiarenza, A. A.: palaeoverse: a community-driven R package to support palaeobiological analysis, Earth ArXiv, https://doi.org/10.31223/X5Z94Q, 2023.
Judd, E. J., Bhattacharya, T., and Ivany, L. C.: A Dynamical Framework for Interpreting Ancient Sea Surface Temperatures, Geophys. Res. Lett., 47, e2020GL089044, https://doi.org/10.1029/2020GL089044, 2020.
Judd, E. J., Tierney, J. E., Huber, B. T., Wing, S. L., Lunt, D. J., Ford, H. L., Inglis, G. N., McClymont, E. L., O'Brien, C. L., Rattanasriampaipong, R., and Si, W.: The PhanSST global database of phanerozoic sea surface temperature proxy data, Sci. Data, 9, 753, https://doi.org/10.1038/s41597-022-01826-0, 2022.
Keating-Bitonti, C. R., Ivany, L. C., Affek, H. P., Douglas, P., and Samson, S. D.: Warm, not super-hot, temperatures in the early Eocene subtropics, Geology, 39, 771–774, https://doi.org/10.1130/G32054.1, 2011.
Kiessling, W.: Paleoclimatic significance of Phanerozoic reefs, Geology, 29, 751–754, 2001.
Kleypas, J. A., McManus, J. W., and Meñez, L. A.: Environmental limits to coral reef development: Where do we draw the line?, Am. Zool., 39, 146–159, 1999.
Lunt, D. J., Bragg, F., Chan, W.-L., Hutchinson, D. K., Ladant, J.-B., Morozova, P., Niezgodzki, I., Steinig, S., Zhang, Z., Zhu, J., Abe-Ouchi, A., Anagnostou, E., de Boer, A. M., Coxall, H. K., Donnadieu, Y., Foster, G., Inglis, G. N., Knorr, G., Langebroek, P. M., Lear, C. H., Lohmann, G., Poulsen, C. J., Sepulchre, P., Tierney, J. E., Valdes, P. J., Volodin, E. M., Dunkley Jones, T., Hollis, C. J., Huber, M., and Otto-Bliesner, B. L.: DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data, Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, 2021.
Markwick, P.: The palaeogeographic and palaeoclimatic significance of climate, in: Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies, edited by: Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N., Geological Society of London, London, UK, https://doi.org/10.1144/TMS002.13, 2007.
Markwick, P. J.: “Equability,” continentality, and tertiary “climate”: The crocodilian perspective, Geology, 22, 613–616, 1994.
McElreath, R.: Statistical rethinking: A bayesian course with examples in R and Stan, Chapman and Hall/CRC, https://doi.org/10.1201/9781315372495, 2018.
Merdith, A. S., Williams, S. E., Collins, A. S., Tetley, M. G., Mulder, J. A., Blades, M. L., Young, A., Armistead, S. E., Cannon, J., Zahirovic, S., and Müller, R. D.: Extending full-plate tectonic models into deep time: Linking the neoproterozoic and the phanerozoic, Earth-Sci. Rev., 214, 103477, https://doi.org/10.1016/j.earscirev.2020.103477, 2021.
Muir, P. R., Wallace, C. C., Done, T., and Aguirre, J. D.: Limited scope for latitudinal extension of reef corals, Science, 348, 1135–1138, 2015.
Peppe, D. J., Royer, D. L., Cariglino, B., Oliver, S. Y., Newman, S., Leight, E., Enikolopov, G., Fernandez-Burgos, M., Herrera, F., Adams, J. M., and Correa, E.: Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications, New Phytol., 190, 724–739, 2011.
Popescu, S.-M., Suc, J.-P., Fauquette, S., Bessedik, M., Jiménez-Moreno, G., Robin, C., and Labrousse, L.: Mangrove distribution and diversity during three Cenozoic thermal maxima in the Northern Hemisphere (pollen records from the Arctic regions), J. Biogeogr., 48, 2771–2784, https://doi.org/10.1111/jbi.14238, 2021.
Pross, J., Contreras, L., Bijl, P. K., Greenwood, D. R., Bohaty, S. M., Schouten, S., Bendle, J. A., Röhl, U., Tauxe, L., Raine, J. I., Huck, C. E., van de Flierdt, T., Jamieson, S. S. R., Stickley, C. E., van de Schootbrugge, B., Escutia, C., and Brinkhuis, H.: Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch, Nature, 488, 73–77, https://doi.org/10.1038/nature11300, 2012.
Quisthoudt, K., Schmitz, N., Randin, C. F., Dahdouh-Guebas, F., Robert, E. M. R., and Koedam, N.: Temperature variation among mangrove latitudinal range limits worldwide, Trees, 26, 1919–1931, https://doi.org/10.1007/s00468-012-0760-1, 2012.
Rahmstorf, S.: Ocean circulation and climate during the past 120,000 years, Nature, 419, 207–214, 2002.
Rasmussen, C. E. and Williams, C. K.: Gaussian processes in machine learning, Lect. Notes Comput. Sci., 3176, 63–71, 2004.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 3 October 2023), 2023.
Reynolds, R. W. and Smith, T. M.: Improved global sea surface temperature analyses using optimum interpolation, J. Climate, 7, 929–948, 1994.
Royer, D. L.: Climate reconstruction from leaf size and shape: New developments and challenges, Paleontological Society Papers, 18, 195–212, 2012.
Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J., and Beerling, D. J.: CO2 as a primary driver of phanerozoic climate, GSA Today, 14, 4–10, 2004.
Salonen, J. S., Korpela, M., Williams, J. W., and Luoto, M.: Machine-learning based reconstructions of primary and secondary climate variables from north american and european fossil pollen data, Sci. Rep.-UK, 9, 15805, https://doi.org/10.1038/s41598-019-52293-4, 2019.
Schrag, D. P.: Effects of diagenesis on the isotopic record of late paleogene tropical sea surface temperatures, Chem. Geol., 161, 215–224, 1999.
Schwartz, S. E.: Uncertainty in climate sensitivity: Causes, consequences, challenges, Energ. Environ. Sci., 1, 430–453, 2008.
Scotese, C. R., Song, H., Mills, B. J. W., and van der Meer, D. G.: Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years, Earth-Sci. Rev., 215, 103503, https://doi.org/10.1016/j.earscirev.2021.103503, 2021.
Sloan, L. C. and Barron, E. J.: “Equable” climates during Earth history?, Geology, 18, 489–492, 1990.
Song, H., Wignall, P. B., Song, H., Dai, X., and Chu, D.: Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years, J. Earth Sci., 30, 236–243, https://doi.org/10.1007/s12583-018-1002-2, 2019.
Suan, G., Popescu, S.-M., Suc, J.-P., Schnyder, J., Fauquette, S., Baudin, F., Yoon, D., Piepjohn, K., Sobolev, N. N., and Labrousse, L.: Subtropical climate conditions and mangrove growth in Arctic Siberia during the early Eocene, Geology, 45, 539–542, https://doi.org/10.1130/G38547.1, 2017.
Taylor, S. P., Haywood, A. M., Valdes, P. J., and Sellwood, B. W.: An evaluation of two spatial interpolation techniques in global sea-surface temperature reconstructions: Last Glacial Maximum and Pliocene case studies, Quaternary Sci. Rev., 23, 1041–1051, https://doi.org/10.1016/j.quascirev.2003.12.003, 2004.
Tierney, J. E., Sinninghe Damsté, J. S., Pancost, R. D., Sluijs, A., and Zachos, J. C.: Eocene temperature gradients, Nat. Geosci., 10, 538–539, 2017.
Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng, R., Ford, H. L., Hönisch, B., Inglis, G. N., Petersen, S. V., Sagoo, N., and Tabor, C. R.:: Past climates inform our future, Science, 370, eaay3701, https://doi.org/10.1126/science.aay3701, 2020.
Veizer, J. and Prokoph, A.: Temperatures and oxygen isotopic composition of Phanerozoic oceans, Earth-Sci. Rev., 146, 92–104, https://doi.org/10.1016/j.earscirev.2015.03.008, 2015.
Vickers, M. L., Bernasconi, S. M., Ullmann, C. V., Lode, S., Looser, N., Morales, L. G., Price, G. D., Wilby, P. R., Hougård, I. W., Hesselbo, S. P., and Korte, C.: Marine temperatures underestimated for past greenhouse climate, Sci. Rep., 11, 1–9, 2021.
Weitzel, N., Hense, A., and Ohlwein, C.: Combining a pollen and macrofossil synthesis with climate simulations for spatial reconstructions of European climate using Bayesian filtering, Clim. Past, 15, 1275–1301, https://doi.org/10.5194/cp-15-1275-2019, 2019.
Westerhold, T., Röhl, U., Donner, B., and Zachos, J. C.: Global extent of early Eocene hyperthermal events: A new pacific benthic foraminiferal isotope record from Shatsky rise (ODP site 1209), Paleoceanogr. Paleocl., 33, 626–642, 2018.
Yamano, H., Hori, K., Yamauchi, M., Yamagawa, O., and Ohmura, A.: Highest-latitude coral reef at Iki Island, Japan, Coral Reefs, 105, 9–12, 2001.
Yang, D. and Bowen, G. J.: Integrating plant wax abundance and isotopes for paleo-vegetation and paleoclimate reconstructions: a multi-source mixing model using a Bayesian framework, Clim. Past, 18, 2181–2210, https://doi.org/10.5194/cp-18-2181-2022, 2022.
Zamagni, J., Mutti, M., and Košir, A.: The evolution of mid Paleocene–early Eocene coral communities: How to survive during rapid global warming, Palaeogeogr. Palaeocl., 317, 48–65, 2012.
Zhang, L., Hay, W. W., Wang, C., and Gu, X.: The evolution of latitudinal temperature gradients from the latest Cretaceous through the Present, Earth-Sci. Rev., 189, 147–158, https://doi.org/10.1016/j.earscirev.2019.01.025, 2019.
Zhu, J., Poulsen, C. J., and Tierney, J. E.: Simulation of eocene extreme warmth and high climate sensitivity through cloud feedbacks, Sci. Adv., 5, eaax1874, https://doi.org/10.1126/sciadv.aax1874, 2019.
Ziegler, A., Hulver, M., Lottes, A., and Schmachtenberg, W.: Uniformitarianism and palaeoclimates: Inferences from the distribution of carbonate rocks, Geol. J., Special issue, 3–25, 1984.
Co-editor-in-chief
Reconstructing large-scale climate patterns from sparse local records is crucial for understanding past climates. Yet, it remains challenging to derive those reconstructions due to the patchiness, uneven spatial distribution, and disparate nature of palaeoclimatic proxy records. In this study, Eichenseer and Jones developed a Bayesian hierarchical model to integrate ecological data with established geochemical proxies into a unified quantitative framework, which bridges the gap in the latitudinal coverage of proxy data. They showed that this framework has the potential to enhance quantitative palaeoclimatic reconstructions especially the latitudinal temperature gradient estimated from datasets with limited spatial sampling.
Reconstructing large-scale climate patterns from sparse local records is crucial for...
Short summary
Large-scale palaeoclimate reconstructions are often based on sparse and unevenly sampled records, inviting potential biases. Here, we present a Bayesian hierarchical model that combines geochemical with ecological proxy data to model the latitudinal sea surface temperature gradient. Applying this model to the early Eocene climatic optimum highlights how our integrated approach can improve palaeoclimate reconstructions from datasets with limited sampling.
Large-scale palaeoclimate reconstructions are often based on sparse and unevenly sampled...