Articles | Volume 20, issue 8
https://doi.org/10.5194/cp-20-1761-2024
https://doi.org/10.5194/cp-20-1761-2024
Research article
 | 
12 Aug 2024
Research article |  | 12 Aug 2024

Late Pleistocene glacial terminations accelerated by proglacial lakes

Meike D. W. Scherrenberg, Constantijn J. Berends, and Roderik S. W. van de Wal

Related authors

CO2 and summer insolation as drivers for the Mid-Pleistocene transition
Meike D. W. Scherrenberg, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-57,https://doi.org/10.5194/cp-2024-57, 2024
Preprint under review for CP
Short summary
A topographically-controlled tipping point for complete Greenland ice-sheet melt
Michele Petrini, Meike Scherrenberg, Laura Muntjewerf, Miren Vizcaino, Raymond Sellevold, Gunter Leguy, William Lipscomb, and Heiko Goelzer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-154,https://doi.org/10.5194/tc-2023-154, 2023
Revised manuscript under review for TC
Short summary
Modelling feedbacks between the Northern Hemisphere ice sheets and climate during the last glacial cycle
Meike D. W. Scherrenberg, Constantijn J. Berends, Lennert B. Stap, and Roderik S. W. van de Wal
Clim. Past, 19, 399–418, https://doi.org/10.5194/cp-19-399-2023,https://doi.org/10.5194/cp-19-399-2023, 2023
Short summary
Net effect of ice-sheet–atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability
Lennert B. Stap, Constantijn J. Berends, Meike D. W. Scherrenberg, Roderik S. W. van de Wal, and Edward G. W. Gasson
The Cryosphere, 16, 1315–1332, https://doi.org/10.5194/tc-16-1315-2022,https://doi.org/10.5194/tc-16-1315-2022, 2022
Short summary

Related subject area

Subject: Ice Dynamics | Archive: Modelling only | Timescale: Pleistocene
Climate and ice sheet dynamics in Patagonia throughout marine isotope stages 2 and 3
Andrés Castillo-Llarena, Franco Retamal-Ramírez, Jorge Bernales, Martín Jacques-Coper, Matthias Prange, and Irina Rogozhina
Clim. Past, 20, 1559–1577, https://doi.org/10.5194/cp-20-1559-2024,https://doi.org/10.5194/cp-20-1559-2024, 2024
Short summary
Relative importance of the mechanisms triggering the Eurasian ice sheet deglaciation in the GRISLI2.0 ice sheet model
Victor van Aalderen, Sylvie Charbit, Christophe Dumas, and Aurélien Quiquet
Clim. Past, 20, 187–209, https://doi.org/10.5194/cp-20-187-2024,https://doi.org/10.5194/cp-20-187-2024, 2024
Short summary
Simulation of the Greenland Ice Sheet over two glacial–interglacial cycles: investigating a sub-ice- shelf melt parameterization and relative sea level forcing in an ice-sheet–ice-shelf model
Sarah L. Bradley, Thomas J. Reerink, Roderik S. W. van de Wal, and Michiel M. Helsen
Clim. Past, 14, 619–635, https://doi.org/10.5194/cp-14-619-2018,https://doi.org/10.5194/cp-14-619-2018, 2018
The sensitivity of the Greenland Ice Sheet to glacial–interglacial oceanic forcing
Ilaria Tabone, Javier Blasco, Alexander Robinson, Jorge Alvarez-Solas, and Marisa Montoya
Clim. Past, 14, 455–472, https://doi.org/10.5194/cp-14-455-2018,https://doi.org/10.5194/cp-14-455-2018, 2018
Short summary
Last Interglacial climate and sea-level evolution from a coupled ice sheet–climate model
Heiko Goelzer, Philippe Huybrechts, Marie-France Loutre, and Thierry Fichefet
Clim. Past, 12, 2195–2213, https://doi.org/10.5194/cp-12-2195-2016,https://doi.org/10.5194/cp-12-2195-2016, 2016
Short summary

Cited articles

Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K., and Blatter, H.: Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190–193, https://doi.org/10.1038/nature12374, 2013. 
Abe-Ouchi, A., Saito, F., Kageyama, M., Braconnot, P., Harrison, S. P., Lambeck, K., Otto-Bliesner, B. L., Peltier, W. R., Tarasov, L., Peterschmitt, J.-Y., and Takahashi, K.: Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments, Geosci. Model Dev., 8, 3621–3637, https://doi.org/10.5194/gmd-8-3621-2015, 2015. 
Ahn, S., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: A probabilistic Pliocene–Pleistocene stack of benthic δ18O using a profile hidden Markov model, Dynam. Stat. Clim. Syst., 2, dzx002, https://doi.org/10.1093/climsys/dzx002, 2017. 
Alder, J. R. and Hostetler, S. W.: Applying the Community Ice Sheet Model to evaluate PMIP3 LGM climatologies over the North American ice sheets, Clim. Dynam., 53, 2807–2824, https://doi.org/10.1007/s00382-019-04663-x, 2019. 
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA [data set], https://doi.org/10.7289/V5C8276M, 2009. 
Download
Short summary
During Late Pleistocene glacial cycles, the Eurasian and North American ice sheets grew and melted, resulting in over 100 m of sea-level change. Studying the melting of past ice sheets can improve our understanding of how ice sheets might respond in the future. In this study, we find that melting increases due to proglacial lakes forming at the margins of the ice sheets, primarily due to the reduced basal friction of floating ice. Furthermore, bedrock uplift rates can strongly influence melting.