Articles | Volume 20, issue 5
https://doi.org/10.5194/cp-20-1161-2024
https://doi.org/10.5194/cp-20-1161-2024
Research article
 | 
15 May 2024
Research article |  | 15 May 2024

Mechanisms of global ocean ventilation age change during the last deglaciation

Lingwei Li, Zhengyu Liu, Jinbo Du, Lingfeng Wan, and Jiuyou Lu

Related authors

Multi-model assessment of the deglacial climatic evolution at high southern latitudes
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul J. Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past, 21, 1443–1463, https://doi.org/10.5194/cp-21-1443-2025,https://doi.org/10.5194/cp-21-1443-2025, 2025
Short summary
Mean ocean temperature change and decomposition of the benthic δ18O record over the past 4.5 million years
Peter U. Clark, Jeremy D. Shakun, Yair Rosenthal, Chenyu Zhu, Patrick J. Bartlein, Jonathan M. Gregory, Peter Köhler, Zhengyu Liu, and Daniel P. Schrag
Clim. Past, 21, 973–1000, https://doi.org/10.5194/cp-21-973-2025,https://doi.org/10.5194/cp-21-973-2025, 2025
Short summary
Modeling the impacts of climate trends and lake formation on the retreat of a tropical Andean glacier (1962–2020)
Tal Y. Shutkin, Bryan G. Mark, Nathan D. Stansell, Rolando Cruz Encarnación, Henry H. Brecher, Zhengyu Liu, Bidhyananda Yadav, and Forrest S. Schoessow
EGUsphere, https://doi.org/10.5194/egusphere-2024-3194,https://doi.org/10.5194/egusphere-2024-3194, 2025
Short summary
Asymmetric changes in temperature in the Arctic during the Holocene based on a transient run with the Community Earth System Model (CESM)
Hongyue Zhang, Jesper Sjolte, Zhengyao Lu, Jian Liu, Weiyi Sun, and Lingfeng Wan
Clim. Past, 19, 665–680, https://doi.org/10.5194/cp-19-665-2023,https://doi.org/10.5194/cp-19-665-2023, 2023
Short summary

Cited articles

Adkins, J. F. and Boyle, E. A.: Changing atmospheric Δ14C and the record of deep water paleoventilation ages, Paleoceanography, 12, 337–344, https://doi.org/10.1029/97PA00379, 1997. 
Adkins, J. F., Mclntyre, K., and Schrag, D. P.: The salinity, temperature, and δ18O of the glacial deep ocean, Science, 298, 1769–1773, https://doi.org/10.1126/science.1076252, 2002. 
Ai, X. E., Studer, A. S., Sigman, D. M., Martínez-García, A., Fripiat, F., Thöle, L. M., Michel, E., Gottschalk, J., Arnold, L., Moretti, S., Schmitt, M., Oleynik, S., Jaccard, S. L., and Haug, G. H.: Southern Ocean upwelling, Earth's obliquity, and glacial-interglacial atmospheric CO2 change, Science, 370, 1348–1352, https://doi.org/10.1126/science.abd2115, 2020. 
Brady, E., Stevenson, S., Bailey, D., Liu, Z., Noone, D., Nusbaumer, J., Otto-Bliesner, B. L., Tabor, C., Tomas, R., Wong, T., Zhang, J., and Zhu, J.: The Connected Isotopic Water Cycle in the Community Earth System Model Version 1, J. Adv. Model. Earth Sy., 11, 2547–2566, https://doi.org/10.1029/2019MS001663, 2019. 
Broecker, W. S.: Glacial to Interglacial Changes in Ocean Chemistry, Prog. Oceanogr., 11, 151–197, 1982. 
Download
Short summary
Radiocarbon proxies suggest that the deep waters are poorly ventilated during the Last Glacial Maximum (LGM). Here we use two transient simulations with tracers of radiocarbon and ideal age to show that the deep-ocean ventilation age is not much older at the LGM compared to the present day because of the strong glacial Antarctic Bottom Water transport. In contrast, the ventilation age is older during deglaciation mainly due to weakening of Antarctic Bottom Water transport.
Share