Articles | Volume 19, issue 7
https://doi.org/10.5194/cp-19-1559-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1559-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of iron fertilisation on atmospheric CO2 during the last glaciation
Himadri Saini
CORRESPONDING AUTHOR
Climate Change Research Centre, University of New South Wales, Sydney 2052, New South Wales, Australia
The Australian Research Council Centre of Excellence for Climate Extremes, Sydney 2052, New South Wales, Australia
Katrin J. Meissner
Climate Change Research Centre, University of New South Wales, Sydney 2052, New South Wales, Australia
The Australian Research Council Centre of Excellence for Climate Extremes, Sydney 2052, New South Wales, Australia
Laurie Menviel
Climate Change Research Centre, University of New South Wales, Sydney 2052, New South Wales, Australia
The Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Tasmania 7001, Australia
Karin Kvale
GNS Science, 1 Fairway Drive, P.O. Box 30368, Avalon 5010, Lower Hutt 5040, New Zealand
Related authors
No articles found.
Ana-Cristina Mârza, Laurie Menviel, and Luke C. Skinner
Geochronology, 6, 503–519, https://doi.org/10.5194/gchron-6-503-2024, https://doi.org/10.5194/gchron-6-503-2024, 2024
Short summary
Short summary
Radiocarbon serves as a powerful dating tool, but the calibration of marine radiocarbon dates presents significant challenges because the whole surface ocean cannot be represented by a single calibration curve. Here we use climate model outputs and data to assess a novel method for developing regional marine calibration curves. Our results are encouraging and point to a way forward for solving the marine radiocarbon age calibration problem without relying on model simulations of the past.
Gabriel M. Pontes, Pedro Leite Silva Dias, and Laurie Menviel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3062, https://doi.org/10.5194/egusphere-2024-3062, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
El Niño events are the main driver of year-to-year tropical climate variability. Understanding how El Niño activity is affected by different climate states is of great relevance to socioeconomic, ecosystem and climate risk management. Through analysis of past and future climate simulations, we show that ENSO sensitivity to mean state changes is more complex than previously thought, exhibiting a nonlinear behavior.
Bartholomé Duboc, Katrin J. Meissner, Laurie Menviel, Nicholas K. H. Yeung, Babette Hoogakker, Tilo Ziehn, and Matthew Chamberlain
EGUsphere, https://doi.org/10.5194/egusphere-2024-2675, https://doi.org/10.5194/egusphere-2024-2675, 2024
Short summary
Short summary
We use an Earth System Model to simulate ocean oxygen during two past warm periods, the Last Interglacial (~129–115 ka) and Marine Isotope Stage (MIS) 9e (~336-321 ka). The global ocean is overall less oxygenated compared to the preindustrial simulation. Large regions in the Mediterranean Sea are oxygen deprived in the Last Interglacial simulation, and to a lesser extent in the MIS 9e simulation, due to an intensification and expansion of the African Monsoon and enhanced river run-off.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-86, https://doi.org/10.5194/cp-2023-86, 2023
Revised manuscript under review for CP
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving southern high latitude temperature changes. We find that atmospheric CO2 changes and AMOC changes are the primary drivers of the major warming and cooling during the middle stage of the deglaciation. The multi-model analysis highlights the model’s sensitivity of CO2, AMOC to meltwater, and the meltwater history on temperature changes in southern high latitudes.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Ryan A. Green, Laurie Menviel, Katrin J. Meissner, Xavier Crosta, Deepak Chandan, Gerrit Lohmann, W. Richard Peltier, Xiaoxu Shi, and Jiang Zhu
Clim. Past, 18, 845–862, https://doi.org/10.5194/cp-18-845-2022, https://doi.org/10.5194/cp-18-845-2022, 2022
Short summary
Short summary
Climate models are used to predict future climate changes and as such, it is important to assess their performance in simulating past climate changes. We analyze seasonal sea-ice cover over the Southern Ocean simulated from numerical PMIP3, PMIP4 and LOVECLIM simulations during the Last Glacial Maximum (LGM). Comparing these simulations to proxy data, we provide improved estimates of LGM seasonal sea-ice cover. Our estimate of summer sea-ice extent is 20 %–30 % larger than previous estimates.
Dipayan Choudhury, Laurie Menviel, Katrin J. Meissner, Nicholas K. H. Yeung, Matthew Chamberlain, and Tilo Ziehn
Clim. Past, 18, 507–523, https://doi.org/10.5194/cp-18-507-2022, https://doi.org/10.5194/cp-18-507-2022, 2022
Short summary
Short summary
We investigate the effects of a warmer climate from the Earth's paleoclimate (last interglacial) on the marine carbon cycle of the Southern Ocean using a carbon-cycle-enabled state-of-the-art climate model. We find a 150 % increase in CO2 outgassing during this period, which results from competition between higher sea surface temperatures and weaker oceanic circulation. From this we unequivocally infer that the carbon uptake by the Southern Ocean will reduce under a future warming scenario.
Karin Kvale, David P. Keller, Wolfgang Koeve, Katrin J. Meissner, Christopher J. Somes, Wanxuan Yao, and Andreas Oschlies
Geosci. Model Dev., 14, 7255–7285, https://doi.org/10.5194/gmd-14-7255-2021, https://doi.org/10.5194/gmd-14-7255-2021, 2021
Short summary
Short summary
We present a new model of biological marine silicate cycling for the University of Victoria Earth System Climate Model (UVic ESCM). This new model adds diatoms, which are a key aspect of the biological carbon pump, to an existing ecosystem model. Our modifications change how the model responds to warming, with net primary production declining more strongly than in previous versions. Diatoms in particular are simulated to decline with climate warming due to their high nutrient requirements.
Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, and Mayhar Mohtadi
Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021, https://doi.org/10.5194/cp-17-1507-2021, 2021
Short summary
Short summary
Planktic and shallow benthic foraminiferal stable carbon isotope
(δ13C) data show a rapid decline during the last deglaciation. This widespread signal was linked to respired carbon released from the deep ocean and its transport through the upper-ocean circulation. Using numerical simulations in which a stronger flux of respired carbon upwells and outcrops in the Southern Ocean, we find that the depleted δ13C signal is transmitted to the rest of the upper ocean through air–sea gas exchange.
Nicholas King-Hei Yeung, Laurie Menviel, Katrin J. Meissner, Andréa S. Taschetto, Tilo Ziehn, and Matthew Chamberlain
Clim. Past, 17, 869–885, https://doi.org/10.5194/cp-17-869-2021, https://doi.org/10.5194/cp-17-869-2021, 2021
Short summary
Short summary
The Last Interglacial period (LIG) is characterised by strong orbital forcing compared to the pre-industrial period (PI). This study compares the mean climate state of the LIG to the PI as simulated by the ACCESS-ESM1.5, with a focus on the southern hemispheric monsoons, which are shown to be consistently weakened. This is associated with cooler terrestrial conditions in austral summer due to decreased insolation, and greater pressure and subsidence over land from Hadley cell strengthening.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Nadine Mengis, David P. Keller, Andrew H. MacDougall, Michael Eby, Nesha Wright, Katrin J. Meissner, Andreas Oschlies, Andreas Schmittner, Alexander J. MacIsaac, H. Damon Matthews, and Kirsten Zickfeld
Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, https://doi.org/10.5194/gmd-13-4183-2020, 2020
Short summary
Short summary
In this paper, we evaluate the newest version of the University of Victoria Earth System Climate Model (UVic ESCM 2.10). Combining recent model developments as a joint effort, this version is to be used in the next phase of model intercomparison and climate change studies. The UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. Additionally, the model is able to reproduce the three-dimensional distribution of many ocean tracers.
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020, https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Short summary
Constants of global biogeochemical ocean models are often tuned
by handto match observations of nutrients or oxygen. We investigate the effect of this tuning by optimising six constants of a global biogeochemical model, simulated in five different offline circulations. Optimal values for three constants adjust to distinct features of the circulation applied and can afterwards be swapped among the circulations, without losing too much of the model's fit to observed quantities.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell N. Drysdale, Philip L. Gibbard, Lauren Gregoire, Feng He, Ruza F. Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis C. Tzedakis, Eric Wolff, and Xu Zhang
Geosci. Model Dev., 12, 3649–3685, https://doi.org/10.5194/gmd-12-3649-2019, https://doi.org/10.5194/gmd-12-3649-2019, 2019
Short summary
Short summary
As part of the Past Global Changes (PAGES) working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation for the Paleoclimate Modelling Intercomparison Project (PMIP4). This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration of continental ice sheets. Key paleo-records for model-data comparison are also included.
Karin F. Kvale, Katherine E. Turner, Angela Landolfi, and Katrin J. Meissner
Biogeosciences, 16, 1019–1034, https://doi.org/10.5194/bg-16-1019-2019, https://doi.org/10.5194/bg-16-1019-2019, 2019
Short summary
Short summary
Drivers motivating the evolution of calcifying phytoplankton are poorly understood. We explore differences in global ocean chemistry with and without calcifiers during rapid climate changes. We find the presence of phytoplankton calcifiers stabilizes the volume of low oxygen regions and consequently stabilizes the concentration of nitrate, which is an important nutrient required for photosynthesis. By stabilizing nitrate concentrations, calcifiers improve their growth conditions.
Daniel P. Lowry, Nicholas R. Golledge, Laurie Menviel, and Nancy A. N. Bertler
Clim. Past, 15, 189–215, https://doi.org/10.5194/cp-15-189-2019, https://doi.org/10.5194/cp-15-189-2019, 2019
Short summary
Short summary
Using two climate models, we seek to better understand changes in Antarctic climate and Southern Ocean conditions during the last deglaciation. We highlight the importance of sea ice and ice topography changes for Antarctic surface temperatures and snow accumulation as well as the sensitivity of Southern Ocean temperatures to meltwater fluxes. The results demonstrate that climate model simulations of the deglaciation could be greatly improved by considering ice–ocean interactions and feedbacks.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell Drysdale, Philip Gibbard, Lauren Gregoire, Feng He, Ruza Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis Tzedakis, Eric Wolff, and Xu Zhang
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-106, https://doi.org/10.5194/cp-2018-106, 2018
Preprint withdrawn
Short summary
Short summary
The penultimate deglaciation (~ 138–128 ka), which represents the transition into the Last Interglacial period, provides a framework to investigate the climate and environmental response to large changes in boundary conditions. Here, as part of the PAGES-PMIP working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation as well as a selection of paleo records for upcoming model-data comparisons.
Kaitlin A. Naughten, Katrin J. Meissner, Benjamin K. Galton-Fenzi, Matthew H. England, Ralph Timmermann, Hartmut H. Hellmer, Tore Hattermann, and Jens B. Debernard
Geosci. Model Dev., 11, 1257–1292, https://doi.org/10.5194/gmd-11-1257-2018, https://doi.org/10.5194/gmd-11-1257-2018, 2018
Short summary
Short summary
MetROMS and FESOM are two ocean/sea-ice models which resolve Antarctic ice-shelf cavities and consider thermodynamics at the ice-shelf base. We simulate the period 1992–2016 with both models, and with two options for resolution in FESOM, and compare output from the three simulations. Ice-shelf melt rates, sub-ice-shelf circulation, continental shelf water masses, and sea-ice processes are compared and evaluated against available observations.
Karin F. Kvale and Katrin J. Meissner
Biogeosciences, 14, 4767–4780, https://doi.org/10.5194/bg-14-4767-2017, https://doi.org/10.5194/bg-14-4767-2017, 2017
Short summary
Short summary
Climate models containing ocean biogeochemistry contain a lot of poorly constrained parameters, which makes model tuning difficult. For more than 20 years modellers have generally assumed phytoplankton light attenuation parameter value choice has an insignificant affect on model ocean primary production; thus, it is often overlooked for tuning. We show that an empirical range of light attenuation parameter values can affect primary production, with increasing sensitivity under climate change.
Karin F. Kvale, Samar Khatiwala, Heiner Dietze, Iris Kriest, and Andreas Oschlies
Geosci. Model Dev., 10, 2425–2445, https://doi.org/10.5194/gmd-10-2425-2017, https://doi.org/10.5194/gmd-10-2425-2017, 2017
Short summary
Short summary
Computer models of ocean biology and chemistry are becoming increasingly complex, and thus more expensive, to run. One solution is to approximate the behaviour of the ocean physics and store that information outside of the model. That
offlineinformation can then be used to calculate a steady-state solution from the model's biology and chemistry, without waiting for a traditional
onlineintegration to complete. We show this offline method reproduces online results and is 100 times faster.
Daniela Niemeyer, Tronje P. Kemena, Katrin J. Meissner, and Andreas Oschlies
Earth Syst. Dynam., 8, 357–367, https://doi.org/10.5194/esd-8-357-2017, https://doi.org/10.5194/esd-8-357-2017, 2017
K. F. Kvale, K. J. Meissner, D. P. Keller, M. Eby, and A. Schmittner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-7-1709-2014, https://doi.org/10.5194/gmdd-7-1709-2014, 2014
Revised manuscript not accepted
L. Menviel, A. Timmermann, T. Friedrich, and M. H. England
Clim. Past, 10, 63–77, https://doi.org/10.5194/cp-10-63-2014, https://doi.org/10.5194/cp-10-63-2014, 2014
Related subject area
Subject: Carbon Cycle | Archive: Modelling only | Timescale: Millenial/D-O
The atmospheric bridge communicated the δ13C decline during the last deglaciation to the global upper ocean
Mysteriously high Δ14C of the glacial atmosphere: influence of 14C production and carbon cycle changes
Ocean carbon inventory under warmer climate conditions – the case of the Last Interglacial
The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO2 since the Devonian
Scaling laws for perturbations in the ocean–atmosphere system following large CO2 emissions
Systematic study of the impact of fresh water fluxes on the glacial carbon cycle
Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation
Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, and Mayhar Mohtadi
Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021, https://doi.org/10.5194/cp-17-1507-2021, 2021
Short summary
Short summary
Planktic and shallow benthic foraminiferal stable carbon isotope
(δ13C) data show a rapid decline during the last deglaciation. This widespread signal was linked to respired carbon released from the deep ocean and its transport through the upper-ocean circulation. Using numerical simulations in which a stronger flux of respired carbon upwells and outcrops in the Southern Ocean, we find that the depleted δ13C signal is transmitted to the rest of the upper ocean through air–sea gas exchange.
Ashley Dinauer, Florian Adolphi, and Fortunat Joos
Clim. Past, 16, 1159–1185, https://doi.org/10.5194/cp-16-1159-2020, https://doi.org/10.5194/cp-16-1159-2020, 2020
Short summary
Short summary
Despite intense focus on the ~ 190 ‰ drop in Δ14C across the deglacial
mystery interval, the specific mechanisms responsible for the apparent Δ14C excess in the glacial atmosphere have received considerably less attention. Sensitivity experiments with the computationally efficient Bern3D Earth system model suggest that our inability to reproduce the elevated Δ14C levels during the last glacial may reflect an underestimation of 14C production and/or a biased-high reconstruction of Δ14C.
Augustin Kessler, Eirik Vinje Galaasen, Ulysses Silas Ninnemann, and Jerry Tjiputra
Clim. Past, 14, 1961–1976, https://doi.org/10.5194/cp-14-1961-2018, https://doi.org/10.5194/cp-14-1961-2018, 2018
Short summary
Short summary
We analyze the changes in oceanic carbon dynamics, using a state-of-the-art Earth system model, by comparing two quasi-equilibrium states: the early, warm Eemian (125 ka) versus the cooler, late Eemian (115 ka). Our results suggest a considerably weaker ocean dissolved inorganic carbon storage at 125 ka, an alteration of the deep-water geometry and ventilation in the South Atlantic, and heterogeneous changes in phosphate availability and carbon export between the Pacific and Atlantic basins.
Jodie Pall, Sabin Zahirovic, Sebastiano Doss, Rakib Hassan, Kara J. Matthews, John Cannon, Michael Gurnis, Louis Moresi, Adrian Lenardic, and R. Dietmar Müller
Clim. Past, 14, 857–870, https://doi.org/10.5194/cp-14-857-2018, https://doi.org/10.5194/cp-14-857-2018, 2018
Short summary
Short summary
Subduction zones intersecting buried carbonate platforms liberate significant atmospheric CO2 and have the potential to influence global climate. We model the spatio-temporal distribution of carbonate platform accumulation within a plate tectonic framework and use wavelet analysis to analyse linked behaviour between atmospheric CO2 and carbonate-intersecting subduction zone (CISZ) lengths since the Devonian. We find that increasing CISZ lengths likely contributed to a warmer Palaeogene climate.
N. Towles, P. Olson, and A. Gnanadesikan
Clim. Past, 11, 991–1007, https://doi.org/10.5194/cp-11-991-2015, https://doi.org/10.5194/cp-11-991-2015, 2015
Short summary
Short summary
In this paper we find scaling relationships for perturbations to atmosphere and ocean variables from large transient CO2 emissions. We use a carbon cycle box model to calculate peak perturbations to a variety of ocean and atmosphere variables resulting from idealized emission events. As these scaling relationships depend on the physical setup, they represent a compact way of characterizing how different climates respond to large transient perturbations.
N. Bouttes, D. M. Roche, and D. Paillard
Clim. Past, 8, 589–607, https://doi.org/10.5194/cp-8-589-2012, https://doi.org/10.5194/cp-8-589-2012, 2012
A. Bozbiyik, M. Steinacher, F. Joos, T. F. Stocker, and L. Menviel
Clim. Past, 7, 319–338, https://doi.org/10.5194/cp-7-319-2011, https://doi.org/10.5194/cp-7-319-2011, 2011
Cited articles
Abelmann, A., Gersonde, R., Cortese, G., Kuhn, G., and Smetacek, V.: Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean, Paleoceanography, 21, PA1013, https://doi.org/10.1029/2005PA001199, 2006. a
Abelmann, A., Gersonde, R., Knorr, G., Zhang, X., Chapligin, B., Maier, E.,
Esper, O., Friedrichsen, H., Lohmann, G., Meyer, H., and Tiedemann, R.: The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink, Nat. Commun., 6, 1–13, 2015. a
Adkins, J. F.: The role of deep ocean circulation in setting glacial climates, Paleoceanography, 28, 539–561, 2013. a
Ahn, J. and Brook, E. J.: Atmospheric CO2 and climate on millennial time
scales during the last glacial period, Science, 322, 83–85, 2008. a
Ai, X. E., Studer, A. S., Sigman, D. M., Martínez-García, A., Fripiat, F., Thöle, L. M., Michel, E., Gottschalk, J., Arnold, L.,
Moretti, S., Schmitt, M., Oleynik, S., Jaccard, S. L., and Haug, G. H.: Southern Ocean upwelling, Earth's obliquity, and glacial-interglacial atmospheric CO2 change, Science, 370, 1348–1352, 2020. a
Amsler, H. E., Thöle, L. M., Stimac, I., Geibert, W., Ikehara, M., Kuhn, G., Esper, O., and Jaccard, S. L.: Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception, Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, 2022. a, b, c, d, e, f, g, h
Anderson, R. F., Barker, S., Fleisher, M., Gersonde, R., Goldstein, S. L.,
Kuhn, G., Mortyn, P. G., Pahnke, K., and Sachs, J. P.: Biological response to
millennial variability of dust and nutrient supply in the Subantarctic South
Atlantic Ocean, Philos. T. Roy. Soc. A, 372, 20130054, https://doi.org/10.1098/rsta.2013.0054, 2014. a
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron
fertilization studies, Global Biogeochem. Cy., 20, GB2017, https://doi.org/10.1029/2005GB002591, 2006. a
Aumont, O., Maier-Reimer, E., Blain, S., and Monfray, P.: An ecosystem model of the global ocean including Fe, Si, P colimitations, Global Biogeochem. Cy., 17, 1060, https://doi.org/10.1029/2001GB001745, 2003. a
Baker, A., Jickells, T., Witt, M., and Linge, K.: Trends in the solubility of
iron, aluminium, manganese and phosphorus in aerosol collected over the
Atlantic Ocean, Mar. Chem., 98, 43–58, 2006. a
Bassinot, F. C., Labeyrie, L. D., Vincent, E., Quidelleur, X., Shackleton,
N. J., and Lancelot, Y.: The astronomical theory of climate and the age of
the Brunhes-Matuyama magnetic reversal, Earth Planet. Sc. Lett., 126, 91–108, 1994. a
Bereiter, B., Lüthi, D., Siegrist, M., Schüpbach, S., Stocker, T. F.,
and Fischer, H.: Mode change of millennial CO2 variability during the last
glacial cycle associated with a bipolar marine carbon seesaw, P. Natl. Acad. Sci. USA, 109, 9755–9760, 2012. a
Bopp, L., Kohfeld, K. E., Le Quéré, C., and Aumont, O.: Dust impact on marine biota and atmospheric CO2 during glacial periods, Paleoceanography, 18, 1046, https://doi.org/10.1029/2002PA000810, 2003. a, b
Boyle, E. A.: The role of vertical chemical fractionation in controlling late
Quaternary atmospheric carbon dioxide, J. Geophys. Res.-Oceans, 93, 15701–15714, 1988. a
Brovkin, V., Ganopolski, A., Archer, D., and Munhoven, G.: Glacial CO2 cycle as a succession of key physical and biogeochemical processes, Clim. Past, 8, 251–264, https://doi.org/10.5194/cp-8-251-2012, 2012. a
Conway, T. M., Wolff, E. W., Röthlisberger, R., Mulvaney, R., and
Elderfield, H.: Constraints on soluble aerosol iron flux to the Southern
Ocean at the Last Glacial Maximum, Nat. Commun., 6, 1–9, 2015. a
De Deckker, P., Arnold, L. J., van der Kaars, S., Bayon, G., Stuut, J.-B. W.,
Perner, K., dos Santos, R. L., Uemura, R., and Demuro, M.: Marine Isotope
Stage 4 in Australasia: a full glacial culminating 65,000 years ago–global
connections and implications for human dispersal, Quaternary Sci. Rev., 204, 187–207, 2019. a
Dong, S., Sprintall, J., and Gille, S. T.: Location of the Antarctic polar
front from AMSR-E satellite sea surface temperature measurements, J. Phys. Oceanogr., 36, 2075–2089, 2006. a
Eby, M., Zickfeld, K., Montenegro, A., Archer, D., Meissner, K., and Weaver,
A. J.: Lifetime of anthropogenic climate change: Millennial time scales of
potential CO2 and surface temperature perturbations, J. Climate, 22, 2501–2511, https://doi.org/10.1175/2008JCLI2554.1, 2009. a
Fanning, A. F. and Weaver, A. J.: An atmospheric energy-moisture balance
model: Climatology, interpentadal climate change, and coupling to an ocean
general circulation model, J. Geophys. Res.-Atmos., 101, 15111–15128, https://doi.org/10.1029/96JD01017, 1996. a
Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A., Stewart, A. L., and
Thompson, A. F.: Antarctic sea ice control on ocean circulation in present
and glacial climates, P. Natl. Acad. Sci. USA, 111, 8753–8758, 2014. a
Gebhardt, H., Sarnthein, M., Grootes, P. M., Kiefer, T., Kuehn, H., Schmieder, F., and Röhl, U.: Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V,
Paleoceanography, 23, PA4212, https://doi.org/10.1029/2007PA001513, 2008. a
Giglio, D. and Johnson, G. C.: Subantarctic and polar fronts of the Antarctic
Circumpolar Current and Southern Ocean heat and freshwater content
variability: A view from Argo, J. Phys. Oceanogr., 46, 749–768, 2016. a
Gray, W. R., Lavergne, C. d., Wills, R. C. J., Menviel, L., Spence, P., Holzer, M., Kageyama, M., and Michel, E.: Poleward shift in the Southern Hemisphere westerly winds synchronous with the deglacial rise in CO2, Paleoceanogr. Paleoclim., 38, e2023PA004666, https://doi.org/10.1029/2023PA004666, 2021. a
Heinze, C., Maier-Reimer, E., and Winn, K.: Glacial pCO2 reduction by the world ocean: Experiments with the Hamburg carbon cycle model,
Paleoceanography, 6, 395–430, 1991. a
Hibler, W. D.: A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9, 815–846, 1979. a
Hunke, E. C. and Dukowicz, J. K.: An elastic–viscous–plastic model for sea
ice dynamics, J. Phys. Oceanogr., 27, 1849–1867, 1997. a
Ito, A., Myriokefalitakis, S., Kanakidou, M., Mahowald, N. M., Scanza, R. A.,
Hamilton, D. S., Baker, A. R., Jickells, T., Sarin, M., Bikkina, S., Gao, Y., Shelley, R. U., Buck, C. S., Landing, W. M., Bowie, A. R., Perron, M. M. G., Guieu, C., Meskhidze, N., Johnson, M. S., Feng, Y., Kok, J. F., Nenes, A., and Duce, R. A.: Pyrogenic iron: The missing link to high iron solubility in aerosols, Sci. Adv., 5, eaau7671, https://doi.org/10.1126/sciadv.aau7671, 2019. a, b
Jaccard, S. L., Haug, G. H., Sigman, D. M., Pedersen, T. F., Thierstein, H. R., and Rohl, U.: Glacial/interglacial changes in subarctic North Pacific
stratification, Science, 308, 1003–1006, 2005. a
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffmann, G., Minster, B., Nouet, J., Barnola, J.-M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and millennial Antarctic climate variability over the past 800,000 years, Science, 317, 793–796, 2007. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., and Zhu, Y.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–472, 1996. a
Keller, D. P., Oschlies, A., and Eby, M.: A new marine ecosystem model for the University of Victoria earth system climate model, Geosci. Model Dev., 5, 1195–1220, https://doi.org/10.5194/gmd-5-1195-2012, 2012. a
Khatiwala, S., Schmittner, A., and Muglia, J.: Air-sea disequilibrium enhances ocean carbon storage during glacial periods, Sci. Adv., 5, eaaw4981,
https://doi.org/10.1126/sciadv.aaw4981, 2019. a, b
Kleman, J., Fastook, J., Ebert, K., Nilsson, J., and Caballero, R.: Pre-LGM Northern Hemisphere ice sheet topography, Clim. Past, 9, 2365–2378, https://doi.org/10.5194/cp-9-2365-2013, 2013. a
Kobayashi, H. and Oka, A.: Response of atmospheric pCO2 to glacial Changes
in the Southern Ocean amplified by carbonate compensation, Paleoceanogr.
Paleoclim., 33, 1206–1229, 2018. a
Kohfeld, K. E. and Harrison, S. P.: DIRTMAP: the geological record of dust,
Earth-Sci. Rev., 54, 81–114, 2001. a
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M.,
Chen, M.-T., Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins, S., and Waelbroeck, C.: Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans, Quaternary Sci. Rev., 24, 951–998, 2005. a
Kvale, K., Keller, D. P., Koeve, W., Meissner, K. J., Somes, C. J., Yao, W., and Oschlies, A.: Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9, Geosci. Model Dev., 14, 7255–7285, https://doi.org/10.5194/gmd-14-7255-2021, 2021. a, b, c, d
Kvale, K. F., Meissner, K., and Keller, D.: Potential increasing dominance of
heterotrophy in the global ocean, Environ. Res. Lett., 10, 074009, https://doi.org/10.1088/1748-9326/10/7/074009, 2015b. a
Lambeck, K., Purcell, A., Zhao, J., and SVENSSON, N.-O.: The Scandinavian ice
sheet: from MIS 4 to the end of the last glacial maximum, Boreas, 39, 410–435, 2010. a
Lambert, F., Delmonte, B., Petit, J.-R., Bigler, M., Kaufmann, P. R., Hutterli, M. A., Stocker, T. F., Ruth, U., Steffensen, J. P., and Maggi, V.:
Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice
core, Nature, 452, 616–619, 2008. a
Lambert, F., Bigler, M., Steffensen, J. P., Hutterli, M., and Fischer, H.: Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica, Clim. Past, 8, 609–623, https://doi.org/10.5194/cp-8-609-2012, 2012. a, b, c
Lambert, F., Opazo, N., Ridgwell, A., Winckler, G., Lamy, F., Shaffer, G.,
Kohfeld, K., Ohgaito, R., Albani, S., and Abe-Ouchi, A.: Regional patterns
and temporal evolution of ocean iron fertilization and CO2 drawdown during
the last glacial termination, Earth Planet. Sc. Lett., 554, 116675, https://doi.org/10.1016/j.epsl.2020.116675, 2021. a, b, c, d, e
Lefèvre, N. and Watson, A. J.: Modeling the geochemical cycle of iron in
the oceans and its impact on atmospheric CO2 concentrations, Global
Biogeochem. Cy., 13, 727–736, 1999. a
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker, T. F.: High-resolution carbon dioxide concentration record 650,000–800,000 years before present, Nature, 453, 379–382, 2008. a
Maher, B., Prospero, J., Mackie, D., Gaiero, D., Hesse, P., and Balkanski, Y.: Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum, Earth-Sci. Rev., 99, 61–97, 2010. a
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender,
C. S., and Luo, C.: Change in atmospheric mineral aerosols in response to
climate: Last glacial period, preindustrial, modern, and doubled carbon
dioxide climates, J. Geophys. Res.-Atmos., 111, D10202, https://doi.org/10.1029/2005JD006653, 2006. a
Martin, J. H.: Iron Hypothesis of CO2 Change, Paleoceanography, 5, 1–13, 1990. a
Matsumoto, K., Sarmiento, J. L., and Brzezinski, M. A.: Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmospheric pCO2, Global Biogeochem. Cy., 16, 5–1–5–23, https://doi.org/10.1029/2001gb001442, 2002. a
Meissner, K., Weaver, A. J., Matthews, H. D., and Cox, P. M.: The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model, Clim. Dynam., 21, 515–537, https://doi.org/10.1007/s00382-003-0352-2,
2003. a, b, c
Meissner, K., McNeil, B. I., Eby, M., and Wiebe, E. C.: The importance of the terrestrial weathering feedback for multimillennial coral reef habitat
recovery, Global Biogeochem. Cy., 26, 1–20, https://doi.org/10.1029/2011GB004098, 2012. a
Mengis, N., Keller, D. P., MacDougall, A. H., Eby, M., Wright, N., Meissner, K. J., Oschlies, A., Schmittner, A., MacIsaac, A. J., Matthews, H. D., and Zickfeld, K.: Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10), Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, 2020. a
Menviel, L., Joos, F., and Ritz, S.: Simulating atmospheric CO2, 13C and the marine carbon cycle during the Last Glacial–Interglacial cycle: possible role for a deepening of the mean remineralization depth and an increase in the oceanic nutrient inventory, Quaternary Sci. Rev., 56, 46–68, 2012. a, b, c
Menviel, L., Mouchet, A., Meissner, K. J., Joos, F., and England, M. H.: Impact of oceanic circulation changes on atmospheric δ13CO2, Global Biogeochem. Cy., 29, 1944–1961, 2015. a
Muglia, J., Somes, C. J., Nickelsen, L., and Schmittner, A.: Combined effects of atmospheric and seafloor iron fluxes to the glacial ocean,
Paleoceanography, 32, 1204–1218, https://doi.org/10.1002/2016PA003077, 2017. a, b, c
Nickelsen, L., Keller, D. P., and Oschlies, A.: A dynamic marine iron cycle
module coupled to the University of Victoria Earth System Model: The Kiel
Marine Biogeochemical Model 2 for UVic 2.9, Geosci. Model Dev., 8, 1357–1381, https://doi.org/10.5194/gmd-8-1357-2015, 2015. a
Ohgaito, R., Abe-Ouchi, A., O'Ishi, R., Takemura, T., Ito, A., Hajima, T.,
Watanabe, S., and Kawamiya, M.: Effect of high dust amount on surface
temperature during the Last Glacial Maximum: A modelling study using
MIROC-ESM, Clim. Past, 14, 1565–1581, https://doi.org/10.5194/cp-14-1565-2018, 2018. a, b
Oka, A., Abe-Ouchi, A., Chikamoto, M. O., and Ide, T.: Mechanisms controlling
export production at the LGM: Effects of changes in oceanic physical fields
and atmospheric dust deposition, Global Biogeochem. Cy., 25, https://doi.org/10.1029/2009GB003628, 2011. a
O'Neill, C. M., Hogg, A. McC., Ellwood, M. J., Opdyke, B. N., and Eggins, S. M.: Sequential changes in ocean circulation and biological export productivity during the last glacial–interglacial cycle: a model–data study, Clim. Past, 17, 171–201, https://doi.org/10.5194/cp-17-171-2021, 2021. a
Pacanowski, R.: MOM2 documentation user's guide and reference manual: GFDL
ocean group technical report, Geophysical Fluid Dynamics Laboratory (GFDL),
National Oceanic and Atmospheric Administration, Princeton, NJ, https://cir.nii.ac.jp/crid/1570291225122342656#citations_container (last access: 27 July 2023), 1995. a
Petit, J.-R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile,
I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429, https://doi.org/10.12987/9780300188479-032, 1999. a
Saini, H., Meissner, K. J., Menviel, L., and Kvale, K.: Impact of iron fertilisation on atmospheric CO2 during the glaciation, UNSW ResData [data set], https://doi.org/10.26190/unsworks/24072, 2022. a
Schmittner, A., Oschlies, A., Giraud, X., Eby, M., and Simmons, H. L.: A
global model of the marine ecosystem for long-term simulations: Sensitivity
to ocean mixing, buoyancy forcing, particle sinking, and dissolved organic
matter cycling, Global Biogeochem. Cy., 19, 1–17, https://doi.org/10.1029/2004GB002283, 2005. a
Schroth, A. W., Crusius, J., Sholkovitz, E. R., and Bostick, B. C.: Iron
solubility driven by speciation in dust sources to the ocean, Nat. Geosci., 2, 337–340, 2009. a
Semtner Jr., A. J.: A model for the thermodynamic growth of sea ice in numerical investigations of climate, J. Phys. Oceanogr., 6, 379–389, 1976. a
Shoenfelt, E. M., Sun, J., Winckler, G., Kaplan, M. R., Borunda, A. L.,
Farrell, K. R., Moreno, P. I., Gaiero, D. M., Recasens, C., Sambrotto, R. N.,
and Bostick, B. C.: High particulate iron (II) content in glacially sourced dusts enhances productivity of a model diatom, Sci. Adv., 3, e1700314, https://doi.org/10.1126/sciadv.1700314, 2017. a
Shoenfelt, E. M., Winckler, G., Lamy, F., Anderson, R. F., and Bostick, B. C.: Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods, P. Natl. Acad. Sci. USA, 115, 11180–11185, 2018. a
Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 407, 859–869, 2000. a
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial cycles in atmospheric CO2 concentration, Nature, 466, 47–55, 2010. a
Sigman, D. M., Fripiat, F., Studer, A. S., Kemeny, P. C., Martínez-García, A., Hain, M. P., Ai, X., Wang, X., Ren, H., and
Haug, G. H.: The Southern Ocean during the ice ages: A review of the
Antarctic surface isolation hypothesis, with comparison to the North Pacific,
Quaternary Sci. Rev., 254, 106732, https://doi.org/10.1016/j.quascirev.2020.106732, 2021. a
Sokolov, S. and Rintoul, S. R.: Circumpolar structure and distribution of the
Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths, J. Geophys. Res.-Oceans, 114, C11019, https://doi.org/10.1029/2008JC005108, 2009. a, b, c, d
Stephens, B. B. and Keeling, R. F.: The influence of Antarctic sea ice on
glacial–interglacial CO2 variations, Nature, 404, 171–174, 2000. a
Tagliabue, A., Bopp, L., and Aumont, O.: Evaluating the importance of
atmospheric and sedimentary iron sources to Southern Ocean biogeochemistry,
Geophys. Res. Lett., 36, L13601, https://doi.org/10.1029/2009GL038914, 2009a. a
Tagliabue, A., Bopp, L., Roche, D. M., Bouttes, N., Dutay, J.-C., Alkama, R., Kageyama, M., Michel, E., and Paillard, D.: Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum, Clim. Past, 5, 695–706, https://doi.org/10.5194/cp-5-695-2009, 2009b. a
Tagliabue, A., Bowie, A. R., Boyd, P. W., Buck, K. N., Johnson, K. S., and
Saito, M. A.: The integral role of iron in ocean biogeochemistry, Nature,
543, 51–59, 2017. a
Thöle, L. M., Amsler, H. E., Moretti, S., Auderset, A., Gilgannon, J.,
Lippold, J., Vogel, H., Crosta, X., Mazaud, A., Michel, E., Martínez-García, A., and Jaccard, S. L.: Glacial-interglacial dust and export production records from the Southern Indian Ocean, Earth Planet. Sc. Lett., 525, 115716, https://doi.org/10.1016/j.epsl.2019.115716, 2019. a, b, c, d, e, f
Toggweiler, J.: Origin of the 100,000-year timescale in Antarctic temperatures and atmospheric CO2, Paleoceanography, 23, PA2211, https://doi.org/10.1029/2006PA001405, 2008. a
Toggweiler, J. R., Russell, J. L., and Carson, S. R.: Midlatitude westerlies,
atmospheric CO2, and climate change during the ice ages, Paleoceanography, 21, PA2005, https://doi.org/10.1029/2005PA001154, 2006. a
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J.,
Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water
temperature changes derived from benthic foraminifera isotopic records,
Quaternary Sci. Rev. 21, 295–305, 2002. a
Watson, A. J., Vallis, G. K., and Nikurashin, M.: Southern Ocean buoyancy
forcing of ocean ventilation and glacial atmospheric CO2, Nat. Geosci., 8, 861–864, 2015. a
Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T. L.,
Fanning, A. F., Holland, M. M., MacFadyen, A., Matthews, H. D., Meissner, K.,
Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M.: The UVic earth
system climate model: Model description, climatology, and applications to
past, present and future climates, Atmos.-Ocean, 39, 361–428,
https://doi.org/10.1080/07055900.2001.9649686, 2001. a
Weber, M. E., Bailey, I., Hemming, S. R., Martos, Y. M., Reilly, B. T., Ronge, T. A., Brachfeld, S., Williams, T., Raymo, M., Belt, S. T., et al.:
Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years, Nat. Commun., 13, 2044, https://doi.org/10.1038/s41467-022-29642-5, 2022. a, b
Williams, R. G. and Follows, M. J.: Ocean dynamics and the carbon cycle:
Principles and mechanisms, Cambridge University Press, ISBN 9780511977817,
https://doi.org/10.1017/CBO9780511977817, 2011. a
Wilson, D. J., Piotrowski, A. M., Galy, A., and Banakar, V. K.:
Interhemispheric controls on deep ocean circulation and carbon chemistry
during the last two glacial cycles, Paleoceanography, 30, 621–641, 2015. a
Wolff, E., Barbante, C., Becagli, S., Bigler, M., Boutron, C., Castellano, E., De Angelis, M., Federer, U., Fischer, H., Fundel, F., Hansson, M., Hutterli, M., Jonsell, U., Karlin, T., Kaufmann, P., Lambert, F., Littot, G. C., Mulvaney, R., Röthlisberger, R., Ruth, U., and Wegner, A.: Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core, Quaternary Sci. Rev., 29, 285–295, 2010. a
Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C.,
Mulvaney, R., Röthlisberger, R., de Angelis, M., Boutron, C. F., Hansson, M., Jonsell, U., Hutterli, M. A., Lambert, F., Kaufmann, P., Stauffer, B., Stocker, T. F., Steffensen, J. P., Bigler, M., Siggaard-Andersen, M. L., Udisti, R., Becagli, S., Castellano, E., Severi, M., Wagenbach, D., Barbante, C., Gabrielli, P., and Gaspari, V.: Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles, Nature, 440, 491–496, 2006. a
Zhang, Y., Mahowald, N., Scanza, R. A., Journet, E., Desboeufs, K., Albani, S., Kok, J. F., Zhuang, G., Chen, Y., Cohen, D. D., Paytan, A., Patey, M. D.,
Achterberg, E. P., Engelbrecht, J. P., and Fomba, K. W.: Modeling the global
emission, transport and deposition of trace elements associated with mineral
dust, Biogeosciences, 12, 5771–5792, https://doi.org/10.5194/bg-12-5771-2015, 2015. a, b
Short summary
Understanding the changes in atmospheric CO2 during the last glacial cycle is crucial to comprehend the impact of climate change in the future. Previous research has hypothesised a key role of greater aeolian iron input into the Southern Ocean in influencing the global atmospheric CO2 levels by impacting the changes in the marine phytoplankton response. In our study, we test this iron hypothesis using climate modelling and constrain the impact of ocean iron supply on global CO2 decrease.
Understanding the changes in atmospheric CO2 during the last glacial cycle is crucial to...