Articles | Volume 20, issue 9
https://doi.org/10.5194/cp-20-1939-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-20-1939-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The climate and vegetation of Europe, northern Africa, and the Middle East during the Last Glacial Maximum (21 000 yr BP) based on pollen data
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Marc Fasel
enviroSPACE lab, Institute for Environmental Sciences, University of Geneva, Geneva, 1211, Switzerland
Jed O. Kaplan
Department of Earth Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
Emmanuele Russo
Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland
Ariane Burke
Laboratoire d'Ecomorphologie et de Paleoanthropologie, Departement d'Anthropologie, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
Related authors
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
Ram Singh, Alexander Koch, Allegra N. LeGrande, Kostas Tsigaridis, Riovie D. Ramos, Francis Ludlow, Igor Aleinov, Reto Ruedy, and Jed O. Kaplan
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-219, https://doi.org/10.5194/gmd-2024-219, 2024
Preprint under review for GMD
Short summary
Short summary
This study presents and demonstrates an experimental framework for asynchronous land-atmosphere coupling using the NASA GISS ModelE and LPJ-LMfire models for the 2.5ka period. This framework addresses the limitation of NASA ModelE, which does not have a fully dynamic vegetation model component. It also shows the role of model performance metrics, such as model bias and variability, and the simulated climate is evaluated against the multi-proxy paleoclimate reconstructions for the 2.5ka climate.
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Bijan Fallah, Christoph Menz, Emmanuele Russo, Paula Harder, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-227, https://doi.org/10.5194/gmd-2023-227, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We tried to contribute to the local climate change impact study in Central Asia, a water-scarce and vulnerable region to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in Central Asia.
Jonathan Robert Buzan, Emmanuele Russo, Woon Mi Kim, and Christoph C. Raible
EGUsphere, https://doi.org/10.5194/egusphere-2023-324, https://doi.org/10.5194/egusphere-2023-324, 2023
Preprint archived
Short summary
Short summary
Paleoclimate is used to test climate models to verify that simulations accurately project both future and past climate states. We present fully coupled climate sensitivity simulations of Preindustrial, Last Glacial Maximum, and the Quaternary climate periods. We show distinct climate states derived from non-linear responses to ice sheet heights and orbits. The implication is that as paleo proxy data become more reliable, they may constrain the specific climate states produced by climate models.
Jed O. Kaplan and Katie Hong-Kiu Lau
Earth Syst. Sci. Data, 14, 5665–5670, https://doi.org/10.5194/essd-14-5665-2022, https://doi.org/10.5194/essd-14-5665-2022, 2022
Short summary
Short summary
Global lightning strokes are recorded continuously by a network of ground-based stations. We consolidated these point observations into a map form and provide these as electronic datasets for research purposes. Here we extend our dataset to include lightning observations from 2021.
Emmanuele Russo, Bijan Fallah, Patrick Ludwig, Melanie Karremann, and Christoph C. Raible
Clim. Past, 18, 895–909, https://doi.org/10.5194/cp-18-895-2022, https://doi.org/10.5194/cp-18-895-2022, 2022
Short summary
Short summary
In this study a set of simulations are performed with the regional climate model COSMO-CLM for Europe, for the mid-Holocene and pre-industrial periods. The main aim is to better understand the drivers of differences between models and pollen-based summer temperatures. Results show that a fundamental role is played by spring soil moisture availability. Additionally, results suggest that model bias is not stationary, and an optimal configuration could not be the best under different forcing.
Silje Lund Sørland, Roman Brogli, Praveen Kumar Pothapakula, Emmanuele Russo, Jonas Van de Walle, Bodo Ahrens, Ivonne Anders, Edoardo Bucchignani, Edouard L. Davin, Marie-Estelle Demory, Alessandro Dosio, Hendrik Feldmann, Barbara Früh, Beate Geyer, Klaus Keuler, Donghyun Lee, Delei Li, Nicole P. M. van Lipzig, Seung-Ki Min, Hans-Jürgen Panitz, Burkhardt Rockel, Christoph Schär, Christian Steger, and Wim Thiery
Geosci. Model Dev., 14, 5125–5154, https://doi.org/10.5194/gmd-14-5125-2021, https://doi.org/10.5194/gmd-14-5125-2021, 2021
Short summary
Short summary
We review the contribution from the CLM-Community to regional climate projections following the CORDEX framework over Europe, South Asia, East Asia, Australasia, and Africa. How the model configuration, horizontal and vertical resolutions, and choice of driving data influence the model results for the five domains is assessed, with the purpose of aiding the planning and design of regional climate simulations in the future.
Jed O. Kaplan and Katie Hong-Kiu Lau
Earth Syst. Sci. Data, 13, 3219–3237, https://doi.org/10.5194/essd-13-3219-2021, https://doi.org/10.5194/essd-13-3219-2021, 2021
Short summary
Short summary
Lightning is an important atmospheric phenomenon and natural hazard, but few long-term data are freely available on lightning stroke location, timing, and power. Here, we present a new, open-access dataset of lightning strokes covering 2010–2020, based on a network of low-frequency radio detectors. The dataset is comprised of GIS maps and is intended for researchers, government, industry, and anyone for whom knowing when and where lightning is likely to strike is useful information.
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Short summary
This study assesses the importance of resolution and land–atmosphere feedbacks for European climate. We performed an asynchronously coupled experiment that combined a global climate model (~ 100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary
Short summary
An atmospheric chemistry model has been implemented in the microscale PALM model system 6.0. This article provides a detailed description of the model, its structure, input requirements, various features and limitations. Several pre-compiled ready-to-use chemical mechanisms are included in the chemistry model code; however, users can also easily implement other mechanisms. A case study is presented to demonstrate the application of the new chemistry model in the urban environment.
Yang Li, Loretta J. Mickley, and Jed O. Kaplan
Atmos. Chem. Phys., 21, 57–68, https://doi.org/10.5194/acp-21-57-2021, https://doi.org/10.5194/acp-21-57-2021, 2021
Short summary
Short summary
Climate models predict a shift toward warmer, drier environments in southwestern North America. Under future climate, the two main drivers of dust trends play opposing roles: (1) CO2 fertilization enhances vegetation and, in turn, decreases dust, and (2) increasing land use enhances dust emissions from northern Mexico. In the worst-case scenario, elevated dust concentrations spread widely over the domain by 2100 in spring, suggesting a large climate penalty on air quality and human health.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Matthew J. Rowlinson, Alexandru Rap, Douglas S. Hamilton, Richard J. Pope, Stijn Hantson, Steve R. Arnold, Jed O. Kaplan, Almut Arneth, Martyn P. Chipperfield, Piers M. Forster, and Lars Nieradzik
Atmos. Chem. Phys., 20, 10937–10951, https://doi.org/10.5194/acp-20-10937-2020, https://doi.org/10.5194/acp-20-10937-2020, 2020
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas which contributes to anthropogenic climate change; however, the effect of human emissions is uncertain because pre-industrial ozone concentrations are not well understood. We use revised inventories of pre-industrial natural emissions to estimate the human contribution to changes in tropospheric ozone. We find that tropospheric ozone radiative forcing is up to 34 % lower when using improved pre-industrial biomass burning and vegetation emissions.
Yang Li, Loretta J. Mickley, Pengfei Liu, and Jed O. Kaplan
Atmos. Chem. Phys., 20, 8827–8838, https://doi.org/10.5194/acp-20-8827-2020, https://doi.org/10.5194/acp-20-8827-2020, 2020
Short summary
Short summary
Using a coupled vegetation–fire–climate modeling framework, we show a northward shift in forests and increased lightning fire activity in northern US states, including Idaho, Montana, and Wyoming. Our findings suggest a large climate penalty on ecosystem, air quality, visibility, and human health in a region valued for its national forests and parks. The fine-scale smoke PM predictions provided in this study should prove useful to human health and environmental assessments.
Björn Maronga, Sabine Banzhaf, Cornelia Burmeister, Thomas Esch, Renate Forkel, Dominik Fröhlich, Vladimir Fuka, Katrin Frieda Gehrke, Jan Geletič, Sebastian Giersch, Tobias Gronemeier, Günter Groß, Wieke Heldens, Antti Hellsten, Fabian Hoffmann, Atsushi Inagaki, Eckhard Kadasch, Farah Kanani-Sühring, Klaus Ketelsen, Basit Ali Khan, Christoph Knigge, Helge Knoop, Pavel Krč, Mona Kurppa, Halim Maamari, Andreas Matzarakis, Matthias Mauder, Matthias Pallasch, Dirk Pavlik, Jens Pfafferott, Jaroslav Resler, Sascha Rissmann, Emmanuele Russo, Mohamed Salim, Michael Schrempf, Johannes Schwenkel, Gunther Seckmeyer, Sebastian Schubert, Matthias Sühring, Robert von Tils, Lukas Vollmer, Simon Ward, Björn Witha, Hauke Wurps, Julian Zeidler, and Siegfried Raasch
Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, https://doi.org/10.5194/gmd-13-1335-2020, 2020
Short summary
Short summary
In this paper, we describe the PALM model system 6.0. PALM is a Fortran-based turbulence-resolving code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. During the last years, PALM has been significantly improved and now offers a variety of new components that are especially designed to simulate the urban atmosphere at building-resolving resolution.
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Sandy P. Harrison, Marie-José Gaillard, Benjamin D. Stocker, Marc Vander Linden, Kees Klein Goldewijk, Oliver Boles, Pascale Braconnot, Andria Dawson, Etienne Fluet-Chouinard, Jed O. Kaplan, Thomas Kastner, Francesco S. R. Pausata, Erick Robinson, Nicki J. Whitehouse, Marco Madella, and Kathleen D. Morrison
Geosci. Model Dev., 13, 805–824, https://doi.org/10.5194/gmd-13-805-2020, https://doi.org/10.5194/gmd-13-805-2020, 2020
Short summary
Short summary
The Past Global Changes LandCover6k initiative will use archaeological records to refine scenarios of land use and land cover change through the Holocene to reduce the uncertainties about the impacts of human-induced changes before widespread industrialization. We describe how archaeological data are used to map land use change and how the maps can be evaluated using independent palaeoenvironmental data. We propose simulations to test land use and land cover change impacts on past climates.
Emmanuele Russo, Ingo Kirchner, Stephan Pfahl, Martijn Schaap, and Ulrich Cubasch
Geosci. Model Dev., 12, 5229–5249, https://doi.org/10.5194/gmd-12-5229-2019, https://doi.org/10.5194/gmd-12-5229-2019, 2019
Short summary
Short summary
This is an investigation of COSMO-CLM 5.0 sensitivity for the CORDEX Central Asia domain, with the main goal of evaluating general model performances for the area, proposing a model optimal configuration to be used in projection studies.
Results show that the model seems to be particularly sensitive to those parameterizations that deal with soil and surface features and that could positively affect the repartition of incoming radiation.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Anina Gilgen, Stiig Wilkenskjeld, Jed O. Kaplan, Thomas Kühn, and Ulrike Lohmann
Clim. Past, 15, 1885–1911, https://doi.org/10.5194/cp-15-1885-2019, https://doi.org/10.5194/cp-15-1885-2019, 2019
Short summary
Short summary
Using the global aerosol–climate model ECHAM-HAM-SALSA, the effect of humans on European climate in the Roman Empire was quantified. Both land use and novel estimates of anthropogenic aerosol emissions were considered. We conducted simulations with fixed sea-surface temperatures to gain a first impression about the anthropogenic impact. While land use effects induced a regional warming for one of the reconstructions, aerosol emissions led to a cooling associated with aerosol–cloud interactions.
Bijan Fallah, Emmanuele Russo, Walter Acevedo, Achille Mauri, Nico Becker, and Ulrich Cubasch
Clim. Past, 14, 1345–1360, https://doi.org/10.5194/cp-14-1345-2018, https://doi.org/10.5194/cp-14-1345-2018, 2018
Short summary
Short summary
We try to test and evaluate an approach for using two main sources of information on the climate of the past: climate model simulations and proxies. This is done via data assimilation (DA), a method that blends these two sources of information in an intelligent way. However, DA and climate models are computationally very expensive. Here, we tested the ability of a computationally affordable DA to reconstruct high-resolution climate fields.
Guillaume Latombe, Ariane Burke, Mathieu Vrac, Guillaume Levavasseur, Christophe Dumas, Masa Kageyama, and Gilles Ramstein
Geosci. Model Dev., 11, 2563–2579, https://doi.org/10.5194/gmd-11-2563-2018, https://doi.org/10.5194/gmd-11-2563-2018, 2018
Short summary
Short summary
It is still unclear how climate conditions, and especially climate variability, influenced the spatial distribution of past human populations. Global climate models (GCMs) cannot simulate climate at sufficiently fine scale for this purpose. We propose a statistical method to obtain fine-scale climate projections for 15 000 years ago from coarse-scale GCM outputs. Our method agrees with local reconstructions from fossil and pollen data, and generates sensible climate variability maps over Europe.
Emeline Chaste, Martin P. Girardin, Jed O. Kaplan, Jeanne Portier, Yves Bergeron, and Christelle Hély
Biogeosciences, 15, 1273–1292, https://doi.org/10.5194/bg-15-1273-2018, https://doi.org/10.5194/bg-15-1273-2018, 2018
Short summary
Short summary
A vegetation model was used to reconstruct fire activity from 1901 to 2012 in relation to changes in lightning ignition, climate, and vegetation in eastern Canada's boreal forest. The model correctly simulated the history of fire activity. The results showed that fire activity is ignition limited but is also greatly affected by both climate and vegetation. This research aims to develop a vegetation model that could be used to predict the future impacts of climate changes on fire activity.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Philipp S. Sommer and Jed O. Kaplan
Geosci. Model Dev., 10, 3771–3791, https://doi.org/10.5194/gmd-10-3771-2017, https://doi.org/10.5194/gmd-10-3771-2017, 2017
Short summary
Short summary
We present GWGEN, a computer program for converting monthly climate data into estimates of daily weather, using statistical methods. The GWGEN weather generator program was developed using a global database of more than 5 million observations of daily weather, and it simulates daily values of minimum and maximum temperature, precipitation, cloud cover, and wind speed. GWGEN may be used in a range of applications, for example, in global vegetation, crop, soil erosion, or hydrological models.
Sam S. Rabin, Joe R. Melton, Gitta Lasslop, Dominique Bachelet, Matthew Forrest, Stijn Hantson, Jed O. Kaplan, Fang Li, Stéphane Mangeon, Daniel S. Ward, Chao Yue, Vivek K. Arora, Thomas Hickler, Silvia Kloster, Wolfgang Knorr, Lars Nieradzik, Allan Spessa, Gerd A. Folberth, Tim Sheehan, Apostolos Voulgarakis, Douglas I. Kelley, I. Colin Prentice, Stephen Sitch, Sandy Harrison, and Almut Arneth
Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, https://doi.org/10.5194/gmd-10-1175-2017, 2017
Short summary
Short summary
Global vegetation models are important tools for understanding how the Earth system will change in the future, and fire is a critical process to include. A number of different methods have been developed to represent vegetation burning. This paper describes the protocol for the first systematic comparison of global fire models, which will allow the community to explore various drivers and evaluate what mechanisms are important for improving performance. It also includes equations for all models.
Emmanuele Russo and Ulrich Cubasch
Clim. Past, 12, 1645–1662, https://doi.org/10.5194/cp-12-1645-2016, https://doi.org/10.5194/cp-12-1645-2016, 2016
Short summary
Short summary
In this study we use a RCM for three different goals.
Proposing a model configuration suitable for paleoclimate studies; evaluating the added value of a regional climate model for paleoclimate studies; investigating temperature evolution of the European continent during mid-to-late Holocene.
Results suggest that the RCM seems to produce results in better agreement with reconstructions than its driving GCM. Simulated temperature evolution seems to be too sensitive to changes in insolation.
Stijn Hantson, Almut Arneth, Sandy P. Harrison, Douglas I. Kelley, I. Colin Prentice, Sam S. Rabin, Sally Archibald, Florent Mouillot, Steve R. Arnold, Paulo Artaxo, Dominique Bachelet, Philippe Ciais, Matthew Forrest, Pierre Friedlingstein, Thomas Hickler, Jed O. Kaplan, Silvia Kloster, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Andrea Meyn, Stephen Sitch, Allan Spessa, Guido R. van der Werf, Apostolos Voulgarakis, and Chao Yue
Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, https://doi.org/10.5194/bg-13-3359-2016, 2016
Short summary
Short summary
Our ability to predict the magnitude and geographic pattern of past and future fire impacts rests on our ability to model fire regimes. A large variety of models exist, and it is unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. In this paper we summarize the current state of the art in fire-regime modelling and model evaluation, and outline what lessons may be learned from the Fire Model Intercomparison Project – FireMIP.
M. Clare Smith, Joy S. Singarayer, Paul J. Valdes, Jed O. Kaplan, and Nicholas P. Branch
Clim. Past, 12, 923–941, https://doi.org/10.5194/cp-12-923-2016, https://doi.org/10.5194/cp-12-923-2016, 2016
Short summary
Short summary
We used climate modelling to estimate the biogeophysical impacts of agriculture on the climate over the last 8000 years of the Holocene. Our results show statistically significant surface temperature changes (mainly cooling) from as early as 7000 BP in the JJA season and throughout the entire annual cycle by 2–3000 BP. The changes were greatest in the areas of land use change but were also seen in other areas. Precipitation was also affected, particularly in Europe, India, and the ITCZ region.
Zhen Zhang, Niklaus E. Zimmermann, Jed O. Kaplan, and Benjamin Poulter
Biogeosciences, 13, 1387–1408, https://doi.org/10.5194/bg-13-1387-2016, https://doi.org/10.5194/bg-13-1387-2016, 2016
Short summary
Short summary
This study investigates improvements and uncertainties associated with estimating global inundated area and wetland CH4 emissions using TOPMODEL. Different topographic information and catchment aggregation schemes are evaluated against seasonal and permanently inundated wetland observations. Reducing uncertainty in prognostic wetland dynamics modeling must take into account forcing data as well as topographic scaling schemes.
M. J. McGrath, S. Luyssaert, P. Meyfroidt, J. O. Kaplan, M. Bürgi, Y. Chen, K. Erb, U. Gimmi, D. McInerney, K. Naudts, J. Otto, F. Pasztor, J. Ryder, M.-J. Schelhaas, and A. Valade
Biogeosciences, 12, 4291–4316, https://doi.org/10.5194/bg-12-4291-2015, https://doi.org/10.5194/bg-12-4291-2015, 2015
Short summary
Short summary
Studying century-scale ecological processes and their legacy effects requires taking forest management into account. In this study we produce spatially and temporally explicit maps of European forest management from 1600 to 2010. The most important changes between 1600 and 2010 are an increase of 593 000km2 in conifers at the expense of deciduous forest, a 612 000km2 decrease in unmanaged forest, a 152 000km2 decrease in coppice management and a 818 000km2 increase in high stand management.
P. Achakulwisut, L. J. Mickley, L. T. Murray, A. P. K. Tai, J. O. Kaplan, and B. Alexander
Atmos. Chem. Phys., 15, 7977–7998, https://doi.org/10.5194/acp-15-7977-2015, https://doi.org/10.5194/acp-15-7977-2015, 2015
Short summary
Short summary
The atmosphere’s oxidative capacity determines the lifetime of many trace gases important to climate, chemistry, and human health. Yet uncertainties remain about its past variations, its controlling factors, and the radiative forcing of short-lived species it influences. To reduce these uncertainties, we must better quantify the natural emissions and chemical reaction mechanisms of organic compounds in the atmosphere, which play a role in governing the oxidative capacity.
T. J. Bohn, J. R. Melton, A. Ito, T. Kleinen, R. Spahni, B. D. Stocker, B. Zhang, X. Zhu, R. Schroeder, M. V. Glagolev, S. Maksyutov, V. Brovkin, G. Chen, S. N. Denisov, A. V. Eliseev, A. Gallego-Sala, K. C. McDonald, M.A. Rawlins, W. J. Riley, Z. M. Subin, H. Tian, Q. Zhuang, and J. O. Kaplan
Biogeosciences, 12, 3321–3349, https://doi.org/10.5194/bg-12-3321-2015, https://doi.org/10.5194/bg-12-3321-2015, 2015
Short summary
Short summary
We evaluated 21 forward models and 5 inversions over western Siberia in terms of CH4 emissions and simulated wetland areas and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite inundation products. In addition to assembling a definitive collection of methane emissions estimates for the region, we were able to identify the types of wetland maps and model features necessary for accurate simulations of high-latitude wetlands.
A. Mauri, B. A. S. Davis, P. M. Collins, and J. O. Kaplan
Clim. Past, 10, 1925–1938, https://doi.org/10.5194/cp-10-1925-2014, https://doi.org/10.5194/cp-10-1925-2014, 2014
L. T. Murray, L. J. Mickley, J. O. Kaplan, E. D. Sofen, M. Pfeiffer, and B. Alexander
Atmos. Chem. Phys., 14, 3589–3622, https://doi.org/10.5194/acp-14-3589-2014, https://doi.org/10.5194/acp-14-3589-2014, 2014
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
T. Hoffmann, S. M. Mudd, K. van Oost, G. Verstraeten, G. Erkens, A. Lang, H. Middelkoop, J. Boyle, J. O. Kaplan, J. Willenbring, and R. Aalto
Earth Surf. Dynam., 1, 45–52, https://doi.org/10.5194/esurf-1-45-2013, https://doi.org/10.5194/esurf-1-45-2013, 2013
M. Scherstjanoi, J. O. Kaplan, E. Thürig, and H. Lischke
Geosci. Model Dev., 6, 1517–1542, https://doi.org/10.5194/gmd-6-1517-2013, https://doi.org/10.5194/gmd-6-1517-2013, 2013
V. Beck, C. Gerbig, T. Koch, M. M. Bela, K. M. Longo, S. R. Freitas, J. O. Kaplan, C. Prigent, P. Bergamaschi, and M. Heimann
Atmos. Chem. Phys., 13, 7961–7982, https://doi.org/10.5194/acp-13-7961-2013, https://doi.org/10.5194/acp-13-7961-2013, 2013
M. Pfeiffer, A. Spessa, and J. O. Kaplan
Geosci. Model Dev., 6, 643–685, https://doi.org/10.5194/gmd-6-643-2013, https://doi.org/10.5194/gmd-6-643-2013, 2013
R. Wania, J. R. Melton, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, G. Chen, A. V. Eliseev, P. O. Hopcroft, W. J. Riley, Z. M. Subin, H. Tian, P. M. van Bodegom, T. Kleinen, Z. C. Yu, J. S. Singarayer, S. Zürcher, D. P. Lettenmaier, D. J. Beerling, S. N. Denisov, C. Prigent, F. Papa, and J. O. Kaplan
Geosci. Model Dev., 6, 617–641, https://doi.org/10.5194/gmd-6-617-2013, https://doi.org/10.5194/gmd-6-617-2013, 2013
J. R. Melton, R. Wania, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, D. J. Beerling, G. Chen, A. V. Eliseev, S. N. Denisov, P. O. Hopcroft, D. P. Lettenmaier, W. J. Riley, J. S. Singarayer, Z. M. Subin, H. Tian, S. Zürcher, V. Brovkin, P. M. van Bodegom, T. Kleinen, Z. C. Yu, and J. O. Kaplan
Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-2013, https://doi.org/10.5194/bg-10-753-2013, 2013
Related subject area
Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Pleistocene
Subaqueous speleothems as archives of groundwater recharge on Australia’s southern arid margin
Spatio-temporal dynamics of speleothem growth and glaciation in the British Isles
Improving the age constraints on the archeological record in Scladina Cave (Belgium): new speleothem U-Th ages and paleoclimatological data
Climate changes during the Late Glacial in southern Europe: new insights based on pollen and brGDGTs of Lake Matese in Italy
Late Pleistocene glacial chronologies and paleoclimate in the northern Rocky Mountains
Cryogenic cave carbonates in the Dolomites (northern Italy): insights into Younger Dryas cooling and seasonal precipitation
Younger Dryas ice margin retreat in Greenland: new evidence from southwestern Greenland
Pleistocene glacial history of the New Zealand subantarctic islands
Palaeoclimate characteristics in interior Siberia of MIS 6–2: first insights from the Batagay permafrost mega-thaw slump in the Yana Highlands
Hydroclimate of the Last Glacial Maximum and deglaciation in southern Australia's arid margin interpreted from speleothem records (23–15 ka)
High-amplitude lake-level changes in tectonically active Lake Issyk-Kul (Kyrgyzstan) revealed by high-resolution seismic reflection data
Constant wind regimes during the Last Glacial Maximum and early Holocene: evidence from Little Llangothlin Lagoon, New England Tablelands, eastern Australia
Late Pleistocene–Holocene ground surface heat flux changes reconstructed from borehole temperature data (the Urals, Russia)
Sediment sequence and site formation processes at the Arbreda Cave, NE Iberian Peninsula, and implications on human occupation and climate change during the Last Glacial
Past freeze and thaw cycling in the margin of the El'gygytgyn crater deduced from a 141 m long permafrost record
Geochronological reconsideration of the eastern European key loess section at Stayky in Ukraine
Pre-LGM Northern Hemisphere ice sheet topography
Heinrich event 4 characterized by terrestrial proxies in southwestern Europe
Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans
Past climate changes and permafrost depth at the Lake El'gygytgyn site: implications from data and thermal modeling
Depositional dynamics in the El'gygytgyn Crater margin: implications for the 3.6 Ma old sediment archive
Coarsely crystalline cryogenic cave carbonate – a new archive to estimate the Last Glacial minimum permafrost depth in Central Europe
Hydrological variability in the Northern Levant: a 250 ka multi-proxy record from the Yammoûneh (Lebanon) sedimentary sequence
Calla N. Gould-Whaley, Russell N. Drysdale, Pauline C. Treble, Jan-Hendrik May, Stacey C. Priestley, John C. Hellstrom, and Clare Buswell
EGUsphere, https://doi.org/10.5194/egusphere-2024-1959, https://doi.org/10.5194/egusphere-2024-1959, 2024
Short summary
Short summary
Climate change is causing enhanced aridity across many regions of the globe, leading to increased reliance on groundwater resources. We need to understand how groundwater recharge behaves in arid regions over long timescales, unfortunately, arid landscapes tend to preserve very little evidence of their climatic past. We present evidence to suggest that carbonate formations that grow in groundwater can be used as archives of past groundwater recharge in Australia's arid zone.
Sina Panitz, Michael Rogerson, Jack Longman, Nick Scroxton, Tim J. Lawson, Tim C. Atkinson, Vasile Ersek, James Baldini, Lisa Baldini, Stuart Umbo, Mahjoor A. Lone, Gideon M. Henderson, and Sebastian F. M. Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-48, https://doi.org/10.5194/cp-2024-48, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Reconstructions of past glaciations tell us about how ice sheets grow and retreat. In this study, we use speleothems (cave deposits, e.g., stalagmites) in the British Isles to help constrain the extent of past glaciations both in time and space. Speleothems require liquid water to grow, and therefore, their presence indicates the absence of ice above the cave. By dating these speleothems we can improve existing reconstructions of past ice sheets.
Hubert Vonhof, Sophie Verheyden, Dominique Bonjean, Stéphane Pirson, Michael Weber, Denis Scholz, John Hellstrom, Hai Cheng, Xue Jia, Kevin Di Modica, Gregory Abrams, Marjan van Nunen, Joost Ruiter, Michèlle van der Does, Daniel Böhl, and Jeroen van der Lubbe
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-27, https://doi.org/10.5194/cp-2024-27, 2024
Revised manuscript accepted for CP
Short summary
Short summary
The sedimentary sequence in Scladina Cave (Belgium) is well-known for its rich archeological assemblages and its numerous faunal remains. Of particular interest is the presence of a nearly complete jaw bone of a Neandertal child. In this study, we present new Uranium-series ages of stalagmites from the archeological sequence which allow more precise dating of the archeological finds. One key result is that the Neandertal child may be slightly older than previously thought.
Mary Robles, Odile Peyron, Guillemette Ménot, Elisabetta Brugiapaglia, Sabine Wulf, Oona Appelt, Marion Blache, Boris Vannière, Lucas Dugerdil, Bruno Paura, Salomé Ansanay-Alex, Amy Cromartie, Laurent Charlet, Stephane Guédron, Jacques-Louis de Beaulieu, and Sébastien Joannin
Clim. Past, 19, 493–515, https://doi.org/10.5194/cp-19-493-2023, https://doi.org/10.5194/cp-19-493-2023, 2023
Short summary
Short summary
Quantitative climate reconstructions based on pollen and brGDGTs reveal, for the Late Glacial, a warm Bølling–Allerød and a marked cold Younger Dryas in Italy, showing no latitudinal differences in terms of temperatures across Italy. In terms of precipitation, no latitudinal differences are recorded during the Bølling–Allerød, whereas 40–42° N appears as a key junction point between wetter conditions in southern Italy and drier conditions in northern Italy during the Younger Dryas.
Brendon J. Quirk, Elizabeth Huss, Benjamin J. C. Laabs, Eric Leonard, Joseph Licciardi, Mitchell A. Plummer, and Marc W. Caffee
Clim. Past, 18, 293–312, https://doi.org/10.5194/cp-18-293-2022, https://doi.org/10.5194/cp-18-293-2022, 2022
Short summary
Short summary
Glaciers in the northern Rocky Mountains began retreating 17 000 to 18 000 years ago, after the end of the most recent global ice volume maxima. Climate in the region during this time was likely 10 to 8.5° colder than modern with less than or equal to present amounts of precipitation. Glaciers across the Rockies began retreating at different times but eventually exhibited similar patterns of retreat, suggesting a common mechanism influencing deglaciation.
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Short summary
This paper utilises a novel palaeoclimate archive from caves, cryogenic cave carbonates, which allow for precisely constraining permafrost thawing events in the past. Our study provides new insights into the climate of the Younger Dryas (12 800 to 11 700 years BP) in mid-Europe from the perspective of a high-elevation cave sensitive to permafrost development. We quantify seasonal temperature and precipitation changes by using a heat conduction model.
Svend Funder, Anita H. L. Sørensen, Nicolaj K. Larsen, Anders A. Bjørk, Jason P. Briner, Jesper Olsen, Anders Schomacker, Laura B. Levy, and Kurt H. Kjær
Clim. Past, 17, 587–601, https://doi.org/10.5194/cp-17-587-2021, https://doi.org/10.5194/cp-17-587-2021, 2021
Short summary
Short summary
Cosmogenic 10Be exposure dates from outlying islets along 300 km of the SW Greenland coast indicate that, although affected by inherited 10Be, the ice margin here was retreating during the Younger Dryas. These results seem to be corroborated by recent studies elsewhere in Greenland. The apparent mismatch between temperatures and ice margin behaviour may be explained by the advection of warm water to the ice margin on the shelf and by increased seasonality, both caused by a weakened AMOC.
Eleanor Rainsley, Chris S. M. Turney, Nicholas R. Golledge, Janet M. Wilmshurst, Matt S. McGlone, Alan G. Hogg, Bo Li, Zoë A. Thomas, Richard Roberts, Richard T. Jones, Jonathan G. Palmer, Verity Flett, Gregory de Wet, David K. Hutchinson, Mathew J. Lipson, Pavla Fenwick, Ben R. Hines, Umberto Binetti, and Christopher J. Fogwill
Clim. Past, 15, 423–448, https://doi.org/10.5194/cp-15-423-2019, https://doi.org/10.5194/cp-15-423-2019, 2019
Short summary
Short summary
The New Zealand subantarctic islands, in the Pacific sector of the Southern Ocean, provide valuable records of past environmental change. We find that the Auckland Islands hosted a small ice cap around 384 000 years ago, but that there was little glaciation during the Last Glacial Maximum, around 21 000 years ago, in contrast to mainland New Zealand. This shows that the climate here is susceptible to changes in regional factors such as sea-ice expanse and the position of ocean fronts.
Kseniia Ashastina, Lutz Schirrmeister, Margret Fuchs, and Frank Kienast
Clim. Past, 13, 795–818, https://doi.org/10.5194/cp-13-795-2017, https://doi.org/10.5194/cp-13-795-2017, 2017
Short summary
Short summary
We present the first detailed description and sedimentological analyses of an 80 m permafrost sequence exposed in a mega-thaw slump near Batagay in the Yana Highlands, Russia, and attempt to deduce its genesis. First dating results (14C, OSL) show that the sequence represents a continental climate record spanning from the Middle Pleistocene to the Holocene. We suggest that the characteristics of the studied deposits are a result of various seasonally controlled climatically induced processes.
Pauline C. Treble, Andy Baker, Linda K. Ayliffe, Timothy J. Cohen, John C. Hellstrom, Michael K. Gagan, Silvia Frisia, Russell N. Drysdale, Alan D. Griffiths, and Andrea Borsato
Clim. Past, 13, 667–687, https://doi.org/10.5194/cp-13-667-2017, https://doi.org/10.5194/cp-13-667-2017, 2017
Short summary
Short summary
Little is known about the climate of southern Australia during the Last Glacial Maximum and deglaciation owing to sparse records for this region. We present the first high-resolution data, derived from speleothems that grew 23–5 ka. It appears that recharge to the Flinders Ranges was higher than today, particularly during 18.9–15.8 ka, argued to be due to the enhanced availability of tropical moisture. An abrupt shift to aridity is recorded at 15.8 ka, associated with restored westerly airflow.
Andrea Catalina Gebhardt, Lieven Naudts, Lies De Mol, Jan Klerkx, Kanatbek Abdrakhmatov, Edward R. Sobel, and Marc De Batist
Clim. Past, 13, 73–92, https://doi.org/10.5194/cp-13-73-2017, https://doi.org/10.5194/cp-13-73-2017, 2017
Short summary
Short summary
Seismic profiles from the western and eastern deltas of Lake Issyk-Kul were used to identify lake-level changes of up to 400 m. Seven stratigraphic sequences were identified, each containing a series of delta lobes that were formed during former lake-level stillstands. Lake-level fluctuations point to significant changes in the strength and position of the Siberian High and the mid-latitude Westerlies. Their interplay is responsible for the amount of moisture that reaches this area.
James Shulmeister, Justine Kemp, Kathryn E. Fitzsimmons, and Allen Gontz
Clim. Past, 12, 1435–1444, https://doi.org/10.5194/cp-12-1435-2016, https://doi.org/10.5194/cp-12-1435-2016, 2016
Short summary
Short summary
This paper highlights that small dunes (lunettes) formed on the eastern side of a lake in the Australian sub-tropics at the height of the last ice age (about 21,000 years ago) and in the early part of the current interglacial (9–6,000 years ago). This means that it was fairly wet at these times and also that there were strong westerly winds to form the dunes. Today strong westerly winds occur in winter, and we infer that the same was also true at those times, suggesting no change in circulation.
D. Y. Demezhko and A. A. Gornostaeva
Clim. Past, 11, 647–652, https://doi.org/10.5194/cp-11-647-2015, https://doi.org/10.5194/cp-11-647-2015, 2015
M. Kehl, E. Eckmeier, S. O. Franz, F. Lehmkuhl, J. Soler, N. Soler, K. Reicherter, and G.-C. Weniger
Clim. Past, 10, 1673–1692, https://doi.org/10.5194/cp-10-1673-2014, https://doi.org/10.5194/cp-10-1673-2014, 2014
G. Schwamborn, H. Meyer, L. Schirrmeister, and G. Fedorov
Clim. Past, 10, 1109–1123, https://doi.org/10.5194/cp-10-1109-2014, https://doi.org/10.5194/cp-10-1109-2014, 2014
A. Kadereit and G. A. Wagner
Clim. Past, 10, 783–796, https://doi.org/10.5194/cp-10-783-2014, https://doi.org/10.5194/cp-10-783-2014, 2014
J. Kleman, J. Fastook, K. Ebert, J. Nilsson, and R. Caballero
Clim. Past, 9, 2365–2378, https://doi.org/10.5194/cp-9-2365-2013, https://doi.org/10.5194/cp-9-2365-2013, 2013
J. M. López-García, H.-A. Blain, M. Bennàsar, M. Sanz, and J. Daura
Clim. Past, 9, 1053–1064, https://doi.org/10.5194/cp-9-1053-2013, https://doi.org/10.5194/cp-9-1053-2013, 2013
M. Damaschke, R. Sulpizio, G. Zanchetta, B. Wagner, A. Böhm, N. Nowaczyk, J. Rethemeyer, and A. Hilgers
Clim. Past, 9, 267–287, https://doi.org/10.5194/cp-9-267-2013, https://doi.org/10.5194/cp-9-267-2013, 2013
D. Mottaghy, G. Schwamborn, and V. Rath
Clim. Past, 9, 119–133, https://doi.org/10.5194/cp-9-119-2013, https://doi.org/10.5194/cp-9-119-2013, 2013
G. Schwamborn, G. Fedorov, N. Ostanin, L. Schirrmeister, A. Andreev, and the El'gygytgyn Scientific Party
Clim. Past, 8, 1897–1911, https://doi.org/10.5194/cp-8-1897-2012, https://doi.org/10.5194/cp-8-1897-2012, 2012
K. Žák, D. K. Richter, M. Filippi, R. Živor, M. Deininger, A. Mangini, and D. Scholz
Clim. Past, 8, 1821–1837, https://doi.org/10.5194/cp-8-1821-2012, https://doi.org/10.5194/cp-8-1821-2012, 2012
F. Gasse, L. Vidal, A.-L. Develle, and E. Van Campo
Clim. Past, 7, 1261–1284, https://doi.org/10.5194/cp-7-1261-2011, https://doi.org/10.5194/cp-7-1261-2011, 2011
Cited articles
ACER project members, Goñi, M. F. S., Desprat, S., Daniau, A. L., Bassinot, F. C., Polanco-Martínez, J. M., Harrison, S. P., Allen, J. R. M., Scott Anderson, R., Behling, H., Bonnefille, R., Burjachs, F., Carrión, J. S., Cheddadi, R., Clark, J. S., Combourieu-Nebout, N., Mustaphi, C. J. C., Debusk, G. H., Dupont, L. M., Finch, J. M., Fletcher, W. J., Giardini, M., González, C., Gosling, W. D., Grigg, L. D., Grimm, E. C., Hayashi, R., Helmens, K., Heusser, L. E., Hill, T., Hope, G., Huntley, B., Igarashi, Y., Irino, T., Jacobs, B., Jiménez-Moreno, G., Kawai, S., Peter Kershaw, A., Kumon, F., Lawson, I. T., Ledru, M. P., Lézine, A. M., Mei Liew, P., Magri, D., Marchant, R., Margari, V., Mayle, F. E., Merna Mckenzie, G., Moss, P., Müller, S., Müller, U. C., Naughton, F., Newnham, R. M., Oba, T., Pérez-Obiol, R., Pini, R., Ravazzi, C., Roucoux, K. H., Rucina, S. M., Scott, L., Takahara, H., Tzedakis, P. C., Urrego, D. H., Van Geel, B., Guido Valencia, B., Vandergoes, M. J., Vincens, A., Whitlock, C. L., Willard, D. A., and Yamamoto, M.: The ACER pollen and charcoal database: A global resource to document vegetation and fire response to abrupt climate changes during the last glacial period, Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, 2017.
Allen, J. R. M., Hickler, T., Singarayer, J. S., Sykes, M. T., Valdes, P. J., and Huntley, B.: Last glacial vegetation of northern Eurasia, Quaternary Sci. Rev., 29, 2604–2618, https://doi.org/10.1016/j.quascirev.2010.05.031, 2010.
Allen, R., Siegert, M. J., and Payne, A. J.: Reconstructing glacier-based climates of LGM Europe and Russia – Part 2: A dataset of LGM precipitation/temperature relations derived from degree-day modelling of palaeo glaciers, Clim. Past, 4, 249–263, https://doi.org/10.5194/cp-4-249-2008, 2008a.
Allen, R., Siegert, M. J., and Payne, A. J.: Reconstructing glacier-based climates of LGM Europe and Russia – Part 3: Comparison with previous climate reconstructions, Clim. Past, 4, 265–280, https://doi.org/10.5194/cp-4-265-2008, 2008b.
Ampel, L., Bigler, C., Wohlfarth, B., Risberg, J., Lotter, A. F., and Veres, D.: Modest summer temperature variability during DO cycles in western Europe, Quaternary Sci. Rev., 29, 1322–1327, https://doi.org/10.1016/j.quascirev.2010.03.002, 2010.
Anderson, P. M., Barnosky, C. W., Bartlein, P. J., Behling, P. J., Brubaker, L., Cushing, E. J., Dodson, J., Dworetsky, B., Guetter, P. J., Harrison, S. P., Huntley, B., Kutzbach, J. E., Markgraf, V., Marvel, R., McGlone, M. S., Mix, A., Moar, N. T., Morley, J., Perrott, R. A., Peterson, G. M., Prell, W. L., Prentice, I. C., Ritchie, J. C., Roberts, N., Ruddiman, W. F., Salinger, M. J., Spaulding, W. G., Street-Perrott, F. A., Thompson, R. S., Wang, P. K., Webb, T., Winkler, M. G., and Wright, H. E.: Climatic changes of the last 18,000 years: Observations and model simulations, Science, 241, 1043–1052, https://doi.org/10.1126/science.241.4869.1043, 1988.
Arslanov, K. A., Dolukhanov, P. M., and Gei, N. A.: Climate, Black Sea levels and human settlements in Caucasus Littoral 50,000–9000 BP, Quatern. Int., 167–168, 121–127, https://doi.org/10.1016/j.quaint.2007.02.013, 2007.
Bañuls-Cardona, S., López-García, J. M., Blain, H. A., Lozano-Fernández, I., and Cuenca-Bescós, G.: The end of the Last Glacial Maximum in the Iberian Peninsula characterized by the small-mammal assemblages, J. Iber. Geol., 40, 19–27, https://doi.org/10.5209/rev_JIGE.2014.v40.n1.44085, 2014.
Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S., Gajewski, K., Guiot, J., Harrison-Prentice, T. I., Henderson, A., Peyron, O., Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S., Thompson, R. S., Viau, A. E., Williams, J., and Wu, H.: Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis, Clim. Dynam., 37, 775–802, https://doi.org/10.1007/s00382-010-0904-1, 2011.
Beaudouin, C., Jouet, G., Suc, J. P., Berné, S., and Escarguel, G.: Vegetation dynamics in southern France during the last 30 ky BP in the light of marine palynology, Quaternary Sci. Rev., 26, 1037–1054, https://doi.org/10.1016/j.quascirev.2006.12.009, 2007.
Beghin, P., Charbit, S., Kageyama, M., Combourieu-Nebout, N., Hatté, C., Dumas, C., and Peterschmitt, J. Y.: What drives LGM precipitation over the western Mediterranean? A study focused on the Iberian Peninsula and northern Morocco, Clim. Dynam., 46, 2611–2631, https://doi.org/10.1007/s00382-015-2720-0, 2016.
Bekaert, D. V., Blard, P.-H., Raoult, Y., Pik, R., Kipfer, R., Seltzer, A. M., Legrain, E., and Marty, B.: Last glacial maximum cooling of 9 °C in continental Europe from a 40 kyr-long noble gas paleothermometry record, Quaternary Sci. Rev., 310, 108123, https://doi.org/10.1016/j.quascirev.2023.108123, 2023.
Belis, C. A., Lami, A., Guilizzoni, P., Ariztegui, D., and Geiger, W.: The late Pleistocene ostracod record of the crater lake sediments from Lago di Albano (Central Italy): Changes in trophic status, water level and climate, J. Paleolimnol., 21, 151–169, https://doi.org/10.1023/A:1008095805748, 1999.
Benslama, M., Andrieu-Ponel, V., Guiter, F., Reille, M., de Beaulieu, J-L., Migliore, J., and Djamali, M.: Nouvelles contributions à l'histoire tardiglaciaire et holocène de la végétation en Algérie : analyses polliniques de deux profils sédimentaires du complexe humide d'El-Kala, C. R. Biol., 333, 744–754, https://doi.org/10.1016/j.crvi.2010.08.002, 2010.
Berto, C., López-García, J. M., and Luzi, E.: Changes in the Late Pleistocene small-mammal distribution in the Italian Peninsula, Quaternary Sci. Rev., 225, 106019, https://doi.org/10.1016/j.quascirev.2019.106019, 2019.
Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., Andreev, A. A., Bartlein, P. J., Christiansen, T. R., Cramer, W., Kaplan, J. O., Lozhkin, A. V., Matveyeva, N. V., Murray, D. F., McGuire, A. D., Razzhivin, V. Y., Ritchie, J. C., Smith, B., Walker, D. A., Gajewski, K., Wolf, V., Holmqvist, B. H., Igarashi, Y., Kremenetskii, K., Paus, A., Pisaric, M. F. J., and Volkova, V. S.: Climate change and arctic ecosystems: 1. Vegetation changes north of 55° N between the last glacial maximum, mid-Holocene, and present, J. Geophys. Res., 108, 8170, https://doi.org/10.1029/2002JD002558, 2013.
Binney, H., Edwards, M., Macias-Fauria, M., Lozhkin, A., Anderson, P., Kaplan, J. O., Andreev, A., Bezrukova, E., Blyakharchuk, T., Jankovska, V., Khazina, I., Krivonogov, S., Kremenetski, K., Nield, J., Novenko, E., Ryabogina, N., Solovieva, N., Willis, K., and Zernitskaya, V.: Vegetation of Eurasia from the last glacial maximum to present: Key biogeographic patterns, Quaternary Sci. Rev., 157, 80–97, https://doi.org/10.1016/j.quascirev.2016.11.022, 2017.
Birks, H. J. B. and Willis, K. J.: Alpines, trees, and refugia in Europe, Plant Ecol. Divers., 1, 147–160, https://doi.org/10.1080/17550870802349146, 2008.
Bonatti, E. Pollen sequence in the lake sediments. In: Hutchinson, G. E. (ed.), Lanula: an Account of the History and Development of the Lago di Monterosi, Latium, Italy, T. Am. Philos. Soc., 60, 26–31, https://doi.org/10.2307/1005996, 1970.
Bottema, S.: Pollen analytical investigations in Thessaly (Greece), Palaeohistoria, 21, 19–40, 1979.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models using palaeoclimatic data, Nat. Clim. Change, 2, 417–424, https://doi.org/10.1038/nclimate1456, 2012.
Brewer, S., Guiot, J., Sánchez-Goñi, M. F., and Klotz, S.: The climate in Europe during the Eemian: a multi-method approach using pollen data, Quaternary Sci. Rev., 27, 2303–2315, https://doi.org/10.1016/j.quascirev.2008.08.029, 2008.
Brewer, S., Giesecke, T., Davis, B. A. S., Finsinger, W., Wolters, S., Binney, H., de Beaulieu, J. L., Fyfe, R., Gil-Romera, G., Kühl, N., Kuneš, P., Leydet, M., and Bradshaw, R. H.: Mapping Lateglacial and Holocene European pollen data: The maps, J. Maps, 13, 921–928, https://doi.org/10.1080/17445647.2016.1197613, 2017.
Camuera, J., Jiménez-Moreno, G., Ramos-Román, M. J., García-Alix, A., Toney, J. L., Anderson, R. S., Jiménez-Espejo, F., Bright, J., Webster, C., Yanes, Y., and Carrión, J. S.: Vegetation and climate changes during the last two glacial-interglacial cycles in the western Mediterranean: A new long pollen record from Padul (southern Iberian Peninsula), Quaternary Sci. Rev., 205, 86–105, https://doi.org/10.1016/j.quascirev.2018.12.013, 2019.
Cao, X., Tian, F., Dallmeyer, A., and Herzschuh, U.: Northern Hemisphere biome changes (>30° N) since 40 cal ka BP and their driving factors inferred from model-data comparisons, Quaternary Sci. Rev., 220, 291–309, https://doi.org/10.1016/j.quascirev.2019.07.034, 2019.
Carrión, J. S.: Late quaternary pollen sequence from Carihuela Cave, southern Spain, Rev. Palaeobot. Palynol., 71, 37–77, https://doi.org/10.1016/0034-6667(92)90157-C, 1992.
Carrión, J. S.: Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe, Quaternary Sci. Rev., 21, 2047–2066, https://doi.org/10.1016/S0277-3791(02)00010-0, 2002.
Carrión, J. S. and Dupré-Olivier, M.: Late Quaternary vegetational history of Navarrés, eastern Spain. A two core approach, New Phytol., 134, 177–191, https://doi.org/10.1111/j.1469-8137.1996.tb01157.x, 1996.
Carrión, J. S., Finlayson, C., Fernández, S., Finlayson, G., Allué, E., López-Sáez, J. A., López-García, P., Gil-Romera, G., Bailey, G., and González-Sampériz, P.: A coastal reservoir of biodiversity for Upper Pleistocene human populations: palaeoecological investigations in Gorham's Cave (Gibraltar) in the context of the Iberian Peninsula, Quaternary Sci. Rev., 27, 2118–2135, https://doi.org/10.1016/j.quascirev.2008.08.016, 2008.
Cheddadi, R., Yu, G., Guiot, J., Harrison, S. P., and Colin Prentice, I.: The climate of Europe 6000 years ago, Clim. Dynam., 13, 1–9, 1996.
Chevalier, M., Davis, B. A. S., Heiri, O., Seppä, H., Chase, B. M., Gajewski, K., Lacourse, T., Telford, R. J., Finsinger, W., Guiot, J., Kühl, N., Maezumi, S. Y., Tipton, J. R., Carter, V. A., Brussel, T., Phelps, L. N., Dawson, A., Zanon, M., Vallé, F., Nolan, C., Mauri, A., de Vernal, A., Izumi, K., Holmström, L., Marsicek, J., Goring, S., Sommer, P. S., Chaput, M., and Kupriyanov, D.: Pollen-based climate reconstruction techniques for late Quaternary studies, Earth-Sci. Rev., 210, 103384, https://doi.org/10.1016/j.earscirev.2020.103384, 2020.
Cleator, S. F., Harrison, S. P., Nichols, N. K., Colin Prentice, I., and Roulstone, I.: A new multivariable benchmark for Last Glacial Maximum climate simulations, Clim. Past, 16, 699–712, https://doi.org/10.5194/cp-16-699-2020, 2020.
COHMAP: Climatic changes of the last 18,000 years: observations and model simulations, Science, 241, 1043–1052, 1988.
Collins, P. M., Davis, B. A. S., and Kaplan, J. O.: The mid-Holocene vegetation of the Mediterranean region and southern Europe, and comparison with the present day, J. Biogeogr., 39, 1848–1861, https://doi.org/10.1111/j.1365-2699.2012.02738.x, 2012.
Combourieu Nebout, N., Peyron, O., Dormoy, I., Desprat, S., Beaudouin, C., Kotthoff, U., and Marret, F.: Rapid climatic variability in the west Mediterranean during the last 25 000 years from high resolution pollen data, Clim. Past, 5, 503–521, https://doi.org/10.5194/cp-5-503-2009, 2009.
Connor, S. E., Ross, S. A., Sobotkova, A., Herries, A. I. R., Mooney, S. D., Longford, C., and Iliev, I.: Environmental conditions in the SE Balkans since the Last Glacial Maximum and their influence on the spread of agriculture into Europe, Quaternary Sci. Rev., 68, 200–215, https://doi.org/10.1016/j.quascirev.2013.02.011, 2013.
Cortes-Sanchez, M., Morales-Muniz, A., Simon-Vallejo, M. D., Lozano-Francisco, M. C., and Vera-Pelaez, J. L.: Earliest Known Use of Marine Resources by Neanderthals, PLoS ONE, 6, e24026, https://doi.org/10.1371/journal.pone.0024026, 2011.
Cowling, S. A. and Sykes, M. T.: Physiological significance of low atmospheric CO2 for plant-climate interactions, Quatern. Res., 52, 237–242, https://doi.org/10.1006/qres.1999.2065, 1999.
Damblon, F.: L'enregistrement palynologique de la sequence pléistocène et holocène de la grotte Walou, in: La grotte Walou à Trooz (Belgique), edited by: Draily, C., Pirson, S., and Toussaint, M., Service public de Wallonie (Etudes et Documents, Archéologie, 21), https://www.academia.edu/23006376/Draily_C_Toussaint_M_and_Pirson_S_Dir_2011_La_grotte_Walou_ %E0_Trooz_Belgique_Fouilles_de_1996_ %E0_2004_Volume_2_Les_sciences_de_la_vie_et_les_datations_Monographie_Etudes_et_documents_Arch%E9ologie_21_Namur_Service_public_de_Wallonie_241_p (last access: 25 July 2024), 84–129, 2011.
Daniau, A.-L., Desprat, S., Aleman, J. C., Bremond, L., Davis, B., Fletcher, W., Marlon, J. R., Marquer, L., Montade, V., Morales-Molino, C., Naughton, F., Rius, D., and Urrego, D. H.: Terrestrial plant microfossils in palaeoenvironmental studies, pollen, microcharcoal and phytolith. Towards a comprehensive understanding of vegetation, fire and climate changes over the past one million years, Rev. Micropaleontol., 63, https://doi.org/10.1016/j.revmic.2019.02.001, 2019.
Davis, B. A. S. and Stevenson, A. C.: The 8.2 ka event and Early-Mid Holocene forests, fires and flooding in the Central Ebro Desert, NE Spain, Quaternary Sci. Rev., 26, 1–35, https://doi.org/10.1016/j.quascirev.2007.04.007, 2007.
Davis, B. A. S., Brewer, S., Stevenson, A. C., Guiot, J., and Data Contributors: The temperature of Europe during the Holocene reconstructed from pollen data, Quaternary Sci. Rev., 22, 1701–1706, https://doi.org/10.1016/S0277-3791(03)00173-2, 2003.
Davis, M. B.: On the theory of pollen analysis, Am. J. Sc., 26, 897–912, 1963.
de Beaulieu, J.-L. and Reille, M.: Pollen analysis of a long upper Pleistocene continental sequence in a Velay maar (Massif Central, France), Palaeogeogr. Palaeoclimatol. Palaeoecol., 80, 35–48, 1990.
Demay, L., Julien, M. A., Anghelinu, M., Shydlovskyi, P. S., Koulakovska, L. V., Péan, S., Stupak, D. V., Vasyliev, P. M., Obáda, T., Wojtal, P., and Belyaeva, V. I.: Study of human behaviors during the Late Pleniglacial in the East European Plain through their relation to the animal world, Quatern. Int., 581–582, 258–289, https://doi.org/10.1016/j.quaint.2020.10.047, 2021.
Douda, J., Doudová, J., Drašnarová, A., Kuneš, P., Hadincová, V., Krak, K., Zákravský, P., and Mandák, B.: Migration patterns of subgenus Alnus in Europe since the last glacial maximum: A systematic review, PLoS One, 9, e88709, https://doi.org/10.1371/journal.pone.0088709, 2014.
Duprat-Oualid, F., Rius, D., Bégeot, C., Magny, M., Millet, L., Wulf, S., and Appelt, O.: Vegetation response to abrupt climate changes in Western Europe from 45 to 14.7 k cal a BP: the Bergsee lacustrine record (Black Forest, Germany), J. Quaternary Sci., 32, 1008–1021, https://doi.org/10.1002/jqs.2972, 2017.
Dupre Ollivier, M.: Palinologiìa y paleoambiente – nuevos datos españoles referencias, Universidad de Valencia, 160 pp., ISBN 84-7795-000-8, 1988.
Edwards, M. E., Anderson, P. M., Brubaker, L. B., Ager, T., Andreev, A. A., Bigelow, N. H., Cwynar, L. C., Eisner, W. R., Harrison, S. P., Hu, F.-S., Jolly, D., Lozhkin, A. V., MacDonald, G. M., Mock, C. J., Ritchie, J. C., Sher, A. V., Spear, R. W., Williams, J., and Yu, G.: Pollen-based biomes for Beringia 18,000, 6000 and 0 14C yr bp, J. Biogeogr., 27, 521–554, https://doi.org/10.1046/j.1365-2699.2000.00426.x, 2000.
Ehlers, J., Gibbard, P. L., and Hughes, P. D. (Eds.): Quaternary Glaciations – Extent and Chronology A Closer Look, Elsevier, ISBN 9780444534477, 2011.
El Amrani, M., Macaire, J. J., Zarki, H., Bréhéret, J. G., and Fontugne, M.: Contrasted morphosedimentary activity of the lower Kert River (northeastern Morocco) during the Late Pleistocene and the Holocene. Possible impact of bioclimatic variations and human action, Comptes Rendus – Geosci., 340, 533–542, https://doi.org/10.1016/j.crte.2008.05.004, 2008.
Elenga, H., Peyron, O., Bonnefille, R., Jolly, D., Cheddadi, R., Guiot, J., Andrieu, V., Bottema, S., Buchet, G., De Beaulieu, J. L., Hamilton, A. C., Maley, J., Marchant, R., Perez-Obiol, R., Reille, M., Riollet, G., Scott, L., Straka, H., Taylor, D., Van Campo, E., Vincens, A., Laarif, F., and Jonson, H.: Pollen-based biome reconstruction for southern Europe and Africa 18,000 yr BP, J. Biogeogr., 27, 621–634, https://doi.org/10.1046/j.1365-2699.2000.00430.x, 2000.
Ferguson, J. E., Henderson, G. M., Fa, D. A., Finlayson, J. C., and Charnley, N. R.: Increased seasonality in the Western Mediterranean during the last glacial from limpet shell geochemistry, Earth Planet. Sc. Lett., 308, 325–333, https://doi.org/10.1016/j.epsl.2011.05.054, 2011.
Feurdean, A., Bhagwat, S. A., Willis, K. J., Birks, H. J. B., Lischke, H., and Hickler, T.: Tree migration-rates: narrowing the gap between inferred post-glacial rates and projected rates, PLoS ONE, 8, e71797, https://doi.org/10.1371/journal.pone.0071797, 2013.
Feurdean, A., Perşoiu, A., Tanţău, I., Stevens, T., Magyari, E. K., Onac, B. P., Marković, S., Andrič, M., Connor, S., Fărcaş, S., Gałka, M., Gaudeny, T., Hoek, W., Kolaczek, P., Kuneš, P., Lamentowicz, M., Marinova, E., Michczyńska, D. J., Perşoiu, I., Płóciennik, M., Słowiński, M., Stancikaite, M., Sumegi, P., Svensson, A., Tămaş, T., Timar, A., Tonkov, S., Toth, M., Veski, S., Willis, K. J., and Zernitskaya, V.: Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka, Quaternary Sci. Rev., 106, 206–224, https://doi.org/10.1016/j.quascirev.2014.06.003, 2014.
Fletcher, W. J. and Sanchez Goñi, M. F.: Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48 000 yr, Quaternary Res., 70, 451–464, https://doi.org/10.1016/j.yqres.2008.07.002, 2008.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315, https://doi.org/10.1002/joc.5086, 2017.
Fletcher, W. J., Goni, M. F. S., Peyron, O., and Dormoy, I.: Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record, Clim. Past, 6, 245–264, https://doi.org/10.5194/cp-6-245-2010, 2010.
Follieri, M., Magri, D., and Sadori, L.: Pollen stratigraphical synthesis from Valle di Castiglione (Roma), Quaternary Int., 3–4, 81–84, https://doi.org/10.1016/1040-6182(89)90076-1, 1989.
Gaillard, M. J., Sugita, S., Mazier, F., Trondman, A. K., Broström, A., Hickler, T., Kaplan, J. O., Kjellström, E., Kokfelt, U., Kuneš, P., Lemmen, C., Miller, P., Olofsson, J., Poska, A., Rundgren, M., Smith, B., Strandberg, G., Fyfe, R., Nielsen, A. B., Alenius, T., Balakauskas, L., Barnekow, L., Birks, H. J. B., Bjune, A., Björkman, L., Giesecke, T., Hjelle, K., Kalnina, L., Kangur, M., Van Der Knaap, W. O., Koff, T., Lageras, P., Latałowa, M., Leydet, M., Lechterbeck, J., Lindbladh, M., Odgaard, B., Peglar, S., Segerström, U., Von Stedingk, H., and Seppä, H.: Holocene land-cover reconstructions for studies on land cover-climate feedbacks, Clim. Past, 6, 483–499, https://doi.org/10.5194/cp-6-483-2010, 2010.
García-Amorena, I., Gómez Manzaneque, F., Rubiales, J. M., Granja, H. M., Soares de Carvalho, G., and Morla, C.: The Late Quaternary coastal forests of western Iberia: A study of their macroremains, Palaeogeogr. Palaeoclim. Palaeoecol., 254, 448–461, https://doi.org/10.1016/j.palaeo.2007.07.003, 2007.
Geiger, R.: The climate near the ground, Blue Hill Met. Observ., Harvard University, Cambridge, https://archive.org/details/climatenearthegr032657mbp/page/n3/mode/2up (last access: 25 July 2024), 1960.
Genov, I.: The Black Sea level from the Last Glacial Maximum to the present time, Geol. Balc., 45, 3–19, 2016.
Giardini, M.: Late Quaternary vegetation history at Stracciacappa (Rome, central Italy), Veg. Hist. Archaeobot., 16, 301–316, https://doi.org/10.1007/s00334-006-0037-y, 2007.
Giesecke, T.: Did thermophilous trees spread into central Europe during the Late Glacial?, New Phytol., 212, 15–18, https://doi.org/10.1111/nph.14149, 2016.
Giesecke, T., Davis, B., Brewer, S., Finsinger, W., Wolters, S., Blaauw, M., de Beaulieu, J.-L., Binney, H., Fyfe, R. M., Gaillard, M.-J., Gil-Romera, G., van der Knaap, W. O., Kuneš, P., Kühl, N., van Leeuwen, J. F. N., Leydet, M., Lotter, A. F., Ortu, E., Semmler, M., and Bradshaw, R. H. W.: Towards mapping the late Quaternary vegetation change of Europe, Veg. Hist. Archaeobot., 23, 75–86, https://doi.org/10.1007/s00334-012-0390-y, 2014.
Giraudi, C.: Climate evolution and forcing during the last 40 ka from the oscillations in Apennine glaciers and high mountain lakes, Italy, J. Quaternary Sci., 32, 1085–1098, https://doi.org/10.1002/jqs.2985, 2017.
Grichuk, V. P.: Main types of vegetation (ecosystems) for the maximum cooling of the last glaciation, in: Atlas of Palaeoclimates and Palaeoenvironments of the Northern Hemisphere, edited by: Frenzel, B., Pecsi, B., and Velichko, A. A., NQUA/Hungarian Academy of Sciences, Budapest, 123–124, https://doi.org/10.2307/1551555, 1992.
Guido, M. A., Molinari, C., Moneta, V., Branch, N., Black, S., Simmonds, M., Stastney, P., and Montanari, C.: Climate and vegetation dynamics of the Northern Apennines (Italy) during the Late Pleistocene and Holocene, Quaternary Sci. Rev., 231, 106206, https://doi.org/10.1016/j.quascirev.2020.106206, 2020.
Guiot, J., Torre, F., Jolly, D., Peyron, O., Boreux, J. J., and Cheddadi, R.: Inverse vegetation modeling by Monte Carlo sampling to reconstruct palaeoclimates under changed precipitation seasonality and CO2 conditions: application to glacial climate in Mediterranean region, Ecol. Model., 127, 119–140, https://doi.org/10.1016/S0304-3800(99)00219-7, 2000.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R. G.: High-resolution global maps of 21st-century forest cover change, Science, 342, 850–853, https://doi.org/10.1126/science.1244693, 2013.
Harrison, S. P., Yu, G. E., and Tarasov, P. E.: Late Quaternary Lake-Level Record from Northern Eurasia, Quatern. Res., 45, 138–159, https://doi.org/10.1006/qres.1996.0016, 1996.
Harrison, S. P., Bartlein, P. J., Brewer, S., Prentice, I. C., Boyd, M., Hessler, I., Holmgren, K., Izumi, K., and Willis, K.: Climate model benchmarking with glacial and mid-Holocene climates, Clim. Dynam., 43, 671–688, https://doi.org/10.1007/s00382-013-1922-6, 2014.
Harrison, S. P., Bartlein, P. J., Izumi, K., Li, G., Annan, J., Hargreaves, J., Braconnot, P., and Kageyama, M.: Evaluation of CMIP5 palaeo-simulations to improve climate projections, Nat. Clim. Change, 5, 735–743, https://doi.org/10.1038/nclimate2649, 2015.
Heiri, O., Koinig, K. A., Spötl, C., Barrett, S., Brauer, A., Drescher-Schneider, R., Gaar, D., Ivy-Ochs, S., Kerschner, H., Luetscher, M., Moran, A., Nicolussi, K., Preusser, F., Schmidt, R., Schoeneich, P., Schwörer, C., Sprafke, T., Terhorst, B., and Tinner, W.: Palaeoclimate records 60-8 ka in the Austrian and Swiss Alps and their forelands, Quaternary Sci. Rev., 106, 186–205, https://doi.org/10.1016/j.quascirev.2014.05.021, 2014.
Heyman, B. M., Heyman, J., Fickert, T., Harbor, J. M., and Forest, B.: Paleo-climate of the central European uplands during the last glacial maximum based on glacier mass-balance modeling Bavarian Forest Republic, Quatern. Res., 79, 49–54, https://doi.org/10.1016/j.yqres.2012.09.005, 2013.
Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., and Svendsen, J. I.: The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1, Boreas, 45, 1–45, https://doi.org/10.1111/bor.12142, 2016.
Hughes, P. D. and Gibbard, P. L.: A stratigraphical basis for the Last Glacial Maximum (LGM), Quatern. Int., 383, 174–185, https://doi.org/10.1016/j.quaint.2014.06.006, 2015.
Hughes, P. D., Woodward, J. C., and Gibbard, P. L.: Late Pleistocene glaciers and climate in the Mediterranean, Global Planet. Change, 50, 83–98, https://doi.org/10.1016/j.gloplacha.2005.07.005, 2006.
Huntley, B.: Dissimilarity mapping between fossil and contemporary pollen spectra in Europe for the past 13,000 years, Quatern. Res., 33, 360–376, https://doi.org/10.1016/0033-5894(90)90062-P, 1990.
Huntley, B. and Allen, J.: Glacial environments III: Palaeo-vegetation patterns in late glacial Europe, in: Neanderthals and modern humans in the European landscape during the last glaciation: Archaeological results of the Stage 3 Project, edited by: Andel, T. H. V. and Davies, W., 79–102, McDonald Institute for Archaeological Research, ISBN 1-902937-21-X, 2003.
Jalut, G., Andrieu, V., Delibrias, G., Fontaugne, M., and Pages, P.: Palaeoenvironment of the valley of Ossau (Western French Pyrenees) during the last 27 000 year, Pollen Spores, 30, 357–393, 1988.
Jalut, G., Marti, J. M., Fontugne, M., Delibrias, G., Vilaplana, J. M., and Julia, R.: Glacial to interglacial vegetation changes in the northern and southern Pyrénées: Deglaciation, vegetation cover and chronology, Quaternary Sci. Rev., 11, 449–480, https://doi.org/10.1016/0277-3791(92)90027-6, 1992.
Jankovská, V.: Vegetation Cover in West Carpathians during the Last Glacial Period Analogy of Present Day Siberian Forest-Tundra and Taiga, in: Proceedings of the XII All-Russian Palynological Conference, Saint-Petersburg, Russia, 29 September–4 October, p. 316, ISBN 978-5-88953-122-1, 2008.
Janská, V., Jiménez-Alfaro, B., Chytrý, M., Divíšek, J., Anenkhonov, O., Korolyuk, A., Lashchinskyi, N., and Culek, M.: Palaeodistribution modelling of European vegetation types at the Last Glacial Maximum using modern analogues from Siberia: Prospects and limitations, Quaternay Sci. Rev., 159, 103–115, https://doi.org/10.1016/j.quascirev.2017.01.011, 2017.
Jost, A., Lunt, D., Abe-Ouchi, A., Abe-Ouchi, A., Peyron, O., Valdes, P. J., and Ramstein, G.: High-resolution simulations of the last glacial maximum climate over Europe: A solution to discrepancies with continental palaeoclimatic reconstructions?, Clim. Dynam., 24, 577–590, https://doi.org/10.1007/s00382-005-0009-4, 2005.
Juggins, S.: Quantitative reconstructions in palaeolimnology: new paradigm or sick science?, Quaternay Sci. Rev., 64, 20–32, https://doi.org/10.1016/j.quascirev.2012.12.014, 2013.
Juggins, S.: Rioja: Analysis of Quaternary Science Data, https://cran.r-project.org/package=rioja (last access: 25 July 2024), 2020.
Juggins, S. and Birks, H. J. B.: Quantitative Environmental Reconstructions from Biological Data, in: Developments in Paleoenvironmental Research 5, edited by: Birks, H. J. B., Springer Science & Business Media B.V., 431–494, https://doi.org/10.1007/978-94-007-2745-8_14, 2012.
Juřičková, L., Horáčková, J., and Ložek, V.: Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils, Quatern. Res., 82, 222–228, https://doi.org/10.1016/j.yqres.2014.01.015, 2014.
Kageyama, M., Laîné, A., Abe-Ouchi, A., Braconnot, P., Cortijo, E., Crucifix, M., de Vernal, A., Guiot, J., Hewitt, C. D., Kitoh, A., Kucera, M., Marti, O., Ohgaito, R., Otto-Bliesner, B., Peltier, W. R., Rosell-Melé, A., Vettoretti, G., Weber, S. L., and Yu, Y.: Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea-surface temperatures and pollen-based reconstructions, Quaternary Sci. Rev., 25, 2082–2102, https://doi.org/10.1016/j.quascirev.2006.02.010, 2006.
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J.: The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations, Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, 2021.
Kaltenrieder, P., Belis, C. A., Hofstetter, S., Ammann, B., Ravazzi, C., and Tinner, W.: Environmental and climatic conditions at a potential Glacial refugial site of tree species near the Southern Alpine glaciers. New insights from multiproxy sedimentary studies at Lago della Costa (Euganean Hills, Northeastern Italy), Quaternay Sci. Rev., 28, 2647–2662, https://doi.org/10.1016/j.quascirev.2009.05.025, 2009.
Kaplan, J. O., Pfeiffer, M., Kolen, J. C. A., and Davis, B. A. S.: Large scale anthropogenic reduction of forest cover in last glacial maximum Europe, PLoS One, 11, e0166726, https://doi.org/10.1371/journal.pone.0166726, 2016.
Kehrwald, N. M., McCoy, W. D., Thibeault, J., Burns, S. J., and Oches, E. A.: Paleoclimatic implications of the spatial patterns of modern and LGM European land-snail shell δ18O, Quatern. Res., 74, 166–176, https://doi.org/10.1016/j.yqres.2010.03.001, 2010.
Kelly, A., Charman, D. J., and Newnham, R. M.: A last glacial maximum pollen record from bodmin moor showing a possible cryptic Northern refugium in Southwest England, J. Quaternary Sci., 25, 296–308, https://doi.org/10.1002/jqs.1309, 2010.
Kolodny, Y., Stein, M., and Machlus, M.: Sea-rain-lake relation in the Last Glacial East Mediterranean revealed by δ18O-δ13C in Lake Lisan aragonites, Geochim. Cosmochim. Ac., 69, 4045–4060, https://doi.org/10.1016/j.gca.2004.11.022, 2005.
Kovács, J., Moravcová, M., Újvári, G., and Pintér, A. G.: Reconstructing the paleoenvironment of East Central Europe in the Late Pleistocene using the oxygen and carbon isotopic signal of tooth in large mammal remains, Quatern. Int., 276–277, 145–154, https://doi.org/10.1016/j.quaint.2012.04.009, 2012.
Krebs, P., Pezzatti, G. B., Beffa, G., Tinner, W., and Conedera, M.: Revising the sweet chestnut (Castanea sativa Mill.) refugia history of the last glacial period with extended pollen and macrofossil evidence, Quaternay Sci. Rev., 206, 111–128, https://doi.org/10.1016/j.quascirev.2019.01.002, 2019.
Kuneš, P., Pelánková, B., Chytrý, M., Jankovská, V., Pokorný, P., and Petr, L.: Interpretation of the last-glacial vegetation of eastern-central Europe using modern analogues from southern Siberia, J. Biogeogr., 35, 2223–2236, https://doi.org/10.1111/j.1365-2699.2008.01974.x, 2008.
Küster, H.: Postglaziale Vegetationsgeschichte Südbayerns, Geobotanische Studien zur Prähistorischen Landschaftskunde, Akademie Verlag, Berlin, ISBN 978-3-05-501592-2, 1995.
Lacey, J. H., Leng, M. J., Höbig, N., Reed, J. M., Valero-Garcés, B., and Reicherter, K.: Western Mediterranean climate and environment since Marine Isotope Stage 3: a 50,000-year record from Lake Banyoles, Spain, J. Paleolimnol., 55, 113–128, https://doi.org/10.1007/s10933-015-9868-9, 2016.
Latombe, G., Burke, A., Vrac, M., Levavasseur, G., Dumas, C., Kageyama, M., and Ramstein, G.: Comparison of spatial downscaling methods of general circulation model results to study climate variability during the Last Glacial Maximum, Geosci. Model Dev., 11, 2563–2579, https://doi.org/10.5194/gmd-11-2563-2018, 2018.
Lefort, J. P., Monnier, J. L., and Danukalova, G.: Transport of Late Pleistocene loess particles by katabatic winds during the lowstands of the English Channel, J. Geol. Soc., 176, 1169–1181, https://doi.org/10.1144/jgs2019-07, 2019.
Lehmkuhl, F., Nett, J. J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P.,Wacha, L., Wolf, D., Zerboni, A., Hošek, J., Marković, S. B., Obreht, I., Sümegi, P., Veres, D., Zeeden, C., Boemke, B., Schaubert, V., Viehweger, J., and Hambach, U.: Loess landscapes of Europe e mapping, geomorphology, and zonal differentiation, Earth-Sci. Rev., 215, 103496, https://doi.org/10.1016/j.earscirev.2020.103496, 2021.
Leroy, S. A. G. and Arpe, K.: Glacial refugia for summer-green trees in Europe and south-west Asia as proposed by ECHAM3 time-slice atmospheric model simulations, J. Biogeogr., 34, 2115–2128, https://doi.org/10.1111/j.1365-2699.2007.01754.x, 2007.
Lev, L., Stein, M., Ito, E., Fruchter, N., Ben-Avraham, Z., and Almogi-Labin, A.: Sedimentary, geochemical and hydrological history of Lake Kinneret during the past 28,000 years, Quaternary Sci. Rev., 209, 114–128, https://doi.org/10.1016/j.quascirev.2019.02.015, 2019.
Lister, A. M. and Stuart, A. J.: The impact of climate change on large mammal distribution and extinction: Evidence from the last glacial/interglacial transition, Comptes Rendus – Geosci., 340, 615–620, https://doi.org/10.1016/j.crte.2008.04.001, 2008.
López-García, J. M. and Blain, H. A.: Quaternary small vertebrates: State of the art and new insights, Quaternary Sci. Rev., 233, 106242, https://doi.org/10.1016/j.quascirev.2020.106242, 2020.
Ludwig, P., Pinto, J. G., Raible, C. C., and Shao, Y.: Impacts of surface boundary conditions on regional climate model simulations of European climate during the Last Glacial Maximum, Geophys. Res. Lett., 44, 5086–5095, https://doi.org/10.1002/2017GL073622, 2017.
Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards, R. L., Frisia, S., Hof, F., and Müller, W.: North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems, Nat. Commun., 6, 27–32, https://doi.org/10.1038/ncomms7344, 2015.
Magri, D.: Persistence of tree taxa in Europe and Quaternary climate changes, Quatern. Int., 219, 145–151, https://doi.org/10.1016/j.quaint.2009.10.032, 2010.
Magri, D. and Parra, I.: Late Quaternary western Mediterranean pollen records and African winds, Earth Planet. Sc. Lett., 200, 401–408, https://doi.org/10.1016/S0012-821X(02)00619-2, 2002.
Magri, D. and Sadori, L.: Late Pleistocene and Holocene pollen stratigraphy at Lago di Vico, central Italy, Veg. Hist. Archaeobot., 8, 247–260, https://doi.org/10.1007/BF01291777, 1999.
Magyari, E., Jakab, G., Rudner, E., and Sümegi, P.: Palynological and plant macrofossil data on Late Pleistocene short-term climatic oscillations in NE-Hungary, Acta Palaeobot. Suppl., 2, 491–502, 1999.
Magyari, E. K., Kuneš, P., Jakab, G., Sümegi, P., Pelánková, B., Schäbitz, F., Braun, M., and Chytrý, M.: Late Pleniglacial vegetation in eastern-central Europe: Are there modern analogues in Siberia?, Quaternary Sci. Rev., 95, 60–79, https://doi.org/10.1016/j.quascirev.2014.04.020, 2014a.
Magyari, E. K., Veres, D., Wennrich, V., Wagner, B., Braun, M., Jakab, G., Karátson, D., Pál, Z., Ferenczy, G., St-Onge, G., Rethemeyer, J., Francois, J. P., von Reumont, F., and Schäbitz, F.: Vegetation and environmental responses to climate forcing during the Last Glacial Maximum and deglaciation in the East Carpathians: Attenuated response to maximum cooling and increased biomass burning, Quaternary Sci. Rev., 106, 278–298, https://doi.org/10.1016/j.quascirev.2014.09.015, 2014b.
Magyari, E. K., Pál, I., Vincze, I., Veres, D., Jakab, G., Braun, M., Szalai, Z., Szabó, Z., and Korponai, J.: Warm Younger Dryas summers and early late glacial spread of temperate deciduous trees in the Pannonian Basin during the last glacial termination (20–9 kyr cal BP), Quat. Sci. Rev., 225, 105980, https://doi.org/10.1016/j.quascirev.2019.105980, 2019.
Margari, V., Gibbard, P. L., Bryant, C. L., and Tzedakis, P. C.: Character of vegetational and environmental changes in southern Europe during the last glacial period; evidence from Lesvos Island, Greece, Quaternary Sci. Rev., 28, 1317–1339, https://doi.org/10.1016/j.quascirev.2009.01.008, 2009.
MARGO Project Members: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum, Nat. Geosci., 2, 127–132, https://doi.org/10.1038/ngeo411, 2009.
Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L., and Brewer, S.: Reconciling divergent trends and millennial variations in Holocene temperatures, Nature, 554, 92–96, https://doi.org/10.1038/nature25464, 2018.
Mauch Lenardić, J., Oros Sršen, A., and Radović, S.: Quaternary fauna of the Eastern Adriatic (Croatia) with the special review on the Late Pleistocene sites, Quatern. Int., 494, 130–151, https://doi.org/10.1016/j.quaint.2017.11.028, 2018.
Mauri, A., Davis, B. A. S., Collins, P. M., and Kaplan, J. O.: The influence of atmospheric circulation on the mid-Holocene climate of Europe: A data-model comparison, Clim. Past, 10, 1925–1938, https://doi.org/10.5194/cp-10-1925-2014, 2014.
Mauri, A., Davis, B. A. S., Collins, P. M., and Kaplan, J. O.: The climate of Europe during the Holocene: A gridded pollen-based reconstruction and its multi-proxy evaluation, Quaternary Sci. Rev., 112, 109–127, https://doi.org/10.1016/j.quascirev.2015.01.013, 2015.
Miebach, A., Niestrath, P., Roeser, P., and Litt, T.: Impacts of climate and humans on the vegetation in northwestern Turkey: palynological insights from Lake Iznik since the Last Glacial, Clim. Past, 12, 575–593, https://doi.org/10.5194/cp-12-575-2016, 2016.
Mikolajewicz, U.: Modeling mediterranean ocean climate of the last glacial maximum, Clim. Past, 7, 161–180, https://doi.org/10.5194/cp-7-161-2011, 2011.
Miola, A., Bondesan, A., Corain, L., Favaretto, S., Mozzi, P., Piovan, S., and Sostizzo, I.: Wetlands in the Venetian Po Plain (northeastern Italy) during the Last Glacial Maximum: Interplay between vegetation, hydrology and sedimentary environment, Rev. Palaeobot. Palynol., 141, 53–81, https://doi.org/10.1016/j.revpalbo.2006.03.016, 2006.
Mix, A. C., Bard, E., and Schneider, R.: Environmental processes of the ice age: Land, oceans, glaciers (EPILOG), Quaternary Sci. Rev., 20, 627–657, https://doi.org/10.1016/S0277-3791(00)00145-1, 2001.
Moine, O., Rousseau, D. D., Jolly, D., and Vianey-Liaud, M.: Paleoclimatic reconstruction using mutual climatic range on terrestrial mollusks, Quatern. Res., 57, 162–172, https://doi.org/10.1006/qres.2001.2286, 2002.
Monegato, G., Ravazzi, C., Donegana, M., Pini, R., Calderoni, G., and Wick, L.: Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (eastern Alps), Quatern. Res., 68, 284–302, https://doi.org/10.1016/j.yqres.2007.07.002, 2007.
Monegato, G., Ravazzi, C., Culiberg, M., Pini, R., Bavec, M., Calderoni, G., Jež, J., and Perego, R.: Sedimentary evolution and persistence of open forests between the south-eastern Alpine fringe and the Northern Dinarides during the Last Glacial Maximum, Palaeogeogr. Palaeoclim. Palaeoecol., 436, 23–40, https://doi.org/10.1016/j.palaeo.2015.06.025, 2015.
Moreno, A., González-Sampériz, P., Morellón, M., Valero-Garcés, B. L., and Fletcher, W. J.: Northern Iberian abrupt climate change dynamics during the last glacial cycle: A view from lacustrine sediments, Quaternay Sci. Rev., 36, 139–153, https://doi.org/10.1016/j.quascirev.2010.06.031, 2012.
Naughton, F., Sanchez Goñi, M. F., Desprat, S., Turon, J-L., Duprat, J., Malaizé, B., Joli, D., Cortijo, E., Drago, T., and Freitas, M. C.: Present-day and past (last 25 000 years) marine pollen signal off western Iberia. Marine Micropaleontology, Volume 62, Issue 2, 1 February 2007, 91–114, https://doi.org/10.1016/j.marmicro.2006.07.006, 2007.
Nogues-Bravo, D., Rodriìguez-Saìnchez, F., Orsini, L., de Boer, E., Jansson, R., Morlon, H., Fordham, D. A., and Jackson, S. T.: Cracking the code of biodiversity responses to past climate change, Trends Ecol. Evol., 33, 765–76, 2018.
Nolan, C., Overpeck, J. T., Allen, J. R. M., Anderson, P. M., Betancourt, J. L., Binney, H. A., Brewer, S., Bush, M. B., Chase, B. M., Cheddadi, R., Djamali, M., Dodson, J., Edwards, M. E., Gosling, W. D., Haberle, S., Hotchkiss, S. C., Huntley, B., Ivory, S. J., Kershaw, A. P., Kim, S. H., Latorre, C., Leydet, M., Lézine, A. M., Liu, K. B., Liu, Y., Lozhkin, A. V., McGlone, M. S., Marchant, R. A., Momohara, A., Moreno, P. I., Müller, S., Otto-Bliesner, B. L., Shen, C., Stevenson, J., Takahara, H., Tarasov, P. E., Tipton, J., Vincens, A., Weng, C., Xu, Q., Zheng, Z., and Jackson, S. T.: Past and future global transformation of terrestrial ecosystems under climate change, Science, 361, 920–923, https://doi.org/10.1126/science.aan5360, 2018.
Normand, S., Treier, U. A., and Odgaard, B. V.: Tree refugia and slow forest development in response to post – LGM warming in North – Eastern European Russia, J. Biogeogr., 2, 2–5, 2011.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R.: Terrestrial ecoregions of the world: a new map of life on Earth, BioScience, 51, 933–938, https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2, 2001.
Paganelli, A.: Evolution of vegetation and climate in the Veneto-Po Plain during the Late-Glacial and Early Holocene using pollen-strat-igraphical data, Alp. Mediterr. Quat., 9, 581–589, 1996.
Pantaléon-Cano, J.: Estudi palinologic de sediments litorals de la provincia d'Almeria. Transformacion del paisatge vegetal dins un territori semiarid, PhD thesis, Universitat Autònoma de Barcelona, Barcelona, Spain, 1997.
Pérez-Obiol, R. P. and Julia, R.: Climatic change on the Iberian Peninsula recorded in a 30,000-year pollen record from Lake Banyoles, Quaternary Res., 41, 91–98, 1994.
Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P., Reille, M., De Beaulieu, J. L., Bottema, S., and Andrieu, V.: Climatic Reconstruction in Europe for 18,000 YR B.P. from Pollen Data, Quatern. Res., 49, 183–196, https://doi.org/10.1006/qres.1997.1961, 1998.
Peyron, O., Magny, M., Goring, S., Joannin, S., de Beaulieu, J.-L., Brugiapaglia, E., Sadori, L., Garfi, G., Kouli, K., Ioakim, C., and Combourieu-Nebout, N.: Contrasting patterns of climatic changes during the Holocene across the Italian Peninsula reconstructed from pollen data, Clim. Past, 9, 1233–1252, https://doi.org/10.5194/cp-9-1233-2013, 2013.
Pickarski, N., Kwiecien, O., Langgut, D., and Litt, T.: Abrupt climate and vegetation variability of eastern Anatolia during the last glacial, Clim. Past, 11, 1491–1505, https://doi.org/10.5194/cp-11-1491-2015, 2015.
Pini, R., Ravazzi, C., and Donegana, D.: Pollen stratigraphy, vegetation and climate history of the last 215 ka in the Azzano Decimo core (plain of Friuli, north-eastern Italy), Quaternary Sci. Rev., 28, 1268–1290, https://doi.org/10.1016/j.quascirev.2008.12.017, 2009.
Pini, R. Furlanetto, G., Vallé, F., Badino, F., Wick, L., Anselmetti, F. S., Bertuletti, P., Fusi, N., Morlock, M. A., Delmonte, B., Harrison, S. P., Maggi, V., and Ravazzi, C.: Linking North Atlantic and Alpine Last Glacial Maximum climates via a high-resolution pollen-based subarctic forest steppe record, Quaternary Sci. Rev., 294, 107759, https://doi.org/10.1016/j.quascirev.2022.107759, 2022.
Pons, A. and Reille, M.: The Holocene- and upper Pleistocene pollen record from Padul (Granada, Spain): A new study, Palaeogeogr. Palaeoclim. Palaeoecol., 66, 243–249, 255–263, https://doi.org/10.1016/0031-0182(88)90202-7, 1988.
Potì, A., Kehl, M., Broich, M., Carrión Marco, Y., Hutterer, R., Jentke, T., Linstädter, J., López-Sáez, J. A., Mikdad, A., Morales, J., Pérez-Díaz, S., Portillo, M., Schmid, C., Vidal-Matutano, P., and Weniger, G. C.: Human occupation and environmental change in the western Maghreb during the Last Glacial Maximum (LGM) and the Late Glacial. New evidence from the Iberomaurusian site Ifri El Baroud (northeast Morocco), Quaternay Sci. Rev., 220, 87–110, https://doi.org/10.1016/j.quascirev.2019.07.013, 2019.
Prentice, I. C. and Harrison, S. P.: Ecosystem effects of CO2 concentration: Evidence from past climates, Clim. Past, 5, 297–307, https://doi.org/10.5194/cp-5-297-2009, 2009.
Prentice, I. C., Guiot, J., and Harrison, S. P.: Mediterranean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum, Nature, 360, 658–660, https://doi.org/10.1038/360658a0, 1992.
Prentice, I. C., Guiot, J., Huntley, B., Jolly, D., and Cheddadi, R.: Reconstructing biomes from palaeoecological data: A general method and its application to European pollen data at 0 and 6 ka, Clim. Dynam., 12, 185–194, https://doi.org/10.1007/BF00211617, 1996.
Prentice, I. C., Harrison, S. P., and Bartlein, P. J.: Global vegetation and terrestrial carbon cycle changes after the last ice age, New Phytol., 189, 988–998, https://doi.org/10.1111/j.1469-8137.2010.03620.x, 2011.
Prentice, I. C., Cleator, S. F., Huang, Y. H., Harrison, S. P., and Roulstone, I.: Reconstructing ice-age palaeoclimates: Quantifying low-CO2 effects on plants, Global Planet. Change, 149, 166–176, https://doi.org/10.1016/j.gloplacha.2016.12.012, 2017.
Prud'homme, C., Lécuyer, C., Antoine, P., Moine, O., Hatté, C., Fourel, F., Martineau, F., and Rousseau, D. D.: Palaeotemperature reconstruction during the Last Glacial from δ18O of earthworm calcite granules from Nussloch loess sequence, Germany, Earth Planet. Sc. Lett., 442, 13–20, https://doi.org/10.1016/j.epsl.2016.02.045, 2016.
Prud'homme, C., Lécuyer, C., Antoine, P., Hatté, C., Moine, O., Fourel, F., Amiot, R., Martineau, F., and Rousseau, D. D.: δ13C signal of earthworm calcite granules: A new proxy for palaeoprecipitation reconstructions during the Last Glacial in western Europe, Quaternary Sci. Rev., 179, 158–166, https://doi.org/10.1016/j.quascirev.2017.11.017, 2018.
Puzachenko, A. Y., Markova, A. K., and Pawłowska, K.: Evolution of Central European regional mammal assemblages between the late Middle Pleistocene and the Holocene (MIS7–MIS1), Quatern. Int., 633, 80–102, https://doi.org/10.1016/j.quaint.2021.11.009, 2021.
Ramstein, G., Kageyama, M., Guiot, J., Wu, H., Hély, C., Krinner, G., and Brewer, S.: How cold was Europe at the Last Glacial Maximum? A synthesis of the progress achieved since the first PMIP model-data comparison, Clim. Past, 3, 331–339, https://doi.org/10.5194/cp-3-331-2007, 2007.
Reille, M. and Andrieu, V.: The late Pleistocene and Holocene in the Lourdes Basin, Western Pyrénées, France: new pollen analytical and chronological data, Veg. Hist. Archaeobot., 4, 1–21, https://doi.org/10.1007/BF00198611, 1995.
Reille, M. and de Beaulieu, J. L.: History of the Würm and Holocene vegetation in western velay (Massif Central, France): A comparison of pollen analysis from three corings at Lac du Bouchet, Rev. Palaeobot. Palynol., 54, 233–248, https://doi.org/10.1016/0034-6667(88)90016-4, 1988.
Reimer, A., Landmann, G., and Kempe, S.: Lake Van, Eastern Anatolia, hydrochemistry and history, Aquat. Geochem., 15, 195–222, https://doi.org/10.1007/s10498-008-9049-9, 2009.
Roucoux, K. H., de Abreu, L., Shackleton, N. J., and Tzedakis, P. C.: The response of NW Iberian vegetation to North Atlantic climate oscillations during the last 65 kyr, Quaternary Sci. Rev., 24, 1637–1653, https://doi.org/10.1016/j.quascirev.2004.08.022, 2005.
Rousseau, D. D.: Climatic transfer function from quaternary molluscs in European loess deposits, Quatern. Res., 36, 195–209, https://doi.org/10.1016/0033-5894(91)90025-Z, 1991.
Royer, A., Montuire, S., Legendre, S., Discamps, E., Jeannet, M., and Lécuyer, C.: Investigating the influence of climate changes on rodent communities at a regional-scale (MIS 1–3, Southwestern France), PLoS One, 11, 1–25, https://doi.org/10.1371/journal.pone.0145600, 2016.
Ruiz-Zapata, M. B., Vegas, J., Garcia-Cortes, A., Gil Garcia, M. J., Torres, T., Ortiz, J. E., and Perez-Gonzalez, A.: Vegetation evolution during the Last Maximum Glacial Period in FU-1 sequence (Fuentillejo Lacustrin Maar, Campo de Calatrava, Ciudad Real), Polen, 18, 37–49, 2008.
Ruiz-Zapata, M., Vegas, J., García-Cortés, Á., Gil-García, M., Torres, T., Ortiz, J., Galán, L., and González, A.: Comportamiento de la vegetación, durante el último máximo glaciar, en la secuencia FU-1 (Laguna del Maar de Fuentillejo, Campo de Calatrava, Ciudad Real), 18, 37–49, https://doi.org/10.14201/pol.v18i0.7399, 2009.
Salonen, J., Sanchez Goñi, M. F., Renssen, H., and Plikk, A.: Contrasting northern and southern European winter climate trends during the Last Interglacial, Geology, 49, 1220–1224, https://doi.org/10.1130/G49007.1, 2021.
Salonen, J. S., Ilvonen, L., Seppä, H., Holmström, L., Telford, R. J., Gaidamavicius, A., Stancikaite, M., and Subetto, D.: Comparing different calibration methods (WA/WA-PLS regression and Bayesian modelling) and different-sized calibration sets in pollen-based quantitative climate reconstruction, Holocene, 22, 413–424, 2012.
Salonen, J. S., Korpela, M., Williams, J. W., and Luoto, M.: Machine-learning based reconstructions of primary and secondary climate variables from North American and European fossil pollen data, Sci. Rep., 9, 1–13, https://doi.org/10.1038/s41598-019-52293-4, 2019.
Samartin, S., Heiri, O., Kaltenrieder, P., Kühl, N., and Tinner, W.: Reconstruction of full glacial environments and summer temperatures from Lago della Costa, a refugial site in Northern Italy, Quaternary Sci. Rev., 143, 107–119, https://doi.org/10.1016/j.quascirev.2016.04.005, 2016.
Sanchez Goñi, M. F. and Harrison, S. P.: Millennial-scale climate variability and vegetation changes during the Last Glacial: concepts and terminology, Quaternary Sci. Rev., 29, 2823–2827, https://doi.org/10.1016/j.quascirev.2009.11.014, 2010.
Sánchez Goñi, M. F., Loutre, M. F., Crucifix, M., Peyron, O., Santos, L., Duprat, J., Malaizé, B., Turon, J.-L., and Peypouquet, J.-P.: Increasing vegetation and climate gradient in western Europe over the Last Glacial inception (122–110 ka): Data–model comparison, Earth Planet. Sc. Lett., 231, 111–130, https://doi.org/10.1016/j.epsl.2004.12.010, 2005.
Sanchi, L., Ménot, G., and Bard, E.: Insights into continental temperatures in the northwestern Black Sea area during the Last Glacial period using branched tetraether lipids, Quaternary Sci. Rev., 84, 98–108, https://doi.org/10.1016/j.quascirev.2013.11.013, 2014.
Satkūnas, J. and Grigienė, A.: Eemian-Weichselian palaeoenvironmental record from the Mickūnai glacial depression (Eastern Lithuania), Geologija, 54, 35–51, https://doi.org/10.6001/geologija.v54i2.2482, 2012.
Schäfer, I. K., Bliedtner, M., Wolf, D., Faust, D., and Zech, R.: Evidence for humid conditions during the last glacial from leaf wax patterns in the loess-paleosol sequence El Paraíso, Central Spain, Quatern. Int., 407, 64–73, https://doi.org/10.1016/j.quaint.2016.01.061, 2016.
Scourse, J. D.: Late Pleistocene stratigraphy and palaeobotany of the Isles of Scilly, Philos. T. Roy. Soc. Lond. B, 334, 405–448, https://doi.org/10.1098/rstb.1991.0125, 1991.
Shumilovskikh, L. S., Fleitmann, D., Nowaczyk, N. R., Behling, H., Marret, F., Wegwerth, A., and Arz, H. W.: Orbital- and millennial-scale environmental changes between 64 and 20 ka BP recorded in Black Sea sediments, Clim. Past, 10, 939–954, https://doi.org/10.5194/cp-10-939-2014, 2014.
Spötl, C., Koltai, G., Jarosch, A. H., and Cheng, H.: Increased autumn and winter precipitation during the Last Glacial Maximum in the European Alps, Nat. Commun., 12, 1839, https://doi.org/10.1038/s41467-021-22090-7, 2021.
Stewart, J. R. and Lister, A. M.: Cryptic northern refugia and the origins of the modern biota, Trends Ecol. Evol., 16, 608–613, https://doi.org/10.1016/S0169-5347(01)02338-2, 2001.
Stivrins, N., Soininen, J., Amon, L., Fontana, S. L., Gryguc, G., Heikkilä, M., Heiri, O., Kisielienė, D., Reitalu, T., Stančikaitė, M., Veski, S., and Seppä, H.: Biotic turnover rates during the Pleistocene-Holocene transition, Quaternary Sci. Rev., 151, 100–110, https://doi.org/10.1016/j.quascirev.2016.09.008, 2016.
Strahl, J.: Zur Pollenstratigraphie des Weichselspätglazials von Berlin-Brandenburg [On the palynostratigraphy of the Late Weichselian in Berlin-Brandenburg], Brand. Geowissensch. Beitr., 12, 87–112, 2005.
Stute, M. and Deak, J.: Environmental isotope study (14C, 13C, 18O, D, noble gases) on deep groundwater circulation systems in Hungary with reference to paleoclimate, Radiocarbon, 31, 902–918, https://doi.org/10.1017/s0033822200012522, 1990.
Svenning, J., Normand, S., and Kageyama, M.: Glacial refugia of temperate trees in Europe: insights from species distribution modelling, J. Ecol., 96, 1117–1127, https://doi.org/10.1111/j.1365-2745.2008.01422.x, 2008.
Tarasov, P. E., Webb, T., Andreev, A. A., Afanas'eva, N. B., Berezina, N. A., Bezusko, L. G., Blyakharchuk, T. A., Bolikhovskaya, N. S., Cheddadi, R., Chernavskaya, M. M., Chernova, G. M., Dorofeyuk, N. I., Dirksen, V. G., Elina, G. A., Filimonova, L. V., Glebov, F. Z., Guiot, J., Gunova, V. S., Harrison, S. P., Jolly, D., Khomutova, V. I., Kvavadze, E. V., Osipova, I. M., Panova, N. K., Prentice, I. C., Saarse, L., Sevastyanov, D. V., Volkova, V. S., and Zernitskaya, V. P.: Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia, J. Biogeogr., 25, 1029–1053, https://doi.org/10.1046/j.1365-2699.1998.00236.x, 1998.
Tarasov, P. E., Volkova, V. S., Webb, T., Guiot, J., Andreev, A. A., Bezusko, L. G., Bezusko, T. V., Bykova, G. V., Dorofeyuk, N. I., Kvavadze, E. V., Osipova, I. M., Panova, N. K., and Sevastyanov, D. V.: Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia, J. Biogeogr., 27, 609–620, https://doi.org/10.1046/j.1365-2699.2000.00429.x, 2000.
Tarasov, P. E., Andreev, A. A., Anderson, P. M., Lozhkin, A. V., Haltia-Hovi, E., Nowaczyk, N. R., Wennrich, V., Brigham-Grette, J., and Melles, M.: A pollen-based biome reconstruction over the last 3.562 million years in the Far East Russian Arctic e new insights on climate–vegetation relationships at the regional scale, Clim. Past, 9, 2759–2775, https://doi.org/10.5194/cp-9-2759-2013, 2013.
Telford, R. J. and Birks, H. J. B.: Evaluation of transfer functions in spatially structured environments, Quaternary Sci. Rev., 28, 1309–1316, https://doi.org/10.1016/j.quascirev.2008.12.020, 2009.
Tzedakis, P. C., Frogley, M. R., Lawson, I. T., Preece, R. C., Cacho, I., and de Abreu, L. Ecological thresholds and patterns of millennial-scale climate variability: The response of vegetation in Greece during the last glacial period, Geology, 32, 109–112, https://doi.org/10.1130/G20118.1, 2004.
Turner, M. G., Wei, D., Prentice, I. C., and Harrison, S. P.: The impact of methodological decisions on climate reconstructions using WA-PLS, Quatern. Res., 99, 341–356, 2021.
Turon, J-L., Lézine, A-M., and Denèfle, M.: Land-sea correlations for the last glaciation inferred from a pollen and dinocyst record from the portuguese margin, Quaternary Res., 59, 88–96, https://doi.org/10.1016/S0033-5894(02)00018-2, 2003.
Valero-Garcés, B. L., González-Sampériz, P., Navas, A., Machin, J., Delgado-Huertas, A., Pena-Monné, J. L., Sancho-Marcén, C., Stevenson, T., and Davis, B.: Paleohydrological fluctuations and steppe vegetation during the last glacial maximum in the central Ebro valley (NE Spain), Quatern. Int., 122, 43–55, https://doi.org/10.1016/j.quaint.2004.01.030, 2004.
Valsecchi, V., Sanchez Goñi, M. F., and Londeix, L.: Vegetation dynamics in the Northeastern Mediterranean region during the past 23 000 yr: Insights from a new pollen record from the Sea of Marmara, Clim. Past, 8, 1941–1956, https://doi.org/10.5194/cp-8-1941-2012, 2012.
Vandenberghe, J., French, H. M., Gorbunov, A., Marchenko, S., Velichko, A. A., Jin, H., Cui, Z., Zhang, T., and Wan, X.: The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: Permafrost extent and mean annual air temperatures, 25–17 ka BP, Boreas, 43, 652–666, https://doi.org/10.1111/bor.12070, 2014.
Varsányi, I., Palcsu, L., and Kovács, L. Ó.: Groundwater flow system as an archive of palaeotemperature: Noble gas, radiocarbon, stable isotope and geochemical study in the Pannonian Basin, Hungary, Appl. Geochem., 26, 91–104, https://doi.org/10.1016/j.apgeochem.2010.11.006, 2011.
Vegas, J., Ruiz-Zapata, B., Ortiz, J. E., Galán, L., Torres, T., García-Cortés, Á., Gil-García, M. J., Pérez-González, A., and Gallardo-Millán, J. L.: Identification of arid phases during the last 50 cal. ka BP from the Fuentillejo maar-lacustrine record (Campo de Calatrava Volcanic Field, Spain), J. Quaternary Sci., 25, 1051–1062, https://doi.org/10.1002/jqs.1262, 2010.
Vegas-Vilarrúbia, T., González-Sampériz, P., Morellón, M., Gil-Romera, G., Pérez-Sanz, A., and Valero-Garcés, B.: Diatom and vegetation responses to late glacial and early holocene climate changes at lake estanya (southern pyrenees, NE spain), Palaeogeogr. Palaeoclim. Palaeoecol., 392, 335–349, https://doi.org/10.1016/j.palaeo.2013.09.011, 2013.
Velasquez, P., Kaplan, J. O., Messmer, M., Ludwig, P., and Raible, C. C.: The role of land cover in the climate of glacial Europe, Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, 2021.
Vicente-Serrano, S. M., Trigo, R. M., López-Moreno, J. I., Liberato, M. L. R., Lorenzo-Lacruz, J., Beguería, S., Morán-Tejeda, E., and El Kenawy, A.: Extreme winter precipitation in the Iberian Peninsula in 2010: Anomalies, driving mechanisms and future projections, Clim. Res., 46, 51–65, https://doi.org/10.3354/cr00977, 2011.
Watts, W. A., Allen, J. R. M., and Huntley, B.: Vegetation history and palaeoclimate of the last glacial period at Lago grande di Monticchio, southern Italy, Quaternary Sci. Rev., 15, 133–153, https://doi.org/10.1016/0277-3791(95)00093-3, 1996.
Williams, J. W. and Jackson, S. T.: Palynological and AVHRR observations of modern vegetational gradients in eastern North America, The Holocene, 4, 485–497, 2003.
Williams, J. W., Webb, T., Shurman, B. N., and Bartlein, P. J.: Do Low CO2 Concentrations Affect Pollen-Based Reconstructions of LGM Climates? A Response to “Physiological Significance of Low Atmospheric CO2 for Plant–Climate Interactions” by Cowling and Sykes, Quatern. Res., 53, 402–404, https://doi.org/10.1006/qres.2000.2131, 2000.
Williams, J. W., Grimm, E. G., Blois, J., Charles, D. F., Davis, E., Goring, S. J., Graham, R., Smith, A. J., Anderson, M., Arroyo-Cabrales, J., Ashworth, A. C., Betancourt, J. L., Bills, B. W., Booth, R. K., Buckland, P., Curry, B., Giesecke, T., Hausmann, S., Jackson, S. T., Latorre, C., Nichols, J., Purdum, T., Roth, R. E., Stryker, M., and Takahara, H.: The Neotoma Paleoecology Database: A multi-proxy, international community-curated data resource, Quatern. Res., 89, 156–177, https://doi.org/10.1017/qua.2017.105, 2018.
Willis, K. J. and Van Andel, T. H.: Trees or no trees? The environments of central and eastern Europe during the Last Glaciation, Quaternary Sci. Rev., 23, 2369–2387, https://doi.org/10.1016/j.quascirev.2004.06.002, 2004.
Wu, H., Guiot, J., Brewer, S., and Guo, Z.: Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: Reconstruction from pollen data using inverse vegetation modelling, Clim. Dynam., 29, 211–229, https://doi.org/10.1007/s00382-007-0231-3, 2007.
Wu, H., Li, Q., Yu, Y., Sun, A., Lin, Y., Jiang, W., and Luo, Y.: Quantitative climatic reconstruction of the Last Glacial Maximum in China, Sci. China Earth Sci., 62, 1269–1278, https://doi.org/10.1007/s11430-018-9338-3, 2019.
Yu, G. and Harrison, S. P.: Lake status records from Europe: data base documentation, in: NOAA Paleoclimatology Publications Series, NOAA, Boulder, Colorado, https://catalog.data.gov/dataset/noaa-wds-paleoclimatology-lake-status-records-from-europe-data-base-documentation2 (last access: 25 July 2024), 1995.
Zaarur, S., Affek, H. P., and Stein, M.: Last glacial-Holocene temperatures and hydrology of the Sea of Galilee and Hula Valley from clumped isotopes in Melanopsis shells, Geochim. Cosmochim. Ac., 179, 142–155, https://doi.org/10.1016/j.gca.2015.12.034, 2016.
Zanon, M., Davis, B. A. S., Marquer, L., Brewer, S., and Kaplan, J. O.: European forest cover during the past 12,000 years: A palynological reconstruction based on modern analogs and remote sensing, Front. Plant Sci., 9, 253, https://doi.org/10.3389/fpls.2018.00253, 2018.
Zech, M., Buggle, B., Leiber, K., Marković, S., Glaser, B., Hambach, U., Huwe, B., Stevens, T., Sümegi, P., Wiesenberg, G., and Zöller, L.: Reconstructing Quaternary vegetation history in the Carpathian Basin, SE-Europe, using n-alkane biomarkers as molecular fossils: Problems and possible solutions, potential and limitations, Quaternary Sci. J., 58, 148–155, https://doi.org/10.3285/eg.58.2.03, 2010.
Short summary
During the last ice age (21 000 yr BP) in Europe, the composition and extent of forest and its associated climate remain unclear, with models indicating more forest north of the Alps and a warmer and somewhat wetter climate than suggested by the data. A new compilation of pollen records with improved dating suggests greater agreement with model climates but still suggests models overestimate forest cover, especially in the west.
During the last ice age (21 000 yr BP) in Europe, the composition and extent of forest and its...