Articles | Volume 19, issue 4
https://doi.org/10.5194/cp-19-765-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-765-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Neogene nannofossil assemblages as tracers of ocean circulation and paleoproductivity over the NW Australian shelf
Boris-Theofanis Karatsolis
CORRESPONDING AUTHOR
Department of Earth Sciences, Uppsala University, Uppsala, 752 36,
Sweden
Jorijntje Henderiks
Department of Earth Sciences, Uppsala University, Uppsala, 752 36,
Sweden
Cited articles
Anand, P., Elderfield, H., and Conte, M. H: Calibration of Mg/Ca thermometry
in planktonic foraminifera from a sediment trap time series, Paleoceanography, 18, 1050, https://doi.org/10.1029/2002PA000846, 2003.
Aubry, M.-P.: A major Pliocene coccolithophore turnover: Change in morphological strategy in the photic zone, Geol. Soc. Am., 424, 51,
https://doi.org/10.1130/SPE424, 2007.
Auer, G., De Vleeschouwer, D., Smith, R. A., Bogus, K., Groeneveld, J.,
Grunert, P., Castañeda, I. S., Petrick, B., Christensen, B., Fulthorpe,
C., Gallagher, S. J., and Henderiks, J.: Timing and Pacing of Indonesian
Throughflow Restriction and Its Connection to Late Pliocene Climate Shifts,
Paleoceanogr. Paleoclim., 34, 635–657, https://doi.org/10.1029/2018PA003512, 2019.
Auer, G., Petrick, B., Yoshimura, T., Mamo, B. L., Reuning, L., Takayanagi,
H., De Vleeschouwer, D., and Martinez-Garcia, A.: Intensified organic carbon
burial on the Australian shelf after the Middle Pleistocene transition,
Quaternary Sci. Rev., 262, 106965, https://doi.org/10.1016/j.quascirev.2021.106965, 2021.
Ballegeer, A. M., Flores, J. A., Sierro, F. J., and Andersen, N.: Monitoring
fluctuations of the Subtropical Front in the Tasman Sea between 3.45 and
2.45 Ma (ODP site 1172), Palaeogeogr. Palaeoclim. Palaeoecol., 313–314,
215–224, https://doi.org/10.1016/j.palaeo.2011.11.001, 2012.
Beaufort, L., Lancelot, Y., Camberlin, P., Cayre, O., Vincent, E., Bassinot,
F., and Labeyrie, L.: Insolation cycles as a major control of equatorial
Indian Ocean primary production, Science, 278, 1451–1454,
https://doi.org/10.1126/science.278.5342.1451, 1997.
Boeckel, B. and Baumann, K.-H.: Vertical and lateral variations in coccolithophore community structure across the subtropical frontal zone in
the South Atlantic Ocean, Mar. Micropaleontol., 67, 255–273,
https://doi.org/10.1016/j.marmicro.2008.01.014, 2008.
Bolton, C. T., Hernández-Sánchez, M. T., Fuertes, M. Á., González-Lemos, S., Abrevaya, L., Mendez-Vicente, A., Flores, J. A.,
Probert, I., Giosan, L., Johnson, J., and Stoll, H. M.: Decrease in
coccolithophore calcification and CO2 since the middle Miocene, Nat. Commun., 7, 10284, https://doi.org/10.1038/ncomms10284, 2016.
Bordiga, M., Bartol, M., and Henderiks, J.: Absolute nannofossil abundance
estimates: Quantifying the pros and cons of different techniques, Rev.
Micropaleontol., 58, 155–165, https://doi.org/10.1016/j.revmic.2015.05.002, 2015.
Bralower, T. J.: Evidence of surface water oligotrophy during the Paleocene-Eocene thermal maximum: Nannofossil assemblage data from Ocean
Drilling Program Site 690, Maud Rise, Weddell Sea, Paleoceanography, 17,
583–592, https://doi.org/10.1029/2001pa000662, 2002.
Chen, M., Pattiaratchi, C. B., Ghadouani, A., and Hanson, C.: Influence of
Storm Events on Chlorophyll Distribution Along the Oligotrophic Continental
Shelf Off South-Western Australia, Front. Mar. Sci., 7, 1–19,
https://doi.org/10.3389/fmars.2020.00287, 2020.
Christensen, B. A., Renema, W., Henderiks, J., De Vleeschouwer, D., Groeneveld, J., Castañeda, I. S., Reuning, L., Bogus, K., Auer, G.,
Ishiwa, T., McHugh, C. M., Gallagher, S. J., Fulthorpe, C. S., Mamo, B. L.,
Kominz, M. A., McGregor, H. V., Petrick, B. F., Takayanagi, H., Levin, E.,
Korpanty, C. A., Potts, D. C., Baranwal, S., Franco, D. R., Gurnis, M.,
Haller, C., He, Y., Himmler, T., Iwatani, H., Jatiningrum, R. S., Lee, E.
Y., Rastigar, A., and Zhang, W.: Indonesian Throughflow drove Australian
climate from humid Pliocene to arid Pleistocene, Geophys. Res. Lett., 44, 6914–6925, https://doi.org/10.1002/2017GL072977, 2017.
D'Adamo, N., Fandry, C., Buchan, S., and Domingues, C.: Northern sources of
the Leeuwin Current and the “Holloway Current” on the North West Shelf, J.
Roy. Soc. West. Aust., 92, 53–66, 2009.
Dekens, P. S., Lea, D. W., Pak, D. K., and Spero, H. J.: Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation, Geochem. Geophy. Geosy., 3, 1–29, https://doi.org/10.1029/2001GC000200, 2002.
De Vleeschouwer, D., Petrick, B. F., and Martínez-García, A.: Stepwise Weakening of the Pliocene Leeuwin Current, Geophys. Res. Lett., 46, 8310–8319, https://doi.org/10.1029/2019GL083670, 2019.
De Vleeschouwer, D., Peral, M., Marchegiano, M., Füllberg, A., Meinicke,
N., Pälike, H., Auer, G., Petrick, B., Snoeck, C., Goderis, S., and
Claeys, P.: Plio-Pleistocene Perth Basin water temperatures and Leeuwin Current dynamics (Indian Ocean) derived from oxygen and clumped-isotope
paleothermometry, Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, 2022.
Dickens, G. R. and Owen, R. M.: The Latest Miocene-Early Pliocene biogenic
bloom: A revised Indian Ocean perspective, Mar. Geol., 161, 75–91,
https://doi.org/10.1016/S0025-3227(99)00057-2, 1999.
Diester-Haass, L., Billups, K., and Emeis, K. C.: In search of the late
Miocene-early Pliocene “biogenic bloom” in the Atlantic Ocean (Ocean
Drilling Program Sites 982, 925 and 1088), Paleoceanography, 20, 1–13,
https://doi.org/10.1029/2005PA001139, 2005.
Du, Y. and Qu, T.: Three inflow pathways of the Indonesian throughflow as
seen from the simple ocean data assimilation, Dynam. Atmos. Ocean., 50, 233–256, https://doi.org/10.1016/j.dynatmoce.2010.04.001, 2010.
Eglinton, T. I., Conte, M. H., Eglinton, G., and Hayes, J. M.: Proceedings
of a workshop on alkenone-based paleoceanographic indicators, Geochem. Geophy. Geosy., 2, 1031, https://doi.org/10.1029/2000GC000122, 2001.
Farrell, J. W., Raffi, I., Janecek, T. C., Murray, D. W., Levitan, M., Dadey, K. A., Emeis, K.-C., Lyle, M., Flores, J.-A., and Hovan, S.: Late Neogene Sedimentation Patterns in the Eastern Equatorial Pacific, Proc. Ocean Drill. Program, 138 Sci. Results, https://doi.org/10.2973/odp.proc.sr.138.143.1995, 1995.
Fedorov, A. V., Dekens, P. S., McCarthy, M., Ravelo, A. C., DeMenocal, P. B., Barreiro, M., Pacanowski, R. C., and Philander, S. G.: The Pliocene paradox (mechanisms for a permanent El Niño), Science, 312, 1485–1489, https://doi.org/10.1126/science.1122666, 2006.
Fedorov, A. V., Brierley, C. M., and Emanuel, K.: Tropical cyclones and permanent El Niño in the early Pliocene epoch, Nature, 463, 1066–1070, https://doi.org/10.1038/nature08831, 2010.
Feng, M., Meyers, G., Pearce, A., and Wijffels, S.: Annual and interannual
variations of the Leeuwin Current at 32∘ S, J. Geophys. Res.-Oceans, 108, 3355, https://doi.org/10.1029/2002jc001763, 2003.
Feng, M., Waite, A. M., and Thompson, P. A.: Climate variability and ocean
production in the Leeuwin Current system off the west coast of Western
Australia, J. Roy. Soc. West. Aust., 92, 67–81, 2009.
Furnas, M.: Intra-seasonal and inter-annual variations in phytoplankton biomass, primary production and bacterial production at North West Cape,
Western Australia: Links to the 1997–1998 El Niño event, Cont. Shelf
Res., 27, 958–980, https://doi.org/10.1016/j.csr.2007.01.002, 2007.
Gallagher, S. J., Wallace, M. W., Li, C. L., Kinna, B., Bye, J. T., Akimoto,
K., and Torii, M.: Neogene history of the West Pacific Warm Pool, Kuroshio
and Leeuwin currents, Paleoceanography, 24, PA1206, https://doi.org/10.1029/2008PA001660, 2009.
Gallagher, S. J., Fulthorpe, C. S., Bogus, K., Auer, G., Baranwal, S.,
Castañeda, I. S., Christensen, B. A., De Vleeschouwer, D., Franco, D. R.,
Groeneveld, J., Gurnis, M., Haller, C., He, Y., Henderiks, J., Himmler, T.,
Ishiwa, T., Iwatani, H., Jatiningrum, R. S., Kominz, M. A., Korpanty, C. A.,
Lee, E. Y., Levin, E., Mamo, B. L., McGregor, H. V., McHugh, C. M., Petrick,
B. F., Potts, D. C., Rastegar Lari, A., Renema, W., Reuning, L., Takayanagi,
H., and Zhang, W.: Expedition 356 summary, in: Indonesian Throughflow, edited by: Gallagher, S. J., Fulthorpe, C. S., Bogus, K., and the Expedition 356 Scientists, Proceedings of the International Ocean Discovery Program 356, College Station, TX, https://doi.org/10.14379/iodp.proc.356.101.2017, 2017a.
Gallagher, S. J., Fulthorpe, C. S., Bogus, K., Auer, G., Baranwal, S.,
Castañeda, I. S., Christensen, B. A., De Vleeschouwer, D., Franco, D. R.,
Groeneveld, J., Gurnis, M., Haller, C., He, Y., Henderiks, J., Himmler, T.,
Ishiwa, T., Iwatani, H., Jatiningrum, R. S., Kominz, M. A., Korpanty, C. A.,
Lee, E. Y., Levin, E., Mamo, B. L., McGregor, H. V., McHugh, C. M., Petrick,
B. F., Potts, D. C., Rastegar Lari, A., Renema, W., Reuning, L., Takayanagi,
H., and Zhang, W.: Site U1463, in: Indonesian Throughflow, edited by: Gallagher, S. J., Fulthorpe, C. S., Bogus, K., and the Expedition 356 Scientists, Proceedings of the International Ocean Discovery Program 356, College Station, TX, https://doi.org/10.14379/iodp.proc.356.108.2017, 2017b.
Gallagher, S. J., Fulthorpe, C. S., Bogus, K., Auer, G., Baranwal, S.,
Castañeda, I. S., Christensen, B. A., De Vleeschouwer, D., Franco, D. R.,
Groeneveld, J., Gurnis, M., Haller, C., He, Y., Henderiks, J., Himmler, T.,
Ishiwa, T., Iwatani, H., Jatiningrum, R. S., Kominz, M. A., Korpanty, C. A.,
Lee, E. Y., Levin, E., Mamo, B. L., McGregor, H. V., McHugh, C. M., Petrick,
B. F., Potts, D. C., Rastegar Lari, A., Renema, W., Reuning, L., Takayanagi,
H., and Zhang, W.: Site U1464, in: Indonesian Throughflow, edited by: Gallagher, S. J., Fulthorpe, C. S., Bogus, K., and the Expedition 356 Scientists, Proceedings of the International Ocean Discovery Program 356, College Station, TX, https://doi.org/10.14379/iodp.proc.356.109.2017, 2017c.
Gibbs, S., Shackleton, N., and Young, J.: Orbitally forced climate signals in
mid-Pliocene nannofossil assemblages, Mar. Micropaleontol., 51, 39–56, https://doi.org/10.1016/j.marmicro.2003.09.002, 2004.
Gibbs, S. J., Young, J. R., Bralower, T. J., and Shackleton, N. J.: Nannofossil evolutionary events in the mid-Pliocene: An assessment of the
degree of synchrony in the extinctions of Reticulofenestra pseudoumbilicus and Sphenolithus abies, Palaeogeogr. Palaeoclim. Palaeoecol., 217, 155–172, https://doi.org/10.1016/j.palaeo.2004.11.005, 2005.
Gibbs, S. J., Stoll, H. M., Bown, P. R., and Bralower, T. J.: Ocean acidification and surface water carbonate production across the Paleocene-Eocene thermal maximum, Earth Planet. Sc. Lett., 295, 583–592, https://doi.org/10.1016/j.epsl.2010.04.044, 2010.
Godfrey, J. S.: The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: A review, J. Geophys. Res.-Oceans, 101, 12217–12237, https://doi.org/10.1029/95JC03860, 1996.
Godfrey, J. S. and Ridgway, K. R.: The Large-Scale Environment of the Poleward-Flowing Leeuwin Current, Western Australia: Longshore Steric Height
Gradients, Wind Stresses and Geostrophic Flow, J. Phys. Oceanogr., 15, 481–495, https://doi.org/10.1175/1520-0485(1985)015<0481:TLSEOT>2.0.CO;2, 1985.
Godfrey, J. S., Vaudrey, D. J., and Hahn, S. D.: Observations of the Shelf-Edge Current South of Australia, Winter 1982, J. Phys. Oceanogr., 16, 668–679, https://doi.org/10.1175/1520-0485(1986)016<0668:OOTSEC>2.0.CO;2, 1986.
Gordon, A. L., Ma, S., Olson, D. B., Hacker, P., Ffield, A., Talley, L. D.,
Wilson, D., and Baringer, M.: Advection and diffusion of Indonesian throughflow water within the Indian Ocean South Equatorial Current, Geophys.
Res. Lett., 24, 2573–2576, https://doi.org/10.1029/97GL01061, 1997.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M. (Eds.): The
Geologic Time Scale 2012, in: Vol. 2, Elsevier, Amsterdam, p. 1144, ISBN 9780444594488, 2012.
Groeneveld, J., De Vleeschouwer, D., McCaffrey, J. C., and Gallagher, S. J.:
Dating the Northwest Shelf of Australia since the Pliocene, Geochem. Geophy. Geosy., 22, 1–20, https://doi.org/10.1029/2020GC009418, 2021.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
Statistics Software Package for education and data analysis, Palaeontol. Electron., 4, 1–9, 2001.
Hannisdal, B., Henderiks, J., and Liow, L. H.: Long-term evolutionary and
ecological responses of calcifying phytoplankton to changes in atmospheric
CO2, Global Change Biol., 18(12), 3504–3516, https://doi.org/10.1111/gcb.12007, 2012.
Haq, B. U.: Biogeographic history of Miocene calcareous nannoplankton and
paleoceanography of the Atlantic Ocean, Micropaleontology, 26, 414–443,
https://doi.org/10.2307/1485353, 1980.
Haq, B. U. and Lohmann, G. P.: Early Cenozoic calcareous nannoplankton
biogeography of the Atlantic Ocean, Mar. Micropaleontol., 1, 119–194,
https://doi.org/10.1016/0377-8398(76)90008-6, 1976.
Harlay, J., Borges, A. V., Van Der Zee, C., Delille, B., Godoi, R. H. M.,
Schiettecatte, L. S., Roevros, N., Aerts, K., Lapernat, P. E., Rebreanu, L.,
Groom, S., Daro, M. H., Van Grieken, R., and Chou, L.: Biogeochemical study
of a coccolithophore bloom in the northern Bay of Biscay (NE Atlantic Ocean)
in June 2004, Prog. Oceanogr., 86, 317–336, https://doi.org/10.1016/j.pocean.2010.04.029, 2010.
Harris, G., Nilsson, C., Clementson, L., and Thomas, D.: The water masses of
the east coast of Tasmania: Seasonal and interannual variability and the
influence on phytoplankton biomass and productivity, Aust. J. Mar. Freshw.
Res., 38, 569–590, https://doi.org/10.1071/MF9870569, 1987.
He, Y., Wang, H., and Liu, Z.: Development of the Leeuwin Current on the
northwest shelf of Australia through the Pliocene-Pleistocene period, Earth
Planet. Sc. Lett., 559, 116767, https://doi.org/10.1016/j.epsl.2021.116767, 2021.
Henderiks, J., Bartol, M., Pige, N., Karatsolis, B. T.m and Lougheed, B. C.:
Shifts in Phytoplankton Composition and Stepwise Climate Change During the
Middle Miocene, Paleoceanogr. Paleoclim., 35, e2020PA003915, https://doi.org/10.1029/2020PA003915, 2020.
Hermoyian, C. S. and Owen, R. M.: Late Miocene-early Pliocene biogenic
bloom: Evidence from low-productivity regions of the Indian and Atlantic
oceans, Paleoceanography, 16, 95–100, https://doi.org/10.1029/2000PA000501, 2001.
Hirst, G. and Godfrey, J. S.: The Role of Indonesian Throughflow in a Global
Ocean GCM, J. Phys. Oceanogr., 23, 1057–1086,
https://doi.org/10.1175/1520-0485(1993)023<1057:TROITI>2.0.CO;2, 1993.
Holloway, P. E. and Nye, H.: Leeuwin current and wind distributions on the
southern part of the Australian North West Shelf between January 1982 and
July 1983, Mar. Freshw. Res., 36, 123–137, https://doi.org/10.1071/MF9850123, 1985.
Imai, R., Farida, M., Sato, T., and Iryu, Y.: Evidence for eutrophication in
the northwestern Pacific and eastern Indian oceans during the Miocene to
Pleistocene based on the nannofossil accumulation rate, Discoaster abundance, and coccolith size distribution of Reticulofenestra, Mar. Micropaleontol., 116, 15–27, https://doi.org/10.1016/j.marmicro.2015.01.001, 2015.
Imai, R., Sato, T., Chiyonobu, S., and Iryu, Y.: Reconstruction of Miocene to
Pleistocene sea-surface conditions in the eastern Indian Ocean on the basis
of calcareous nannofossil assemblages from ODP Hole 757B, Isl. Arct., 29,
e12373, https://doi.org/10.1111/iar.12373, 2020.
Karas, C., Nürnberg, D., Gupta, A. K., Tiedemann, R., Mohan, K., and
Bickert, T.: Mid-Pliocene climate change amplified by a switch in Indonesian
subsurface throughflow, Nat. Geosci., 2, 434–438, https://doi.org/10.1038/ngeo520,
2009.
Karas, C., Nürnberg, D., Tiedemann, R., and Garbe-Schönberg, D.:
Pliocene Indonesian Throughflow and Leeuwin Current dynamics: Implications
for Indian Ocean polar heat flux, Paleoceanography, 26, 1–9,
https://doi.org/10.1029/2010PA001949, 2011.
Karatsolis, B.-T. and Henderiks, J.: Late Miocene to Pliocene calcareous nannofossil assemblage records and paleotemperature gradients from the NW Australian shelf (IODP Sites U1463, U1464), Zenodo [data set],
https://doi.org/10.5281/zenodo.6965870, 2022.
Karatsolis, B.-T., De Vleeschouwer, D., Groeneveld, J., Christensen, B., and
Henderiks, J.: The Late Miocene to Early Pliocene “Humid Interval” on the
NW Australian Shelf: Disentangling climate forcing from regional basin
evolution, Paleoceanogr. Paleoclim., 35, e2019PA003780, https://doi.org/10.1029/2019PA003780, 2020.
Karatsolis, B.-T., Lougheed, B. C., De Vleeschouwer, D., and Henderiks, J.:
Abrupt conclusion of the late Miocene-early Pliocene biogenic bloom at
4.6–4.4 Ma, Nat. Commun., 13, 1–9, https://doi.org/10.1038/s41467-021-27784-6, 2022.
Kendrick, G. A., Goldberg, N. A., Harvey, E. S., and McDonald, J.: Historical
and contemporary influence of the Leeuwin Current on the marine biota of the
southwestern Australian continental shelf and the Recherche Archipelago, J.
Roy. Soc. West. Aust., 92, 211–219, 2009.
Kim, J.-H., Villanueva, L., Zell, C., and Sinninghe Damsté, J. S.: Biological source and provenance of deep-water derived isoprenoid tetraether
lipids along the Portuguese continental margin, Geochim. Cosmochim. Ac., 172, 177–204, https://doi.org/10.1016/j.gca.2015.09.010, 2016.
Kimura, S., Nakata, H., and Okazaki, Y.: Biological production in meso-scale
eddies caused by frontal disturbances of the Kuroshio Extension, ICES J.
Mar. Sci., 57, 133–142, https://doi.org/10.1006/jmsc.1999.0564, 2000.
Koch, C. and Young, J. R.: A simple weighing and dilution technique for determining absolute abundances of coccoliths from sediment samples, J.
Nannoplankt. Res., 29, 67–69, 2007.
Koslow, J. A., Pesant, S., Feng, M., Pearce, A., Fearns, P., Moore, T., Matear, R., and Waite, A.: The effect of the Leeuwin Current on phytoplankton
biomass and production off Southwestern Australia, J. Geophys. Res.-Oceans,
113, C07050, https://doi.org/10.1029/2007JC004102, 2008.
Longhurst, A.: A major seasonal phytoplankton bloom in the Madagascar Basin,
Deep.-Sea Res. Pt. I, 48, 2413–2422, https://doi.org/10.1016/S0967-0637(01)00024-3, 2001.
Marino, M. and Flores, J. A.: Miocene to Pliocene calcareous nannofossil
biostratigraphy at ODP Leg 177 Sites 1088 and 1090, Mar. Micropaleontol., 45, 291–307, https://doi.org/10.1016/S0377-8398(02)00033-6, 2002.
Müller, P., J., Kirst, G., Ruhland, G., von Storch, I., and Rosell-Melé, A.: Calibration of the alkenone paleotemperature index
based on core-tops from the eastern South Atlantic and the global ocean (60∘ N–60∘ S), Geochim. Cosmochim. Ac., 62, 1757–1772, https://doi.org/10.1016/S0016-7037(98)00097-0, 1998.
O'Dea, S. A., Gibbs, S. J., Bown, P. R., Young, J. R., Poulton, A. J., Newsam, C., and Wilson, P. A.: Coccolithophore calcification response to past
ocean acidification and climate change, Nat. Commun., 5, 1–7,
https://doi.org/10.1038/ncomms6363, 2014.
Okada, H. and Wells, P.: Late quaternary nannofossil indicators of climate
change in two deep-sea cores associated with the Leeuwin Current off Western
Australia, Palaeogeogr. Palaeoclim. Palaeoecol., 131, 413–432,
https://doi.org/10.1016/S0031-0182(97)00014-X, 1997.
Poulton, A. J., Stinchcombe, M. C., Achterberg, E. P., Bakker, D. C. E.,
Dumousseaud, C., Lawson, H. E., Lee, G. A., Richier, S., Suggett, D. J., and
Young, J. R.: Coccolithophores on the north-west European shelf: Calcification rates and environmental controls, Biogeosciences, 11, 3919–3940, https://doi.org/10.5194/bg-11-3919-2014, 2014.
Ridgway, K. R. and Condie, S. A.: The 5500-km-long boundary flow off western
and southern Australia, J. Geophys. Res.-Oceans, 109, 1–18,
https://doi.org/10.1029/2003JC001921, 2004.
Ridgway, K. R. and Godfrey, J. S.: The source of the Leeuwin Current seasonality, J. Geophys. Res.-Oceans, 120, 6843–6864, https://doi.org/10.1002/2015JC011049, 2015.
Shannon, C. E.: A Mathematical Theory of Communication, Bell Syst. Tech. J.,
27, 379–423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, 1948.
Sharples, J., Moore, C. M., Hickman, A. E., Holligan, P. M., Tweddle, J. F.,
Palmer, M. R., and Simpson, J. H.: Internal tidal mixing as a control on
continental margin ecosystems, Geophys. Res. Lett., 36, 1–5,
https://doi.org/10.1029/2009GL040683, 2009.
Smith, M., De Deckker, P., Rogers, J., Brocks, J., Hope, J., Schmidt, S.,
Lopes dos Santos, R., and Schouten, S.: Comparison of , TEX86H and LDI temperature proxies for reconstruction of south-east Australian ocean temperatures, Org. Geochem., 64, 94–104,
https://doi.org/10.1016/j.orggeochem.2013.08.015, 2013.
Stuut, J.-B. W., De Deckker, P., Saavedra-Pellitero, M., Bassinot, F., Drury, A. J., Walczak, M. H., Nagashima, K., and Murayama, M.: A 5.3-million-year history of monsoonal precipitation in northwestern Australia, Geophys. Res. Lett., 46, 6946–6954, https://doi.org/10.1029/2019GL083035, 2020.
Suchéras-Marx, B., Escarguel, G., Ferreira, J., and Hammer, Ø.:
Statistical confidence intervals for relative abundances and abundance-based
ratios: Simple practical solutions for an old overlooked question, Mar.
Micropaleontol., 151, 101751, https://doi.org/10.1016/j.marmicro.2019.101751, 2019.
Takahashi, K. and Okada, H.: The paleoceanography for the last 30,000 years
in the Southeastern Indian Ocean by means of calcareous nannofossils, Mar.
Micropaleontol., 40, 83–103, https://doi.org/10.1016/S0377-8398(00)00033-5, 2000.
Thierstein, H. R. and Young, J. R. (Eds.): Coccolithophores: From Molecular
Processes to Global Impact, Springer, Berlin, Heidelberg, 565 pp., https://doi.org/10.1007/978-3-662-06278-4, 2004.
Thompson, P. A., Pesant, S., and Waite, A. M.: Contrasting the vertical
differences in the phytoplankton biology of a dipole pair of eddies in the
south-eastern Indian Ocean, Deep-Sea Res. Pt. II, 54, 1003–1028, https://doi.org/10.1016/j.dsr2.2006.12.009, 2007.
Thompson, P. A., Wild-Allen, K., Lourey, M., Rousseaux, C., Waite, A. M.,
Feng, M., and Beckley, L. E.: Nutrients in an oligotrophic boundary current:
Evidence of a new role for the Leeuwin Current, Prog. Oceanogr., 91, 345–359, https://doi.org/10.1016/j.pocean.2011.02.011, 2011.
van der Weijst, C. M. H., van der Laan, K. J., Peterse, F., Reichart, G.-J.,
Sangiorgi, F., Schouten, S., Veenstra, T. J. T., and Sluijs, A.: A
15-million-year surface- and subsurface-integrated TEX86 temperature
record from the eastern equatorial Atlantic, Clim. Past, 18, 1947–1962,
https://doi.org/10.5194/cp-18-1947-2022, 2022.
Van Oostende, N., Harlay, J., Vanelslander, B., Chou, L., Vyverman, W., and
Sabbe, K.: Phytoplankton community dynamics during late spring coccolithophore blooms at the continental margin of the Celtic Sea (North
East Atlantic, 2006–2008), Prog. Oceanogr., 104, 1–16, https://doi.org/10.1016/j.pocean.2012.04.016, 2012.
Wade, B. S. and Bown, P. R.: Calcareous nannofossils in extreme environments: The Messinian Salinity Crisis, Polemi Basin, Cyprus, Palaeogeogr. Palaeoclim. Palaeoecol., 233, 271–286, https://doi.org/10.1016/j.palaeo.2005.10.007, 2006.
Wara, M. W., Ravelo, A. C., and Delaney, M. L.: Climate change: Permanent El Niño-like conditions during the Pliocene warm period, Science, 309, 758–761, https://doi.org/10.1126/science.1112596, 2005.
Young, J.: Size variation of Neogene Reticulofenestra coccoliths from Indian Ocean DSDP Cores, J. Micropalaeontol., 9, 71–85, https://doi.org/10.1144/jm.9.1.71, 1990.
Short summary
Ocean circulation around NW Australia plays a key role in regulating the climate in the area and is characterised by seasonal variations in the activity of a major boundary current named the Leeuwin Current. By investigating nannofossils found in sediment cores recovered from the NW Australian shelf, we reconstructed ocean circulation in the warmer-than-present world from 6 to 3.5 Ma, as mirrored by long-term changes in stratification and nutrient availability.
Ocean circulation around NW Australia plays a key role in regulating the climate in the area and...