Articles | Volume 19, issue 11
https://doi.org/10.5194/cp-19-2389-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-2389-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The climate in Poland (central Europe) in the first half of the last millennium, revisited
Department of Meteorology and Climatology, Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń, Poland
Centre for Climate Change Research, Nicolaus Copernicus University, Toruń, Poland
Piotr Oliński
Centre for Climate Change Research, Nicolaus Copernicus University, Toruń, Poland
Department of Medieval History, Institute of History and Archival Sciences, Faculty of History, Nicolaus Copernicus University, Toruń, Poland
Marcin Koprowski
Centre for Climate Change Research, Nicolaus Copernicus University, Toruń, Poland
Department of Ecology and Biogeography, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
Elżbieta Szychowska-Krąpiec
Department of Environmental Analysis, Geological Mapping and Economic Geology, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland
Marek Krąpiec
Department of General Geology and Geotourism, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland
Aleksandra Pospieszyńska
Department of Meteorology and Climatology, Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń, Poland
Centre for Climate Change Research, Nicolaus Copernicus University, Toruń, Poland
Radosław Puchałka
Centre for Climate Change Research, Nicolaus Copernicus University, Toruń, Poland
Department of Ecology and Biogeography, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
Related authors
Garima Singh, Rajmund Przybylak, Przemysław Wyszyński, Andrzej Araźny, and Konrad Chmist
EGUsphere, https://doi.org/10.5194/egusphere-2024-2719, https://doi.org/10.5194/egusphere-2024-2719, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study aims to determine the nature of the climate in Labrador in historical times (late 18th century), which is crucial to understanding past climate changes in the Arctic and their causes. It is equally important to estimate the range of natural climate variability, which can help in correctly recognising the causes of present and future climate changes – especially the influence of man on climate. The analysis shows a significant warming from historical to present times.
Rajmund Przybylak, Garima Singh, Przemysław Wyszyński, Andrzej Araźny, and Konrad Chmist
Clim. Past, 20, 1451–1470, https://doi.org/10.5194/cp-20-1451-2024, https://doi.org/10.5194/cp-20-1451-2024, 2024
Short summary
Short summary
The purpose of this study is to recognise the nature of the climate in historical times (second half of 18th century) in Greenland. Such knowledge is important for validating Greenland temperature reconstructions based on both modelling works and various proxies. The two unique series of old meteorological observations from Greenland we used indicated that temperature in the study period was comparable to that of the early 20th-century Arctic warming but lower than that of the present day.
Duncan Pappert, Mariano Barriendos, Yuri Brugnara, Noemi Imfeld, Sylvie Jourdain, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2545–2565, https://doi.org/10.5194/cp-18-2545-2022, https://doi.org/10.5194/cp-18-2545-2022, 2022
Short summary
Short summary
We present daily temperature and sea level pressure fields for Europe for the severe winter 1788/1789 based on historical meteorological measurements and an analogue reconstruction approach. The resulting reconstruction skilfully reproduces temperature and pressure variations over central and western Europe. We find intense blocking systems over northern Europe and several abrupt, strong cold air outbreaks, demonstrating that quantitative weather reconstruction of past extremes is possible.
Duncan Pappert, Yuri Brugnara, Sylvie Jourdain, Aleksandra Pospieszyńska, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 17, 2361–2379, https://doi.org/10.5194/cp-17-2361-2021, https://doi.org/10.5194/cp-17-2361-2021, 2021
Short summary
Short summary
This paper presents temperature and pressure measurements from the 37 stations of the late 18th century network of the Societas Meteorologica Palatina, in addition to providing an inventory of the available observations, most of which have been digitised. The quality of the recovered series is relatively good, as demonstrated by two case studies. Early instrumental data such as these will help to explore past climate and weather extremes in Europe in greater detail.
Rajmund Przybylak, Piotr Oliński, Marcin Koprowski, Janusz Filipiak, Aleksandra Pospieszyńska, Waldemar Chorążyczewski, Radosław Puchałka, and Henryk Paweł Dąbrowski
Clim. Past, 16, 627–661, https://doi.org/10.5194/cp-16-627-2020, https://doi.org/10.5194/cp-16-627-2020, 2020
Short summary
Short summary
The paper presents the main features of droughts in Poland in the period 996–2015 based on proxy data (documentary and dendrochronological) and instrumental measurements of precipitation. More than 100 droughts were found in documentary sources from the mid-15th century to the end of the 18th century with a maximum in the second halves of the 17th and, particularly, the 18th century. The long-term frequency of droughts in Poland has been stable for the last two or three centuries.
Garima Singh, Rajmund Przybylak, Przemysław Wyszyński, Andrzej Araźny, and Konrad Chmist
EGUsphere, https://doi.org/10.5194/egusphere-2024-2719, https://doi.org/10.5194/egusphere-2024-2719, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study aims to determine the nature of the climate in Labrador in historical times (late 18th century), which is crucial to understanding past climate changes in the Arctic and their causes. It is equally important to estimate the range of natural climate variability, which can help in correctly recognising the causes of present and future climate changes – especially the influence of man on climate. The analysis shows a significant warming from historical to present times.
Rajmund Przybylak, Garima Singh, Przemysław Wyszyński, Andrzej Araźny, and Konrad Chmist
Clim. Past, 20, 1451–1470, https://doi.org/10.5194/cp-20-1451-2024, https://doi.org/10.5194/cp-20-1451-2024, 2024
Short summary
Short summary
The purpose of this study is to recognise the nature of the climate in historical times (second half of 18th century) in Greenland. Such knowledge is important for validating Greenland temperature reconstructions based on both modelling works and various proxies. The two unique series of old meteorological observations from Greenland we used indicated that temperature in the study period was comparable to that of the early 20th-century Arctic warming but lower than that of the present day.
Rudolf Brázdil, Petr Dobrovolný, Christian Pfister, Katrin Kleemann, Kateřina Chromá, Péter Szabó, and Piotr Olinski
Clim. Past, 19, 1863–1890, https://doi.org/10.5194/cp-19-1863-2023, https://doi.org/10.5194/cp-19-1863-2023, 2023
Short summary
Short summary
The Thirty Years' War (from 1618 to 1648 CE), an armed military conflict in Europe, brought extensive devastation to Europe. The paper analyses annual and seasonal temperature, precipitation, and drought patterns, as well as severe weather extremes, based particularly on documentary data, during this event in central Europe to demonstrate their broad impacts on human society and human responses in coincidence with weather and climate during this period of hardship.
Duncan Pappert, Mariano Barriendos, Yuri Brugnara, Noemi Imfeld, Sylvie Jourdain, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2545–2565, https://doi.org/10.5194/cp-18-2545-2022, https://doi.org/10.5194/cp-18-2545-2022, 2022
Short summary
Short summary
We present daily temperature and sea level pressure fields for Europe for the severe winter 1788/1789 based on historical meteorological measurements and an analogue reconstruction approach. The resulting reconstruction skilfully reproduces temperature and pressure variations over central and western Europe. We find intense blocking systems over northern Europe and several abrupt, strong cold air outbreaks, demonstrating that quantitative weather reconstruction of past extremes is possible.
Duncan Pappert, Yuri Brugnara, Sylvie Jourdain, Aleksandra Pospieszyńska, Rajmund Przybylak, Christian Rohr, and Stefan Brönnimann
Clim. Past, 17, 2361–2379, https://doi.org/10.5194/cp-17-2361-2021, https://doi.org/10.5194/cp-17-2361-2021, 2021
Short summary
Short summary
This paper presents temperature and pressure measurements from the 37 stations of the late 18th century network of the Societas Meteorologica Palatina, in addition to providing an inventory of the available observations, most of which have been digitised. The quality of the recovered series is relatively good, as demonstrated by two case studies. Early instrumental data such as these will help to explore past climate and weather extremes in Europe in greater detail.
Rudolf Brázdil, Petr Dobrovolný, Martin Bauch, Chantal Camenisch, Andrea Kiss, Oldřich Kotyza, Piotr Oliński, and Ladislava Řezníčková
Clim. Past, 16, 2125–2151, https://doi.org/10.5194/cp-16-2125-2020, https://doi.org/10.5194/cp-16-2125-2020, 2020
Short summary
Short summary
Previous studies related to historical droughts in the Czech Lands showed that the summers of 1531–1540 could represent the driest summer decade of the past 500 years. To confirm this hypothesis, documentary data from central Europe were collected and presented for individual summers and complemented by maps of precipitation and drought distribution to document corresponding weather patterns and their various impacts. The main droughts occurred in 1532, 1534–1536, 1538, and particularly in 1540.
Rajmund Przybylak, Piotr Oliński, Marcin Koprowski, Janusz Filipiak, Aleksandra Pospieszyńska, Waldemar Chorążyczewski, Radosław Puchałka, and Henryk Paweł Dąbrowski
Clim. Past, 16, 627–661, https://doi.org/10.5194/cp-16-627-2020, https://doi.org/10.5194/cp-16-627-2020, 2020
Short summary
Short summary
The paper presents the main features of droughts in Poland in the period 996–2015 based on proxy data (documentary and dendrochronological) and instrumental measurements of precipitation. More than 100 droughts were found in documentary sources from the mid-15th century to the end of the 18th century with a maximum in the second halves of the 17th and, particularly, the 18th century. The long-term frequency of droughts in Poland has been stable for the last two or three centuries.
Related subject area
Subject: Climate Modelling | Archive: Historical Records | Timescale: Centennial-Decadal
Documentary evidence of urban droughts and their impact in the eastern Netherlands: the cases of Deventer and Zutphen, 1500–1795
Climatic and societal impacts in Scandinavia following the 536 and 540 CE volcanic double event
A Bayesian approach to historical climatology for the Burgundian Low Countries in the 15th century
Was there a volcanic-induced long-lasting cooling over the Northern Hemisphere in the mid-6th–7th century?
A pseudoproxy assessment of why climate field reconstruction methods perform the way they do in time and space
China's historical record when searching for tropical cyclones corresponding to Intertropical Convergence Zone (ITCZ) shifts over the past 2 kyr
On-line and off-line data assimilation in palaeoclimatology: a case study
Modeling of severe persistent droughts over eastern China during the last millennium
Dániel Johannes Moerman
Clim. Past, 20, 1721–1734, https://doi.org/10.5194/cp-20-1721-2024, https://doi.org/10.5194/cp-20-1721-2024, 2024
Short summary
Short summary
This article provides a first look into the impact of drought in two cities in the eastern Netherlands from 1500 to 1795 on the basis of municipal records. It concludes that the impact of drought was sometimes similar but also different for both cities when focusing on specific aspects, such as water shortage and navigation. This strengthens the view that the impact of droughts could differ highly on a local level, which necessitates more emphasis on regional and local drought reconstructions.
Evelien van Dijk, Ingar Mørkestøl Gundersen, Anna de Bode, Helge Høeg, Kjetil Loftsgarden, Frode Iversen, Claudia Timmreck, Johann Jungclaus, and Kirstin Krüger
Clim. Past, 19, 357–398, https://doi.org/10.5194/cp-19-357-2023, https://doi.org/10.5194/cp-19-357-2023, 2023
Short summary
Short summary
The mid-6th century was one of the coldest periods of the last 2000 years as characterized by great societal changes. Here, we study the effect of the volcanic double event in 536 CE and 540 CE on climate and society in southern Norway. The combined climate and growing degree day models and high-resolution pollen and archaeological records reveal that the northern and western sites are vulnerable to crop failure with possible abandonment of farms, whereas the southeastern site is more resilient.
Chantal Camenisch, Fernando Jaume-Santero, Sam White, Qing Pei, Ralf Hand, Christian Rohr, and Stefan Brönnimann
Clim. Past, 18, 2449–2462, https://doi.org/10.5194/cp-18-2449-2022, https://doi.org/10.5194/cp-18-2449-2022, 2022
Short summary
Short summary
We present a novel approach to assimilate climate information contained in chronicles and annals from the 15th century to generate climate reconstructions of the Burgundian Low Countries, taking into account uncertainties associated with the descriptions of narrative sources. Our study aims to be a first step towards a more quantitative use of available information contained in historical texts, showing how Bayesian inference can help the climate community with this endeavor.
Evelien van Dijk, Johann Jungclaus, Stephan Lorenz, Claudia Timmreck, and Kirstin Krüger
Clim. Past, 18, 1601–1623, https://doi.org/10.5194/cp-18-1601-2022, https://doi.org/10.5194/cp-18-1601-2022, 2022
Short summary
Short summary
A double volcanic eruption in 536 and 540 CE caused one of the coldest decades during the last 2000 years. We analyzed new climate model simulations from that period and found a cooling of up to 2°C and a sea-ice extent up to 200 km further south. Complex interactions between sea ice and ocean circulation lead to a reduction in the northward ocean heat transport, which makes the sea ice extend further south; this in turn leads to a surface cooling up to 20 years after the eruptions.
Sooin Yun, Jason E. Smerdon, Bo Li, and Xianyang Zhang
Clim. Past, 17, 2583–2605, https://doi.org/10.5194/cp-17-2583-2021, https://doi.org/10.5194/cp-17-2583-2021, 2021
Short summary
Short summary
Climate field reconstructions (CFRs) estimate spatiotemporal climate conditions hundreds to thousands of years into the past. Assessing CFR skills is critical for improving their interpretation and ultimately for deriving better CFR estimates. We apply new methods for assessing spatiotemporal skill using formalized null hypotheses to derive a detailed assessment of why CFR skill varies across multiple methods, with implications for improving future CFR estimates.
Huei-Fen Chen, Yen-Chu Liu, Chih-Wen Chiang, Xingqi Liu, Yu-Min Chou, and Hui-Juan Pan
Clim. Past, 15, 279–289, https://doi.org/10.5194/cp-15-279-2019, https://doi.org/10.5194/cp-15-279-2019, 2019
Short summary
Short summary
China’s historical typhoon data show that (1) the tracks of typhoons correspond to the north–southward migration of the Intertropical Convergence Zone and phase of the North Atlantic Oscillation, which show a nearly 30-year and a 60-year cycle during the Little Ice Age (LIA) and (2) paleotyphoons made landfall in mainland China 1 month earlier during the Medieval Warm Period than during the LIA.
A. Matsikaris, M. Widmann, and J. Jungclaus
Clim. Past, 11, 81–93, https://doi.org/10.5194/cp-11-81-2015, https://doi.org/10.5194/cp-11-81-2015, 2015
Short summary
Short summary
We compare an off-line and an on-line ensemble-based data assimilation method, for the climate of the 17th century. Both schemes perform better than the simulations without DA, and similar skill on the continental and hemispheric scales is found. This indicates either a lack of control of the slow components in our setup or a lack of skill in the information propagation on decadal timescales. The temporal consistency of the analysis in the on-line method makes it generally more preferable.
Y. Peng, C. Shen, H. Cheng, and Y. Xu
Clim. Past, 10, 1079–1091, https://doi.org/10.5194/cp-10-1079-2014, https://doi.org/10.5194/cp-10-1079-2014, 2014
Cited articles
Alexandre, P.: Le climat en Europe au Moyen Age. Contribution à l'histoire des variations climatiques de 1000 à 1425, d'après les sources narratives de l'Europe occidentale, Ecole des hautes études en sciences sociales, Paris, 827 pp., ISBN 2-7132-0852-1, 1987.
Balanzategui, D., Knorr, A., Heussner, K.-U., Wazny, T., Beck, W., Słowiński, M., Helle, G., Buras, A., Wilmking, M., Van Der Maaten, E., Scharnweber, T., Dorado-Liñán, I., and Heinrich, I.: An 810-year history of cold season temperature variability for northern Poland, Boreas, 47, 443–453, https://doi.org/10.1111/bor.12274, 2017.
Bartoszek K.: Relacje między cyrkulacją atmosferyczną a sezonową temperaturą powietrza na obszarze Lubelszczyzny, Annales Universitatis Mariae Curie-Skłodowska, LXXII, 1, 33–45, 2017.
Bolychevtsev, V. G.: Godnichnyje sloi u duba kak pokazatel' vekovykh ciklov kolebanij klimata (Annual ring of oak as evidence of secular climatic cycles), Lesovedenie, 1, 15–23, 1970.
Brázdil, R.: Climatic fluctuations in the Chech lands during the Last Millennium, Geo J., 32, 199–205, 1994.
Brázdil, R.: Reconstructions of past climate from historical sources in the Czech lands, in: Climatic variations and forcing mechanisms of the last 2000 years, vol. 41, edited by: Jones, P. D., Bradley, R. S., and Jouzel, J., Springer-Verlag, Berlin, 409–431, 1996.
Brázdil, R. and Kotyza, O.: Kolisáni klimatu v Jeských zemích první poloviné našeho tisíciletí, Archeol. Rozhl., 49, 663–699, 1997.
Brázdil, R., Pfister, C., Wanner, H., von Storch, H., and Luterbacher, J.: Historical climatology in Europe – the state of the art, Climatic Change, 70, 363–430, https://doi.org/10.1007/s10584-005-5924-1, 2005.
Briffa, K. R.: Interpreting high-resolution proxy climate data – the example of dendroclimatology, in: Analysis of Climate Variability, edited by: von Storch, H. and Navarra, A., Springer, Berlin, Heidelberg, 77–94, https://doi.org/10.1007/978-3-662-03167-4_5, 1995.
Brönnimann, S.: From climate to weather reconstructions, PLOS Clim., 1, e0000034, https://doi.org/10.1371/journal.pclm.0000034, 2022.
Brönnimann, S., Allan, R., Ashcroft, L., Baer, S., Barriendos, M., Brázdil, R., Brugnara, Y., Brunet, M., Brunetti, M., Chimani, B., Cornes, R., Dominguez-Castro, F., Filipiak, J., Founda, D., Herrera, R., Gergis, J., Grab, S., Hannak, L., Huhtamaa, H., Jacobsen, K., Jones, P., Jourdain, S., Kiss, A., Lin, K., Lorrey, A., Lundstad, E., Luterbacher, J., Mauelshagen, F., Maugeri, M., Maughan, N., Moberg, A., Neukom, R., Nicholson, S., Noone, S., Nordli, Ø., Ólafsdóttir, K., Pearce, P., Pfister, L., Pribyl, K., Przybylak, R., Pudmenzky, C., Rasol, D., Reichenbach, D., Rezničková, L., Rodrigo, F., Rohr, C., Skrynyk, O., Slonosky, V., Thorne, P., Valente, M., Vaquero, J., Westcottt, N., Williamson, F., and Wyszyński, P.: Unlocking pre-1850 instrumental meteorological records: A global inventory, B. Am. Meteorol. Soc., 100, ES389–ES413, https://doi.org/10.1175/BAMS-D-19-0040.1, 2019.
Bunn, A. G.: A dendrochronology program library in R (dplR), Dendrochronologia, 26, 115–124, https://doi.org/10.1016/j.dendro.2008.01.002, 2008.
Camenisch, C.: Endless cold: a seasonal reconstruction of temperature and precipitation in the Burgundian Low Countries during the 15th century based on documentary evidence, Clim. Past, 11, 1049–1066, https://doi.org/10.5194/cp-11-1049-2015, 2015.
Camenisch, C., Keller, K. M., Salvisberg, M., Amann, B., Bauch, M., Blumer, S., Brázdil, R., Brönnimann, S., Büntgen, U., Campbell, B. M. S., Fernández-Donado, L., Fleitmann, D., Glaser, R., González-Rouco, F., Grosjean, M., Hoffmann, R. C., Huhtamaa, H., Joos, F., Kiss, A., Kotyza, O., Lehner, F., Luterbacher, J., Maughan, N., Neukom, R., Novy, T., Pribyl, K., Raible, C. C., Riemann, D., Schuh, M., Slavin, P., Werner, J. P., and Wetter, O.: The 1430s: a cold period of extraordinary internal climate variability during the early Spörer Minimum with social and economic impacts in north-western and central Europe, Clim. Past, 12, 2107–2126, https://doi.org/10.5194/cp-12-2107-2016, 2016.
Cook, E. and Kairiukstis, L.: Methods of dendrochronology. Applications in the environmental sciences, Springer, Dordrecht, 351 pp., https://doi.org/10.1007/978-94-015-7879-0, 1990.
Cook, E., Esper, J., and D'Arrigo, R. D.: Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years, Quaternary Sci. Rev., 23, 2063–2074, https://doi.org/10.1016/j.quascirev.2004.08.007, 2004.
Cook, E., Krusic, P., and Melvin, T. M.: Program RCSigFree. Lamont-Doherty Earth Observatory, Columbia University, Palisades, https://lamont.columbia.edu/ (last access: 1 June 2014), 2014.
Cook, E. R.: A Time Series Analysis Approach to Tree-ring Standardization, The University of Arizona, Tucson, 170 pp., https://ltrr.arizona.edu/sites/ltrr.arizona.edu/files/bibliodocs/CookER-Dissertation.pdf (last access: 17 November 2023), 1985.
Diaz, H., Trigo, R., Hughes, M., Mann, M., Xoplaki, E., and Barriopedro, D.: Spatial and temporal characteristics of climate in medieval times revisited, B. Am. Meteorol. Soc., 92, 1487–1500, https://doi.org/10.1175/BAMS-D-10-05003.1, 2011.
Dujesiefken, D. and Bauch, J.: Biologische Charakterisierung von Eichenholz mit Mondringen, Holz als Roh-und Werkst., 45, 365–370, 1987.
Dujesiefken, D. and Liese, W.: Vorkommen und Entstehung der mondringe (Quercus spp.), Forstwissenschaftliches Cent., 105, 137–155, 1986.
Frank, D., Esper, J., and Cook, E.: Adjustment for proxy number and coherence in a large-scale temperature reconstruction, Geophys. Res. Lett., 34, L16709, https://doi.org/10.1029/2007GL030571, 2007.
Fritts, H. C.: Tree-ring and climate, Academic Press, London, New York, San Francisco, 567 pp., ISBN 10:1930665393, ISBN 13:978-1930665392, 1976.
Gao, C., Robock, A. Self, S., Witter, J. B. , Steffenson, J. P., Clausen, H. B., Siggaard-Andersen, M.-L., Johnsen, S., Mayewski, P. A., and Ammann, C.: The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years, J. Geophys. Res., 111, D12107, https://doi.org/10.1029/2005JD006710, 2006.
Ghazi, B., Przybylak, R., Oliński, P., Bogdańska, K., and Pospieszyńska, A.: The frequency, intensity, and origin of floods in Poland in the 11th–15th centuries based on documentary evidence, J. Hydrol., 623, 129778, https://doi.org/10.1016/j.jhydrol.2023.129778, 2023.
Girguś, R. and Strupczewski, W.: Wyjątki ze źródeł historycznych o nadzwyczajnych zjawiskach hydro-logiczno-meteorologicznych na ziemiach polskich w wiekach od X do XVI, Wydawnictwa Komunikacji i Łączności, Warszawa, Warszawa, 1965.
Glaser, R. and Riemann, D.: A thousand-year record of temperature variations for Germany and Central Europe based on documentary data, J. Quaternary Sci., 24, 437–449, https://doi.org/10.1002/jqs.1302, 2009.
Goosse, H., Arzel, O., Luterbacher, J., Mann, M. E., Renssen, H., Riedwyl, N., Timmermann, A., Xoplaki, E., and Wanner, H.: The origin of the European “Medieval Warm Period”, Clim. Past, 2, 99–113, https://doi.org/10.5194/cp-2-99-2006, 2006.
Goosse, H., Guiot, J., Mann, M. E., Dubinkina, S., and Sallaz-Damaz, Y.: The medieval climate anomaly in Europe: Comparison of the summer and annual mean signals in two reconstructions and in simulations with data assimilation, Global Planet. Change, 84–85, 35–47, https://doi.org/10.1016/j.gloplacha.2011.07.002, 2012.
Gouirand, I., Linderholm, H., Moberg, A., and Wohlfarth, B.: On the spatiotemporal characteristics of Fennoscandian tree-ring based summer temperature reconstructions, Theor. Appl. Climatol., 91, 1–25, https://doi.org/10.1007/s00704-007-0311-7, 2008.
Hernández-Almeida, I., Grosjean, M., Przybylak, R., and Tylmann, W.: A chrysophyte-based quantitative reconstruction of winter severity from varved lake sediments in NE Poland during the past millennium and its relationship to natural climate variability, Quaternary Sci. Rev., 122, 74–88, https://doi.org/10.1016/j.quascirev.2015.05.029, 2015.
Hernández-Almeida, I., Grosjean, M., Gómez-Navarro, J. J., Larocque-Tobler, I., Bonk, A., Enters, D., Ustrzycka, A., Piotrowska, N., Przybylak, R., Wacnik, A., Witak, M., and Tylmann, W.: Resilience, rapid transitions and regime shifts: Fingerprinting the responses of Lake Żabińskie (NE Poland) to climate variability and human disturbance since AD 1000, Holocene, 27, 258–270, https://doi.org/10.1177/0959683616658529, 2017.
Holmes, R. L.: Computer-assisted quality control in tree- ring dating and measurement, Tree-Ring Bull., 43, 69–78, 1983.
Huber, B. and Giertz-Siebenlist, V.: Unsere tausendjährige Eichen-Jahrringchronologie durchschnittlich 57 (10–150) – fach belegt, Sitzungsberichte Österreichische Akad. der Wissenschaften, Math. Klasse, 57, 37–42, 1969.
Hughes, M. K. and Diaz, H. F.: Was there a “Medieval Warm Period”, and if so, where and when?, Climatic Change, 26, 109–142, 1994.
Koprowski, M., Przybylak, R., Zielski, A., and Pospieszyńska, A.: Tree rings of Scots pine (Pinus sylvestris L.) as a source of information about past climate in northern Poland, Int. J. Biometeorol., 56, 1–10, https://doi.org/10.1007/s00484-010-0390-5, 2012.
Koslowski, G. and Schmelzer, N.: Ice winter severity in the Western Baltic Sea in the period 1301–1500, Berichte des Bundesamtes für Seeschifffahrt und Hydrogr., 42, 47–56, 2007.
Kotarba, A.: Geomorphological events in the High Tatra Mountains during the Little Ice Age, in: Rola Małej Epoki Lodowej w przekształcaniu środowiska przyrodniczego Tatr, edited by: Kotarba, A., Polska Akademia Nauk, Instytut Geografii i Przestrzennego Zagospodarowania im. Stanisława Leszczyckiego, 9–55, ISBN 83-87964-51-9, 2004.
Kożuchowski, K. and Żmudzka, E.: 100-year series of areally averaged temperatures and precipitation totals in Poland, Acta Univ. Wratislav. Stud. Geogr., 75, 116–122, 2003.
Krąpiec, M.: Oak Dendrochronology of the Neoholocene in Poland, Folia Quarteria, 69, 5–133, 1998.
Krąpiec, M.: Occurrence of Moon Rings in Oak from Poland During the Holocene, in: Tree Ring Analysis, Biological, Methodological and Environmental Aspects, edited by: Wimmer, R. and Vetter, R., CAB Int., 193–203, ISBN 10:0851993125, ISBN 13:978-0851993126, 1999.
Lamb, H.: The early medieval warm epoch and its sequel, Palaeogeogr. Palaeoclimatol. Palaeoecol., 1, 13–37, 1965.
Lamb, H.: Climate: Present, Past and Future, in: vol. 2: Climatic History and the Future, Methuen, London, 835 pp., ISBN 9780415682237, 1977.
Lamb, H.: Climate in the last thousand years: Natural climatic fluctuations and change, in: The Climate of Europe: Past, Present and Future, edited by: Flohn, H. and Fantechi, R., D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, 25–64, ISBN 9027717451, 1984.
Ljungqvist, F. C.: A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia, Geogr. Ann. A, 92, 339–351, 2010.
Luterbacher, J., Xoplaki, E., Kilttel, M., Zorita, E., Gonzalez-Rouco, J. F., Jones, P. D., Stossel, M., Rutishauser, T., Wanner, H., Wibig, J., and Przybylak, R.: Climate Change in Poland in the Past Centuries and Its Relationship to European Climate: Evidence From Reconstructions and Coupled Climate Models, in: The Polish Climate in the European Context: An Historical Overview, edited by: Przybylak, R., Majorowicz, J., Brázdil, R., and Kejna, M., Springer, Berlin, Heidelberg, New York, 3–39, https://doi.org/10.1007/978-90-481-3167-9, 2010.
Luterbacher, J., Werner, J. P., Smerdon, J. E., Fernández-Donado, L., González-Rouco, F. J., Barriopedro, D., Ljungqvist, F. C., Büntgen, U., Zorita, E., Wagner, S., Esper, J., McCarroll, D., Toreti, A., Frank, D., Jungclaus, J. H., Barriendos, M., Bertolin, C., Bothe, O., Brázdil, R., Camuffo, D., Dobrovolný, P., Gagen, M., García-Bustamante, E., Ge, Q., Gómez-Navarro, J. J., Guiot, J., Hao, Z., Hegerl, G. C., Holmgren, K., Klimenko, V. V, Martín-Chivelet, J., Pfister, C., Roberts, N., Schindler, A., Schurer, A., Solomina, O., von Gunten, L., Wahl, E., Wanner, H., Wetter, O., Xoplaki, E., Yuan, N., Zanchettin, D., Zhang, H., and Zerefos, C.: European summer temperatures since Roman times, Environ. Res. Lett., 11, 24001, https://doi.org/10.1088/1748-9326/11/2/024001, 2016.
Mangini, A., Spötl, C., and Verdes, P.: Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record, Earth Planet. Sc. Lett., 235, 741–751, 2005.
Mann, M., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., and Ni, F.: Global signatures and dynamical origins of the Little Ice Age and medieval climate anomaly, Science, 326, 1256–1260, 2009.
Maruszczak, H.: Zmiany środowiska przyrodniczego kraju w czasach historycznych, in: Polski Przemiany środowiska geograficznego, edited by: Starkel, L., Wszechnica PAN, Ossolineum, Wrocław, 109–135, ISBN 8304027887, 1988.
Maruszczak, H.: Tendencje do zmian klimatu w ostatnim tysiącleciu, in: Geografia Polski – środowisko przyrodnicze, edited by: Starkel, L., PWN, Warszawa, 182–190, 1991.
Melvin, T. and Briffa, K.: A “signal-free” approach to dendroclimatic standardisation, Dendrochronologia, 26, 71–86, 2008.
Millet, L., Arnaud, F., Heiri, O., Magny, M., Verneaux, V., and Desmet, M.: Late-Holocene summer temperature reconstruction from chironomid assemblages of Lake Anterne, northern French Alps, Holocene, 19, 317–328, 2009.
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and Karlen, W.: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 433, 613–617, 2005.
Moreno, A., Perez, A., Frigola, J., Nieto-Moreno, V., Rodrigo-Gamiz, M., Martrat, B., Gonzalez-Samperiz, P., Morellon, M., Martin-Puertas, C., Corella, J. P., Belmonte, A., Sancho, C., Cacho, I., Herrera, G., Canals, M., Grimalt, J. O., Jimenez-Espejo, F. J., Mart'inez-Ruiz, F., Vegas-Vilarrubia, T., and Valero-Garces, B. L.: The Medieval Climate Anomaly in the Iberian Peninsula reconstructed from marine and lake records, Quaternary Sci. Rev., 43, 16–32, https://doi.org/10.1016/j.quascirev.2012.04.007, 2012.
Niedźwiedź, T., Glaser, R., Hansson, D., Helama, S., Klimenko, V., Łupikasza, E., Małarzewski, Ł., Nordli, Ø., Przybylak, R., Riemann, D., and Solomina, O.: The historical time frame (past 1000 years), in: Second assessment of climate change for the Baltic Sea Basin, edited by: BACC_II_Author_Team, Springer, Berlin, Germany, 51–65, https://doi.org/10.1007/978-3-319-16006-1, 2015.
Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J., and Werner, J. P.: No evidence for globally coherent warm and cold periods over the preindustrial Common Era, Nature, 571, 550–554, 2019.
Niemann, H., Stadnitskaia, A., Wirth, S. B., Gilli, A., Anselmetti, F. S., Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., and Lehmann, M. F.: Bacterial GDGTs in Holocene sediments and catchment soils of a high Alpine lake: application of the MBT/CBT-paleothermometer, Clim. Past, 8, 889–906, https://doi.org/10.5194/cp-8-889-2012, 2012.
Oliński, P.: Pogoda i klimat regionów południowobałtyckich od końca XIV wieku do początków XVI w. w źródłach narracyjnych, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń, 299 pp., ISBN 978-83-231-4935-4, https://doi.org/10.12775/978-83-231-4936-1, 2022.
Opała-Owczarek, M., Niedźwiedź, T., Przybylak, R., and Tylmann, W.: Climate Change Before Instrumental Measurements, in: Climate Change in Poland, edited by: Falarz, M., Springer, 71–119, https://doi.org/10.1007/978-3-030-70328-8_5, 2021.
Osborn, T. J., Briffa, K. R., and Jones, P.: Adjusting variance for sample-size in tree-ring chronologies and other regional-mean time series, Dendrochronologia, 15, 88–99, 1997.
PAGES 2k Consortium: Continental-scale temperature variability during the past two millennia, Nat. Geosci., 6, 339–346, https://doi.org/10.1038/ngeo1834, 2013.
PAGES 2k Consortium: A global multiproxy database for temperature reconstructions of the Common Era, Sci. Data, 4, 170088, https://doi.org/10.1038/sdata.2017.88, 2017.
Pfister, C., Kington, J., Kleinlogel, G., Schule, H., and Siffert, E.: High resolution spatio-temporal reconstructions of past climate from direct meteorological observations and proxy-data, in: Climatic Trends and Anomalies in Europe 1675–1715, edited by: Frenzel, B. and Pfister, C., Gustav Fisher Verlag, Stuttgart, 329–375, ISBN 10:3437307746, 1994.
Pfister, C., Schwarz-Zanetti, G., and Wegmann, M.: Winter severity in Europe: The fourteenth century, Climatic Change, 34, 91–108, 1996.
Pfister, C., Luterbacher, J., Schwarz-Zanetti, G., and Wegmann, M.: Winter air temperature variations in western Europe during the Early and High Middle Ages (AD 750–1300), Holocene, 8, 535–552, 1998.
Polaczkówna, M.: Wahania klimatyczne w Polsce w wiekach średnich (940–1500), Pr. Geogr., 5, 65–126, 1925.
Pribyl, K.: The study of the climate of medieval England: a review of historical climatology's past achievements and future potential, Weather, 69, 116–120, https://doi.org/10.1002/wea.2317, 2014.
Przybylak, R.: Changes in Poland's climate over the last millennium, Czas. Geogr., 82, 23–48, 2011.
Przybylak, R.: Poland's Climate in the Last Millennium, in: Oxford Research Encyclopedia, Climate Science, Oxford University Press, USA, https://doi.org/10.1093/acrefore/9780190228620.013.2, 2016.
Przybylak, R. and Pospieszyńska, A.: Air temperature in Wrocław (Breslau) in the period 1710–1721 based on measurements made by David von Grebner, Acta Agrophysica, Rozpr. i Monogr., 184, 35–43, 2010.
Przybylak, R., Majorowicz, J., and Wójcik, G.: Changes of air temperature and atmospheric precipitation in Poland from the 16th to the 20th century, Pr. i Stud. Geogr., 29, 79–92, 2001.
Przybylak, R., Wójcik, G., Marciniak, K.: Wpływ Oscylacji Północnoatlantyckiej i Arktycznej na warunki termiczne chłodnej pory roku w Polsce w XVI-XX wiekach (The influence of the North Atlantic oscillation and Arctic oscillation on thermal conditions in the cold season in Poland from the 16th to 20th centuries), Przegląd Geofizyczny, XLVIII, 61–74, 2003.
Przybylak, R., Majorowicz, J., Wójcik, G., Zielski, A., Chorążyczewski, W., Marciniak, K., Nowosad, W., Oliński, P., and Syta, K.: Temperature changes in Poland from the 16th to the 20th centuries, Int. J. Climatol., 25, 773–791, https://doi.org/10.1002/joc.1149, 2005.
Przybylak, R., Oliński, P., Koprowski, M., Filipiak, J., Pospieszyńska, A., Chorążyczewski, W., Puchałka, R., and Dąbrowski, H. P.: Droughts in the area of Poland in recent centuries in the light of multi-proxy data, Clim. Past, 16, 627–661, https://doi.org/10.5194/cp-16-627-2020, 2020.
R CoreTeam: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/ (last access: 17 November 2023), 2022.
Retsö, D. and Söderberg, J.: Winter severity in medieval Sweden: The documentary evidence, in: The Dance of Death in Late Medieval and Renaissance Europe: Environmental Stress, Mortality and Social Response, edited by: Kiss, A. and Pribyl, K., Routledge, Taylor & Francis Group, 25–45, ISBN 10:1138590363, ISBN 13:978-1138590366, 2019.
Riemann, D., Glaser, R., Kahle, M., and Vogt, S.: The CRE tambora.org-new data and tools for collaborative research in climate and environmental history, Geosci. Data J., 2, 63–77, https://doi.org/10.1002/gdj3.30, 2015.
Sadowski, M.: Variability of extreme climatic events in Central Europe since the 13th century, Z. Meteorol., 41, 350–356, 1991.
Schimanke, S., Meier, H. E. M., Kjellström, E., Strandberg, G., and Hordoir, R.: The climate in the Baltic Sea region during the last millennium simulated with a regional climate model, Clim. Past, 8, 1419–1433, https://doi.org/10.5194/cp-8-1419-2012, 2012.
Schweingruber, F. H.: Event years and pointer years, Lundqua Rep., 34, 288–292, 1992.
Shabalova, M. V. and Van Engelen, A. F. V.: Evaluation of a reconstruction of winter and summer temperatures in the Low Countries, AD 764–1998, Climatic Change, 58, 219–242, 2003.
Sieber, R., Slonosky, V. C., Ashcroft, L., and Pudmenzky, C.: Formalizing Trust in Historical Weather Data, Weather. Clim. Soc., 14, 993–1007, https://doi.org/10.1175/WCAS-D-21-0077.1, 2022.
Szychowska-Krąpiec, E.: Long-term chronologies of pine (Pinus sylvestris L.) and fir (Abies alba Mill.) from the Małopolska region and their palaeoclimatic interpretation, Folia Quat., 79, 1–124, 2010.
Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile-Geay, J., Anderson, D. M., Steig, E. J., and Noone, D.: Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling, Clim. Past, 15, 1251–1273, https://doi.org/10.5194/cp-15-1251-2019, 2019.
Tomczyk, A. M.: Temperatura powietrza, in: Atlas klimatu Polski (1991–2020), edited by: Tomczyk, A. M. and Bednorz, E., Bogucki Wydawnictwo Naukowe, Poznań, 40–61, ISBN 978-83-7986-415-7, 2022.
Trachsel, M., Grosjean, M., Larocque-Tobler, I., Schwikowski, M., Blass, A., and Sturm, M.: Quantitative summer temperature reconstruction derived from a combined biogenic Si and chironomid record from varved sediments of Lake Silvaplana (southeastern Swiss Alps) back to AD 1177, Quaternary Sci. Rev., 29, 2719–2730, https://doi.org/10.1016/j.quascirev.2010.06.026, 2010.
Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., and Frank, D. C.: Persistent Positive North Atlantic Oscillation Mode Dominated the Medieval Climate Anomaly, Science 324, 78–80, https://doi.org/10.1126/science.1166349, 2009.
van Engelen, A. F. V, Buisman, J., and Ijnsen, F.: A millennium of weather, winds and water in the Low Countries, in: History and Climate. Memories of the Future?, edited by: Jones, P. D., Ogilvie, A. E. J., Davies, T. D., and Briffa, K. R., Springer Science + Business Media, LLC, 101–124, https://doi.org/10.1007/978-1-4757-3365-5, 2001.
Vogt, S., Glaser, R., Luterbacher, J., Riemann, D., Al Dyab, G., Schoenbein, J., and Garcia-Bustamante, E.: Assessing the Medieval Climate Anomaly in the Middle East: The potential of Arabic documentary sources, PAGES News, 19, 28–29, 2011.
Walawender, A.: Kronika klęsk elementarnych w Polsce i w krajach sąsiednich w l. 1450–1586, Kasa im. Rektora J. Mianowskiego – Instytut Popierania Polskiej Twórczości Naukowej, Lwów, Warszawa, 1932.
Waszak, N., Robertson, I., Puchałka, R., Przybylak, R., Pospieszyńska, A., and Koprowski, M.: Investigating the Climate – Growth Response of Scots Pine (Pinus sylvestris L.) in Northern Poland, Atmosphere, 12, 1690, https://doi.org/10.3390/atmos12121690, 2021.
Wigley, T., Briffa, K., and Jones, P.: On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology, J. Clim. Appl. Meteorol., 23, 201–213, 1984.
Wójcik, G., Majorowicz, J., Marciniak, K., Przybylak, R., Šafanda, J., and Zielski, A.: The last millennium climate change in northern Poland derived from well temperature profiles, tree-rings and instrumental data, Pr. Geogr., 107, 137–148, 2000.
Zang, C. and Biondi, F.: treeclim: an R package for the numerical calibration of proxy-climate relationships, Ecography (Cop.)., 38, 431–436, https://doi.org/10.1111/ecog.01335, 2015.
Zielony, R. and Kliczkowska, A.: Regionalizacja przyrodniczo-leśna Polski, Centrum Informacyjne Lasów Państwowych, Warszawa, ISBN 978-83-61633-62-4, 2012.
Zielski, A.: Uwarunkowania środowiskowe przyrostów radialnych sosny zwyczajnej (Pinus sylvestris L.) w Polsce północnej na podstawie wielowiekowej chronologii, Wydawnictwo UMK, 127 pp., ISBN 83-231-0887-0, 1997.
Zielski, A. and Krąpiec, M.: Dendrochronologia, PWN, Warszawa, 328 pp., ISBN 978-83-01-14226-1, 2004.
Zielski, A., Krąpiec, M., and Koprowski, M.: Dendrochronological Data, in: The Polish Climate in the European Context: An Historical Overview, edited by: Przybylak, R., Majorowicz, J., Brázdil, R., and Kejna, M., Springer, Dordrecht, 191–217, https://doi.org/10.1007/978-90-481-3167-9, 2010.
Short summary
The present paper upgrades our knowledge of Poland’s climate in the period 1001–1500 using multiproxy data. Four new climate reconstructions have been constructed – three based on dendrochronological data (since the 12th century) and one on documentary evidence (since the 15th century). The results should help improve the knowledge of climate change in Europe, particularly in central Europe.
The present paper upgrades our knowledge of Poland’s climate in the period 1001–1500 using...