Articles | Volume 19, issue 11
https://doi.org/10.5194/cp-19-2177-2023
https://doi.org/10.5194/cp-19-2177-2023
Research article
 | Highlight paper
 | 
03 Nov 2023
Research article | Highlight paper |  | 03 Nov 2023

Rejuvenating the ocean: mean ocean radiocarbon, CO2 release, and radiocarbon budget closure across the last deglaciation

Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard

Related authors

Towards the construction of regional marine radiocarbon calibration curves: an unsupervised machine learning approach
Ana-Cristina Marza, Laurie Menviel, and Luke Cameron Skinner
Geochronology Discuss., https://doi.org/10.5194/gchron-2023-26,https://doi.org/10.5194/gchron-2023-26, 2023
Preprint under review for GChron
Short summary
A 1.5-million-year record of orbital and millennial climate variability in the North Atlantic
David A. Hodell, Simon J. Crowhurst, Lucas Lourens, Vasiliki Margari, John Nicolson, James E. Rolfe, Luke C. Skinner, Nicola C. Thomas, Polychronis C. Tzedakis, Maryline J. Mleneck-Vautravers, and Eric W. Wolff
Clim. Past, 19, 607–636, https://doi.org/10.5194/cp-19-607-2023,https://doi.org/10.5194/cp-19-607-2023, 2023
Short summary

Related subject area

Subject: Carbon Cycle | Archive: Marine Archives | Timescale: Millenial/D-O
Deglacial records of terrigenous organic matter accumulation off the Yukon and Amur rivers based on lignin phenols and long-chain n-alkanes
Mengli Cao, Jens Hefter, Ralf Tiedemann, Lester Lembke-Jene, Vera D. Meyer, and Gesine Mollenhauer
Clim. Past, 19, 159–178, https://doi.org/10.5194/cp-19-159-2023,https://doi.org/10.5194/cp-19-159-2023, 2023
Short summary
Deglacial carbon cycle changes observed in a compilation of 127 benthic δ13C time series (20–6 ka)
Carlye D. Peterson and Lorraine E. Lisiecki
Clim. Past, 14, 1229–1252, https://doi.org/10.5194/cp-14-1229-2018,https://doi.org/10.5194/cp-14-1229-2018, 2018
Short summary
δ13C decreases in the upper western South Atlantic during Heinrich Stadials 3 and 2
Marília C. Campos, Cristiano M. Chiessi, Ines Voigt, Alberto R. Piola, Henning Kuhnert, and Stefan Mulitza
Clim. Past, 13, 345–358, https://doi.org/10.5194/cp-13-345-2017,https://doi.org/10.5194/cp-13-345-2017, 2017
Short summary
Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean
M. Sarnthein, B. Schneider, and P. M. Grootes
Clim. Past, 9, 2595–2614, https://doi.org/10.5194/cp-9-2595-2013,https://doi.org/10.5194/cp-9-2595-2013, 2013
Marine productivity response to Heinrich events: a model-data comparison
V. Mariotti, L. Bopp, A. Tagliabue, M. Kageyama, and D. Swingedouw
Clim. Past, 8, 1581–1598, https://doi.org/10.5194/cp-8-1581-2012,https://doi.org/10.5194/cp-8-1581-2012, 2012

Cited articles

Adkins, J. F. and Boyle, E. A.: Changing atmospheric Δ14C and the record of deep water paleoventilation ages, Paleoceanography, 12, 337–344, 1997. 
Adolphi, F., Herbst, K., Nilsson, A., and Panovska, S.: On the Polar Bias in Ice Core 10Be Data, J. Geophys. Res.-Atmos., 128, e2022JD038203, https://doi.org/10.1029/2022JD038203, 2023. 
Adolphi, F., Bronk Ramsey, C., Erhardt, T., Edwards, R. L., Cheng, H., Turney, C. S. M., Cooper, A., Svensson, A., Rasmussen, S. O., Fischer, H., and Muscheler, R.: Connecting the Greenland ice-core and U / Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events, Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, 2018. 
Ahagon, N., Ohkushi, K., Uchida, M., and Mishima, T.: Mid-depth circulation in the northwest Pacific during the last deglaciation: Evidence from foraminferal radiocarbon ages, Geophys. Res. Lett., 30, 2.1–2.4, 2003. 
Ausín, B., Sarnthein, M., and Haghipour, N.: Glacial-to-deglacial reservoir and ventilation ages on the southwest Iberian continental margin, Quaternary Sci. Rev., 255, 106818, https://doi.org/10.1016/j.quascirev.2021.106818, 2021. 
Download
Co-editor-in-chief
The manuscript by Skinner et al. presents a unique and useful data compilation of ocean-atmosphere radiocarbon age offset (B-Atm) across the last deglaciation. The presented global average B-Atm represents a new benchmark for modelling studies seeking to constrain the ocean's role in past atmospheric CO2 change, and seeking closure of the global radiocarbon cycle. The latter is important for constraining the carbon cycle evolution over the last deglaciation (which remains to be quantitatively accounted for), as well as the history of the geodynamo and solar activity.
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.