Articles | Volume 19, issue 4 
            
                
                    
                    
            
            
            https://doi.org/10.5194/cp-19-835-2023
                    © Author(s) 2023. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-835-2023
                    © Author(s) 2023. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Mechanisms of hydrological responses to volcanic eruptions in the Asian monsoon and westerlies-dominated subregions
Zhihong Zhuo
CORRESPONDING AUTHOR
                                            
                                    
                                            Institute of Meteorology, Freie Universität Berlin, 12165 Berlin, Germany
                                        
                                    
                                            now at: Section for Meteorology and Oceanography, Department of Geosciences, University of Oslo, 0315 Oslo, Norway
                                        
                                    Ingo Kirchner
                                            Institute of Meteorology, Freie Universität Berlin, 12165 Berlin, Germany
                                        
                                    Ulrich Cubasch
                                            Institute of Meteorology, Freie Universität Berlin, 12165 Berlin, Germany
                                        
                                    Related authors
Zhihong Zhuo, Xinyue Wang, Yunqian Zhu, Wandi Yu, Ewa M. Bednarz, Eric Fleming, Peter R. Colarco, Shingo Watanabe, David Plummer, Georgiy Stenchikov, William Randel, Adam Bourassa, Valentina Aquila, Takashi Sekiya, Mark R. Schoeberl, Simone Tilmes, Jun Zhang, Paul J. Kushner, and Francesco S. R. Pausata
                                    Atmos. Chem. Phys., 25, 13161–13176, https://doi.org/10.5194/acp-25-13161-2025, https://doi.org/10.5194/acp-25-13161-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                The 2022 Hunga eruption caused unprecedented stratospheric water injection, triggering unique atmospheric impacts. This study combines observations and model simulations, projecting a stratospheric water vapor anomaly lasting 4–7 years, with significant temperature variations and ozone depletion in the upper atmosphere lasting 7–10 years. These findings offer critical insights into the role of stratospheric water vapor in shaping climate and atmospheric chemistry.
                                            
                                            
                                        Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elizabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Peter R. Colarco, Sandip Dhomse, Lola Falletti, Eric Fleming, Ben Johnson, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
                                    Geosci. Model Dev., 18, 5487–5512, https://doi.org/10.5194/gmd-18-5487-2025, https://doi.org/10.5194/gmd-18-5487-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model–observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goals of this activity: (1) to evaluate the climate model performance and (2) to understand the Earth system responses to this eruption.
                                            
                                            
                                        Ewa M. Bednarz, Amy H. Butler, Xinyue Wang, Zhihong Zhuo, Wandi Yu, Georgiy Stenchikov, Matthew Toohey, and Yunqian Zhu
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-1970, https://doi.org/10.5194/egusphere-2025-1970, 2025
                                    Short summary
                                    Short summary
                                            
                                                Injection of sulfur and water vapour by the Hunga volcanic eruption significantly altered chemical composition and radiative budget of the stratosphere. Yet, whether the eruption could also affect surface climate, especially via indirect pathways, remains poorly understood. Here we investigate these effects using large ensembles of simulations with the CESM2(WACCM6) Earth system model.
                                            
                                            
                                        Zhihong Zhuo, Herman F. Fuglestvedt, Matthew Toohey, and Kirstin Krüger
                                    Atmos. Chem. Phys., 24, 6233–6249, https://doi.org/10.5194/acp-24-6233-2024, https://doi.org/10.5194/acp-24-6233-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                This work simulated volcanic eruptions with varied eruption source parameters under different initial conditions with a fully coupled Earth system model. We show that initial atmospheric conditions control the meridional distribution of volcanic volatiles and modulate volcanic forcing and subsequent climate and environmental impacts of tropical and Northern Hemisphere extratropical eruptions. This highlights the potential for predicting these impacts as early as the first post-eruption month.
                                            
                                            
                                        Zhihong Zhuo, Ingo Kirchner, Stephan Pfahl, and Ulrich Cubasch
                                    Atmos. Chem. Phys., 21, 13425–13442, https://doi.org/10.5194/acp-21-13425-2021, https://doi.org/10.5194/acp-21-13425-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                The impact of volcanic eruptions varies with eruption season and latitude. This study simulated eruptions at different latitudes and in different seasons with a fully coupled climate model. The climate impacts of northern and southern hemispheric eruptions are reversed but are insensitive to eruption season. Results suggest that the regional climate impacts are due to the dynamical response of the climate system to radiative effects of volcanic aerosols and the subsequent regional feedbacks.
                                            
                                            
                                        Zhihong Zhuo, Xinyue Wang, Yunqian Zhu, Wandi Yu, Ewa M. Bednarz, Eric Fleming, Peter R. Colarco, Shingo Watanabe, David Plummer, Georgiy Stenchikov, William Randel, Adam Bourassa, Valentina Aquila, Takashi Sekiya, Mark R. Schoeberl, Simone Tilmes, Jun Zhang, Paul J. Kushner, and Francesco S. R. Pausata
                                    Atmos. Chem. Phys., 25, 13161–13176, https://doi.org/10.5194/acp-25-13161-2025, https://doi.org/10.5194/acp-25-13161-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                The 2022 Hunga eruption caused unprecedented stratospheric water injection, triggering unique atmospheric impacts. This study combines observations and model simulations, projecting a stratospheric water vapor anomaly lasting 4–7 years, with significant temperature variations and ozone depletion in the upper atmosphere lasting 7–10 years. These findings offer critical insights into the role of stratospheric water vapor in shaping climate and atmospheric chemistry.
                                            
                                            
                                        Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elizabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Peter R. Colarco, Sandip Dhomse, Lola Falletti, Eric Fleming, Ben Johnson, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
                                    Geosci. Model Dev., 18, 5487–5512, https://doi.org/10.5194/gmd-18-5487-2025, https://doi.org/10.5194/gmd-18-5487-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model–observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goals of this activity: (1) to evaluate the climate model performance and (2) to understand the Earth system responses to this eruption.
                                            
                                            
                                        Ewa M. Bednarz, Amy H. Butler, Xinyue Wang, Zhihong Zhuo, Wandi Yu, Georgiy Stenchikov, Matthew Toohey, and Yunqian Zhu
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-1970, https://doi.org/10.5194/egusphere-2025-1970, 2025
                                    Short summary
                                    Short summary
                                            
                                                Injection of sulfur and water vapour by the Hunga volcanic eruption significantly altered chemical composition and radiative budget of the stratosphere. Yet, whether the eruption could also affect surface climate, especially via indirect pathways, remains poorly understood. Here we investigate these effects using large ensembles of simulations with the CESM2(WACCM6) Earth system model.
                                            
                                            
                                        Zhihong Zhuo, Herman F. Fuglestvedt, Matthew Toohey, and Kirstin Krüger
                                    Atmos. Chem. Phys., 24, 6233–6249, https://doi.org/10.5194/acp-24-6233-2024, https://doi.org/10.5194/acp-24-6233-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                This work simulated volcanic eruptions with varied eruption source parameters under different initial conditions with a fully coupled Earth system model. We show that initial atmospheric conditions control the meridional distribution of volcanic volatiles and modulate volcanic forcing and subsequent climate and environmental impacts of tropical and Northern Hemisphere extratropical eruptions. This highlights the potential for predicting these impacts as early as the first post-eruption month.
                                            
                                            
                                        Ulrich Cubasch
                                    E&G Quaternary Sci. J., 70, 225–227, https://doi.org/10.5194/egqsj-70-225-2021, https://doi.org/10.5194/egqsj-70-225-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Flohn's publication discusses the state of knowledge of the Pleistocene climate from the perspective of atmospheric sciences, which in 1963 was mainly based on geological and geomorphological evidence. The paper discusses to what extent Flohn's conclusions are still valid and how new findings, methods, and ideas have added to our present-day picture of the Pleistocene climate.
                                            
                                            
                                        Zhihong Zhuo, Ingo Kirchner, Stephan Pfahl, and Ulrich Cubasch
                                    Atmos. Chem. Phys., 21, 13425–13442, https://doi.org/10.5194/acp-21-13425-2021, https://doi.org/10.5194/acp-21-13425-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                The impact of volcanic eruptions varies with eruption season and latitude. This study simulated eruptions at different latitudes and in different seasons with a fully coupled climate model. The climate impacts of northern and southern hemispheric eruptions are reversed but are insensitive to eruption season. Results suggest that the regional climate impacts are due to the dynamical response of the climate system to radiative effects of volcanic aerosols and the subsequent regional feedbacks.
                                            
                                            
                                        Trang Van Pham, Christian Steger, Burkhardt Rockel, Klaus Keuler, Ingo Kirchner, Mariano Mertens, Daniel Rieger, Günther Zängl, and Barbara Früh
                                    Geosci. Model Dev., 14, 985–1005, https://doi.org/10.5194/gmd-14-985-2021, https://doi.org/10.5194/gmd-14-985-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                A new regional climate model was prepared based on a weather forecast model. Slow processes of the climate system such as ocean state development and greenhouse gas emissions were implemented. A model infrastructure and evaluation tools were also prepared to facilitate long-term simulations and model evalution. The first ICON-CLM results were close to observations and comparable to those from COSMO-CLM, the recommended model being used at the Deutscher Wetterdienst and CLM Community.
                                            
                                            
                                        Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
                                    Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
                                    Short summary
                                    Short summary
                                            
                                                The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
                                            
                                            
                                        Cited articles
                        
                        Adams, J. B., Mann, M. E., and Ammann, C. M.: Proxy evidence for an El
Niño-like response to volcanic forcing, Nature, 426, 274–278,
https://doi.org/10.1038/nature02101, 2003. a, b, c
                    
                
                        
                        Anchukaitis, K. J., Buckley, B. M., Cook, E. R., Cook, B. I., D'Arrigo, R. D.,
and Ammann, C. M.: Influence of volcanic eruptions on the climate of the
Asian monsoon region, Geophys. Res. Lett., 37, L22703,
https://doi.org/10.1029/2010gl044843, 2010. a
                    
                
                        
                        Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D. B., Huang, X., Zhao,
Y., Sato, T., John B. Birks, H., Boomer, I., Chen, J., An, C., and
Wünnemann, B.: Holocene moisture evolution in arid central Asia and its
out-of-phase relationship with Asian monsoon history,
Quaternary Sci. Rev., 27, 351–364, https://doi.org/10.1016/j.quascirev.2007.10.017, 2008. a, b, c
                    
                
                        
                        Chiang, J. C. H., Swenson, L. M., and Kong, W.: Role of seasonal transitions
and the westerlies in the interannual variability of the East Asian summer
monsoon precipitation, Geophys. Res. Lett., 44, 3788–3795,
https://doi.org/10.1002/2017gl072739, 2017. a
                    
                
                        
                        Colose, C. M., LeGrande, A. N., and Vuille, M.: Hemispherically asymmetric volcanic forcing of tropical hydroclimate during the last millennium, Earth Syst. Dynam., 7, 681–696, https://doi.org/10.5194/esd-7-681-2016, 2016. a, b
                    
                
                        
                        Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D'Arrigo, R. D., Jacoby,
G. C., and Wright, W. E.: Asian monsoon failure and megadrought during the
last millennium, Science, 328, 486–489, https://doi.org/10.1126/science.1185188, 2010. a
                    
                
                        
                        Crowley, T. J., ZieLinsKi, G., Vinther, B., Udisti, R., Kreutz, K., Cole-Dai,
J., and Castellano, E.: Volcanism and the Little Ice Age, PAGES news, 16,
22–23, https://doi.org/10.22498/pages.16.2.22, 2008. a
                    
                
                        
                        Dando, W. A.: Asia, Climates of Siberia, Central and East Asia, 102–114,
Springer Netherlands, Dordrecht, https://doi.org/10.1007/1-4020-3266-8_19, 2005. a, b
                    
                
                        
                        Dee, S. G., Cobb, K. M., Emile-Geay, J., Ault, T. R., Edwards, R. L., Cheng,
H., and Charles, C. D.: No consistent ENSO response to volcanic forcing over
the last millennium, Science, 367, 1477–1481, https://doi.org/10.1126/science.aax2000,
2020. a
                    
                
                        
                        Dogar, M. M. and Sato, T.: Regional Climate Response of Middle Eastern,
African, and South Asian Monsoon Regions to Explosive Volcanism and ENSO
Forcing, J. Geophys. Res.-Atmos., 124, 7580–7598, https://doi.org/10.1029/2019JD030358, 2019. a, b
                    
                
                        
                        Gao, C. and Gao, Y.: Revisited Asian Monsoon Hydroclimate Response to Volcanic
Eruptions, J. Geophys. Res., 123, 7883–7896,
https://doi.org/10.1029/2017JD027907, 2018. a
                    
                
                        
                        Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the past
1500 years: An improved ice core-based index for climate models, J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008jd010239, 2008. a, b, c
                    
                
                        
                        Haurwitz, M. W. and Brier, G. W.: A Critique of the Superposed Epoch Analysis
Method: Its Application to Solar–Weather Relations, Mon. Weather Rev.,
109, 2074–2079, https://doi.org/10.1175/1520-0493(1981)109<2074:ACOTSE>2.0.CO;2, 1981. a
                    
                
                        
                        Haywood, J. M., Jones, A., Bellouin, N., and Stephenson, D.: Asymmetric forcing
from stratospheric aerosols impacts Sahelian rainfall, Nat. Clim. Change,
3, 660–665, https://doi.org/10.1038/nclimate1857, 2013. a, b, c, d
                    
                
                        
                        Iles, C. E., Hegerl, G. C., Schurer, A. P., and Zhang, X.: The effect of
volcanic eruptions on global precipitation, J. Geophys. Res.-Atmos., 118, 8770–8786, https://doi.org/10.1002/jgrd.50678, 2013. a, b
                    
                
                        
                        Jacobi, J., Perrone, D., Duncan, L. L., and Hornberger, G.: A tool for
calculating the Palmer drought indices, Water Resour. Res., 49,
6086–6089, https://doi.org/10.1002/wrcr.20342, 2013. a
                    
                
                        
                        Joseph, R. and Zeng, N.: Seasonally Modulated Tropical Drought Induced by
Volcanic Aerosol, J. Climate, 24, 2045–2060,
https://doi.org/10.1175/2009jcli3170.1, 2011. a
                    
                
                        
                        Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L. P., Egorova, T., Evans, M., González-Rouco, J. F., Goosse, H., Hurtt, G. C., Joos, F., Kaplan, J. O., Khodri, M., Klein Goldewijk, K., Krivova, N., LeGrande, A. N., Lorenz, S. J., Luterbacher, J., Man, W., Maycock, A. C., Meinshausen, M., Moberg, A., Muscheler, R., Nehrbass-Ahles, C., Otto-Bliesner, B. I., Phipps, S. J., Pongratz, J., Rozanov, E., Schmidt, G. A., Schmidt, H., Schmutz, W., Schurer, A., Shapiro, A. I., Sigl, M., Smerdon, J. E., Solanki, S. K., Timmreck, C., Toohey, M., Usoskin, I. G., Wagner, S., Wu, C.-J., Yeo, K. L., Zanchettin, D., Zhang, Q., and Zorita, E.: The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations, Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, 2017. a
                    
                
                        
                        Khodri, M., Izumo, T., Vialard, J., Janicot, S., Cassou, C., Lengaigne, M.,
Mignot, J., Gastineau, G., Guilyardi, E., Lebas, N., Robock, A., and
McPhaden, M. J.: Tropical explosive volcanic eruptions can trigger El Niño by
cooling tropical Africa, Nat. Commun., 8, 778,
https://doi.org/10.1038/s41467-017-00755-6, 2017. a, b
                    
                
                        
                        Liu, F., Gao, C., Chai, J., Robock, A., Wang, B., Li, J., Zhang, X., Huang, G.,
and Dong, W.: Tropical volcanism enhanced the East Asian summer monsoon
during the last millennium, Nat. Commun., 13, 3429,
https://doi.org/10.1038/s41467-022-31108-7, 2022. a, b
                    
                
                        
                        Palmer, W. C.: Meteorological Drought, Weather Bureau, 45, 1–58, 1965. a
                    
                
                        
                        Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38,
191–219, 2000. a
                    
                
                        
                        Robock, A.: Pinatubo eruption. The climatic aftermath, Science, 295, 1242–12424,
https://doi.org/10.1126/science.1069903, 2002. a
                    
                
                        
                        Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011. a, b
                    
                
                        
                        Schulzweida, U.: CDO User Guide (2.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7112925, 2022. a
                    
                
                        
                        Schurer, A. P., Ballinger, A. P., Friedman, A. R., and Hegerl, G. C.: Human
influence strengthens the contrast between tropical wet and dry regions,
Environ. Res. Lett., 15, 104026, https://doi.org/10.1088/1748-9326/ab83ab, 2020. a, b
                    
                
                        
                        Simpson, I. R., Tilmes, S., Richter, J. H., Kravitz, B., MacMartin, D. G.,
Mills, M. J., Fasullo, J. T., and Pendergrass, A. G.: The Regional
Hydroclimate Response to Stratospheric Sulfate Geoengineering and the Role of
Stratospheric Heating, J. Geophys. Res.-Atmos., 124,
12587–12616, https://doi.org/10.1029/2019JD031093, 2019. a
                    
                
                        
                        Stevenson, S., Otto-Bliesner, B., Fasullo, J., and Brady, E.: “El Niño
Like” Hydroclimate Responses to Last Millennium Volcanic Eruptions, J. Climate, 29, 2907–2921, https://doi.org/10.1175/jcli-d-15-0239.1, 2016. a
                    
                
                        
                        Timmreck, C.: Modeling the climatic effects of large explosive volcanic
eruptions, WIRES Clim. Change, 3, 545–564,
https://doi.org/10.1002/wcc.192, 2012. a, b
                    
                
                        
                        Toohey, M. and Sigl, M.: Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE, Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, 2017. a
                    
                
                        
                        Toohey, M., Krüger, K., Schmidt, H., Timmreck, C., Sigl, M., Stoffel, M., and
Wilson, R.: Disproportionately strong climate forcing from extratropical
explosive volcanic eruptions, Nat. Geosci., 12, 100–107,
https://doi.org/10.1038/s41561-018-0286-2, 2019. a
                    
                
                        
                        Trenberth, K. E. and Dai, A.: Effects of Mount Pinatubo volcanic eruption on
the hydrological cycle as an analog of geoengineering, Geophys. Res. Lett., 34, L15702, https://doi.org/10.1029/2007gl030524, 2007. a, b
                    
                
                        
                        Wang, B. and Fan, Z.: Choice of South Asian Summer Monsoon Indices, B. Am. Meteorol. Soc., 80, 629–638, 1999. a
                    
                
                        
                        Wang, B., Wu, Z., Li, J., Liu, J., Chang, C.-P., Ding, Y., and Wu, G.: How to
Measure the Strength of the East Asian Summer Monsoon, J. Climate,
21, 4449–4463, https://doi.org/10.1175/2008jcli2183.1, 2008. a
                    
                
                        
                        Wang, P., Clemens, S., Beaufort, L., Braconnot, P., Ganssen, G., Jian, Z.,
Kershaw, P., and Sarnthein, M.: Evolution and variability of the Asian
monsoon system: state of the art and outstanding issues, Quaternary Sci.
Rev., 24, 595–629, https://doi.org/10.1016/j.quascirev.2004.10.002, 2005. a
                    
                
                        
                        Webb, R., Rosenzweig, C., and Levine, E.: Global Soil Texture and Derived
Water-Holding Capacities (Webb et al.), The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) [data set], https://doi.org/10.3334/ORNLDAAC/548, 2000. a
                    
                
                        
                        Webster, P. J. and Yang, S.: Monsoon and ENSO: Selectively interactive systems,
Q. J. Roy. Meteor. Soc., 118, 877–926, 1992. a
                    
                
                        
                        Yang, W., Gabriel A., Vecchi Stephan, F., Larry W., H., David J., L.,
Ãngel G., M., David, P., and Seth, U.: Climate Impacts From Large Volcanic
Eruptions in a High-Resolution Climate Model: The Importance of Forcing
Structure, Geophys. Res. Lett., 46, 7690–7699, https://doi.org/10.1029/2019GL082367,
2019. a
                    
                
                        
                        Zambri, B. and Robock, A.: Winter warming and summer monsoon reduction after
volcanic eruptions in Coupled Model Intercomparison Project 5 (CMIP5)
simulation, Geophys. Res. Lett., 43, 10920–10928,
https://doi.org/10.1002/2016GL070460, 2016. a, b
                    
                
                        
                        Zanchettin, D., Khodri, M., Timmreck, C., Toohey, M., Schmidt, A., Gerber, E. P., Hegerl, G., Robock, A., Pausata, F. S. R., Ball, W. T., Bauer, S. E., Bekki, S., Dhomse, S. S., LeGrande, A. N., Mann, G. W., Marshall, L., Mills, M., Marchand, M., Niemeier, U., Poulain, V., Rozanov, E., Rubino, A., Stenke, A., Tsigaridis, K., and Tummon, F.: The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, 2016. a, b
                    
                
                        
                        Zanchettin, D., Timmreck, C., Khodri, M., Schmidt, A., Toohey, M., Abe, M., Bekki, S., Cole, J., Fang, S.-W., Feng, W., Hegerl, G., Johnson, B., Lebas, N., LeGrande, A. N., Mann, G. W., Marshall, L., Rieger, L., Robock, A., Rubinetti, S., Tsigaridis, K., and Weierbach, H.: Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment, Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, 2022.
 a, b
                    
                
                        
                        Zhuo, Z., Gao, C., Kirchner, I., and Cubasch, U.: Impact of Volcanic Aerosols
on the Hydrology of the Asian Monsoon and Westerlies‐Dominated Subregions:
Comparison of Proxy and Multimodel Ensemble Means, J. Geophys. Res.-Atmos., 125, e2020JD032831, https://doi.org/10.1029/2020jd032831, 2020. a, b, c, d, e, f, g, h
                    
                Short summary
            Precipitation distribution is uneven in monsoon and westerlies-dominated subregions of Asia. Multi-model data from PMIP3 and CMIP5 show a distinct inverse pattern of climatological conditions after NHVAI, with an intensified aridity in the relatively wettest area but a weakened aridity in the relatively driest area of the AMR. The hydrological impacts relate to the dynamical response of the climate system to the radiative effect of volcanic aerosol and the subsequent local physical feedbacks.
            Precipitation distribution is uneven in monsoon and westerlies-dominated subregions of Asia....
            
         
 
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
             
             
            