Articles | Volume 19, issue 7
https://doi.org/10.5194/cp-19-1383-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1383-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrological change in southern Australia over 1750 years: a bivalve oxygen isotope record from the Coorong Lagoon
Briony Kate Chamberlayne
Department of Earth Sciences and Sprigg Geobiology Centre, The University of Adelaide, Adelaide, 5005, Australia
Jonathan James Tyler
CORRESPONDING AUTHOR
Department of Earth Sciences and Sprigg Geobiology Centre, The University of Adelaide, Adelaide, 5005, Australia
Deborah Haynes
Department of Earth Sciences and Sprigg Geobiology Centre, The University of Adelaide, Adelaide, 5005, Australia
Department of Geography, Environment and Population, and Sprigg Geobiology Centre, The University of Adelaide, Adelaide, 5005, Australia
Yuexiao Shao
Department of Earth Sciences and Sprigg Geobiology Centre, The University of Adelaide, Adelaide, 5005, Australia
John Tibby
Department of Geography, Environment and Population, and Sprigg Geobiology Centre, The University of Adelaide, Adelaide, 5005, Australia
Bronwyn May Gillanders
Southern Seas Ecology Laboratories and the Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
Related authors
No articles found.
Emma Rehn, Haidee Cadd, Scott Mooney, Tim J. Cohen, Henry Munack, Alexandru T. Codilean, Matthew Adeleye, Kristen K. Beck, Mark Constantine IV, Chris Gouramanis, Johanna M. Hanson, Penelope J. Jones, A. Peter Kershaw, Lydia Mackenzie, Maame Maisie, Michela Mariani, Kia Mately, David McWethy, Keely Mills, Patrick Moss, Nicholas R. Patton, Cassandra Rowe, Janelle Stevenson, John Tibby, and Janet Wilmshurst
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-328, https://doi.org/10.5194/essd-2024-328, 2024
Preprint under review for ESSD
Short summary
Short summary
This paper presents SahulCHAR, a new collection of palaeofire (ancient fire) records from Australia, New Guinea, and New Zealand. SahulCHAR Version 1 contains 687 records of sedimentary charcoal or black carbon, including digitized data, records from existing databases, and original author-submitted data. SahulCHAR is a much-needed update on past charcoal compilations that will also provide greater representation of records from this region in future global syntheses to understand past fire.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Duncan Ackerley, Jessica Reeves, Cameron Barr, Helen Bostock, Kathryn Fitzsimmons, Michael-Shawn Fletcher, Chris Gouramanis, Helen McGregor, Scott Mooney, Steven J. Phipps, John Tibby, and Jonathan Tyler
Clim. Past, 13, 1661–1684, https://doi.org/10.5194/cp-13-1661-2017, https://doi.org/10.5194/cp-13-1661-2017, 2017
Short summary
Short summary
A selection of climate models have been used to simulate both pre-industrial (1750 CE) and mid-Holocene (6000 years ago) conditions. This study presents an assessment of the temperature, rainfall and flow over Australasia from those climate models. The model data are compared with available proxy data reconstructions (e.g. tree rings) for 6000 years ago to identify whether the models are reliable. Places where there is both agreement and conflict are highlighted and investigated further.
Bronwyn C. Dixon, Jonathan J. Tyler, Andrew M. Lorrey, Ian D. Goodwin, Joëlle Gergis, and Russell N. Drysdale
Clim. Past, 13, 1403–1433, https://doi.org/10.5194/cp-13-1403-2017, https://doi.org/10.5194/cp-13-1403-2017, 2017
Short summary
Short summary
Existing sedimentary palaeoclimate records in Australasia were assessed for suitability for examining the last 2 millennia. A small number of high-quality records were identified, and new Bayesian age models were constructed for each record. Findings suggest that Australasian record chronologies and confidence in proxy–climate relationships are the main factors limiting appropriate data for examining Common Era climate variability. Recommendations for improving data accessibility are provided.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Millenial/D-O
Millennial hydrological variability in the continental northern Neotropics during Marine Isotope Stages (MISs) 3–2 (59–15 cal ka BP) inferred from sediments of Lake Petén Itzá, Guatemala
Greenhouse gases modulate the strength of millennial-scale subtropical rainfall, consistent with future predictions
Humidity changes and possible forcing mechanisms over the last millennium in arid Central Asia
Archaeal lipid-inferred paleohydrology and paleotemperature of Lake Chenghai during the Pleistocene–Holocene transition
Differing pre-industrial cooling trends between tree rings and lower-resolution temperature proxies
Dansgaard–Oeschger-like events of the penultimate climate cycle: the loess point of view
Evaluating model outputs using integrated global speleothem records of climate change since the last glacial
1200 years of warm-season temperature variability in central Scandinavia inferred from tree-ring density
Hydroclimatic variability in the Levant during the early last glacial (∼ 117–75 ka) derived from micro-facies analyses of deep Dead Sea sediments
Detailed insight into Arctic climatic variability during MIS 11c at Lake El'gygytgyn, NE Russia
Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 1: Theory
Impact of postglacial warming on borehole reconstructions of last millennium temperatures
Estimating 750 years of temperature variations and uncertainties in the Pyrenees by tree-ring reconstructions and climate simulations
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Fei Guo, Steven Clemens, Yuming Liu, Ting Wang, Huimin Fan, Xingxing Liu, and Youbin Sun
Clim. Past, 18, 1675–1684, https://doi.org/10.5194/cp-18-1675-2022, https://doi.org/10.5194/cp-18-1675-2022, 2022
Short summary
Short summary
Our high-resolution loess Ca/Ti record displays millennial monsoon oscillations that persist over the last 650 kyr. Wavelet results indicate the ice volume and GHG co-modulation at the 100 kyr band and GHG and local insolation forcing at the precession band for the magnitude of millennial monsoon variability of loess Ca/Ti. The inferred mechanism calls on dynamic linkages to variability in AMOC. At the precession band, combined effects of GHG and insolation lead to increased extreme rainfall.
Shengnan Feng, Xingqi Liu, Feng Shi, Xin Mao, Yun Li, and Jiaping Wang
Clim. Past, 18, 975–988, https://doi.org/10.5194/cp-18-975-2022, https://doi.org/10.5194/cp-18-975-2022, 2022
Short summary
Short summary
We present a continuous humidity history in arid Central Asia over the past millennium based on the ~1.8-year high-resolution multiproxy record from Lake Dalongchi. Our findings emphasize that the Gleissberg solar cycle and quasi-regular period of ENSO amplitude play critical roles in controlling the effective humidity at century and multidecadal timescales, respectively. Our analysis provides new insights for hydroclimate predictions and climate simulations in arid Central Asia in the future.
Weiwei Sun, Enlou Zhang, Jie Chang, James Shulmeister, Michael I. Bird, Cheng Zhao, Qingfeng Jiang, and Ji Shen
Clim. Past, 16, 833–845, https://doi.org/10.5194/cp-16-833-2020, https://doi.org/10.5194/cp-16-833-2020, 2020
Lara Klippel, Scott St. George, Ulf Büntgen, Paul J. Krusic, and Jan Esper
Clim. Past, 16, 729–742, https://doi.org/10.5194/cp-16-729-2020, https://doi.org/10.5194/cp-16-729-2020, 2020
Short summary
Short summary
The PAGES2k multiproxy database offers a new and unique opportunity to study the lack of long-term cooling trends in tree-ring data, which can be expected in Northern Hemisphere summers, particularly in the high latitudes, due to orbitally driven changes in solar irradiance. Tests of different influencing factors reveal that preserving millennial-scale cooling trends related to orbital forcing is not feasible in most tree-ring datasets.
Denis-Didier Rousseau, Pierre Antoine, Niklas Boers, France Lagroix, Michael Ghil, Johanna Lomax, Markus Fuchs, Maxime Debret, Christine Hatté, Olivier Moine, Caroline Gauthier, Diana Jordanova, and Neli Jordanova
Clim. Past, 16, 713–727, https://doi.org/10.5194/cp-16-713-2020, https://doi.org/10.5194/cp-16-713-2020, 2020
Short summary
Short summary
New investigations of European loess records from MIS 6 reveal the occurrence of paleosols and horizon showing slight pedogenesis similar to those from the last climatic cycle. These units are correlated with interstadials described in various marine, continental, and ice Northern Hemisphere records. Therefore, these MIS 6 interstadials can confidently be interpreted as DO-like events of the penultimate climate cycle.
Laia Comas-Bru, Sandy P. Harrison, Martin Werner, Kira Rehfeld, Nick Scroxton, Cristina Veiga-Pires, and SISAL working group members
Clim. Past, 15, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, https://doi.org/10.5194/cp-15-1557-2019, 2019
Short summary
Short summary
We use an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled climate model to provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations and the optimum period for the modern observational baseline. We also illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation.
Peng Zhang, Hans W. Linderholm, Björn E. Gunnarson, Jesper Björklund, and Deliang Chen
Clim. Past, 12, 1297–1312, https://doi.org/10.5194/cp-12-1297-2016, https://doi.org/10.5194/cp-12-1297-2016, 2016
Short summary
Short summary
We present C-Scan, a new Scots pine tree-ring density based reconstruction of warm-season (April-September) temperatures for central Scandinavia back to 850 CE, extending the previous reconstruction by 250 years. Our reconstruction indicates that the warm-season warmth during a relatively-warm period of last millennium is not so pronounced in central Scandinavia, which adds further detail to our knowledge about the spatial pattern of surface air temperature on the regional scale.
I. Neugebauer, M. J. Schwab, N. D. Waldmann, R. Tjallingii, U. Frank, E. Hadzhiivanova, R. Naumann, N. Taha, A. Agnon, Y. Enzel, and A. Brauer
Clim. Past, 12, 75–90, https://doi.org/10.5194/cp-12-75-2016, https://doi.org/10.5194/cp-12-75-2016, 2016
Short summary
Short summary
Micro-facies changes and elemental variations in deep Dead Sea sediments are used to reconstruct relative lake level changes for the early last glacial period. The results indicate a close link of hydroclimatic variability in the Levant to North Atlantic-Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields. First petrographic analyses of gravels in the deep core question the recent hypothesis of a Dead Sea dry-down at the end of the last interglacial.
H. Vogel, C. Meyer-Jacob, M. Melles, J. Brigham-Grette, A. A. Andreev, V. Wennrich, P. E. Tarasov, and P. Rosén
Clim. Past, 9, 1467–1479, https://doi.org/10.5194/cp-9-1467-2013, https://doi.org/10.5194/cp-9-1467-2013, 2013
R. Sundberg, A. Moberg, and A. Hind
Clim. Past, 8, 1339–1353, https://doi.org/10.5194/cp-8-1339-2012, https://doi.org/10.5194/cp-8-1339-2012, 2012
V. Rath, J. F. González Rouco, and H. Goosse
Clim. Past, 8, 1059–1066, https://doi.org/10.5194/cp-8-1059-2012, https://doi.org/10.5194/cp-8-1059-2012, 2012
I. Dorado Liñán, U. Büntgen, F. González-Rouco, E. Zorita, J. P. Montávez, J. J. Gómez-Navarro, M. Brunet, I. Heinrich, G. Helle, and E. Gutiérrez
Clim. Past, 8, 919–933, https://doi.org/10.5194/cp-8-919-2012, https://doi.org/10.5194/cp-8-919-2012, 2012
Cited articles
Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J., and England, M. H.: Evolution of the Southern Annular Mode during the past millennium, Nat. Clim. Change, 4, 564–569, https://doi.org/10.1038/nclimate2235, 2014.
Abram, N. J., Hargreaves, J. A., Wright, N. M., Thirumalai, K., Ummenhofer, C. C., and England, M. H.: Palaeoclimate perspectives on the Indian Ocean Dipole, Quaternary Sci. Rev., 237, 106302, https://doi.org/10.1016/j.quascirev.2020.106302, 2020a.
Abram, N. J., Wright, N. M., Ellis, B., Dixon, B. C., Wurtzel, J. B., England, M. H., Ummenhofer, C. C., Philibosian, B., Cahyarini, S. Y., Yu, T. L., Shen, C. C., Cheng, H., Edwards, R. L., and Heslop, D.: Coupling of Indo-Pacific climate variability over the last millennium, Nature, 579, 385–392, https://doi.org/10.1038/s41586-020-2084-4, 2020b.
Ault, T. R., Cole, J. E., Overpeck, J. T., Pederson, G. T., and Meko, D. M.: Assessing the risk of persistent drought using climate model simulations and paleoclimate data, J. Climate, 27, 7529–7549, https://doi.org/10.1175/JCLI-D-12-00282.1, 2014.
Barr, C., Tibby, J., Gell, P., Tyler, J., Zawadzki, A., and Jacobsen, G. E.: Climate variability in south-eastern Australia over the last 1500 years inferred from the high-resolution diatom records of two crater lakes, Quaternary Sci. Rev., 95, 115–131, https://doi.org/10.1016/j.quascirev.2014.05.001, 2014.
Barr, C., Tibby, J., Leng, M. J., Tyler, J. J., Henderson, A. C. G., Overpeck, J. T., Simpson, G. L., Cole, J. E., Phipps, S. J., Marshall, J. C., McGregor, G. B., Hua, Q., and McRobie, F. H.: Holocene El Niño–Southern Oscillation variability reflected in subtropical Australian precipitation, Sci. Rep.-UK, 9, 1–9, https://doi.org/10.1038/s41598-019-38626-3, 2019.
Barrows, T. T., Perner, K., and De Deckker, P.: Sea surface temperature from sediment cores MD03-2611G and MUC-3 reconstructed by modern analogue technique, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.911822, 2020.
Blaauw, M. and Christen, J. A.: Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process, Bayesian Anal., 6, 457–474, https://doi.org/10.1214/11-BA618, 2011.
Cai, W. and Cowan, T.: SAM and regional rainfall in IPCC AR4 models: Can anthropogenic forcing account for southwest Western Australian winter rainfall reduction?, Geophys. Res. Lett., 33, 1–5, https://doi.org/10.1029/2006GL028037, 2006.
Chamberlayne, B.: Late Holocene seasonal and multicentennial hydroclimate variability in the Coorong Lagoon, South Australia: Evidence from stable isotopes and trace element profiles of bivalve molluscs, Honours thesis, University of Adelaide, https://hdl.handle.net/2440/117977, 2015.
Chamberlayne, B. K.: 1750 years of hydrological change in southern Australia: a bivalve oxygen isotope record from The Coorong Lagoon, Mendeley Data [data set], https://doi.org/10.17632/4vktdpckhv.1, 2022.
Chamberlayne, B. K., Tyler, J. J., and Gillanders, B. M.: Controls Over Oxygen Isotope Fractionation in the Waters and Bivalves (Arthritica helmsi) of an Estuarine Lagoon System, Geochem. Geophy. Geosy., 22, 1–18, https://doi.org/10.1029/2021gc009769, 2021.
Chambers, J. W. and Cameron, N. G.: A rod-less piston corer for lake sediments: An improved, rope-operated percussion corer, J. Paleolimnol., 25, 117–122, https://doi.org/10.1023/A:1008181406301, 2001.
Cook, B. I., Palmer, J. G., Cook, E. R., Turney, C. S. M., Allen, K., Fenwick, P., O'Donnell, A., Lough, J. M., Grierson, P. F., Ho, M., and Baker, P. J.: The paleoclimate context and future trajectory of extreme summer hydroclimate in eastern Australia, J. Geophys. Res., 121, 12820–12838, https://doi.org/10.1002/2016JD024892, 2016.
Dätwyler, C., Neukom, R., Abram, N. J., Gallant, A. J. E., Grosjean, M., Jacques-Coper, M., Karoly, D. J., and Villalba, R.: Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium, NOAA [data set], https://doi.org/10.1007/s00382-017-4015-0, 2017.
Dätwyler, C., Neukom, R., Abram, N. J., Gallant, A. J. E., Grosjean, M., Jacques-Coper, M., Karoly, D. J., and Villalba, R.: Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium, Clim. Dynam., 51, 2321–2339, https://doi.org/10.1007/s00382-017-4015-0, 2018.
Department of Environment and Water: Coorong and Lakes Alexandrina and Albert Wetland Ramsar Site: https://www.environment.sa.gov.au/topics/water/water-and-the-environment/wetlands/Coorong_and_Lakes_Alexandrina_and_Albert_wetland_Ramsar_site, last access 17 June 2021.
Dick, J., Haynes, D., Tibby, J., Garcia, A., and Gell, P.: A history of aquatic plants in the Coorong, a Ramsar-listed coastal wetland, South Australia, J. Paleolimnol., 46, 623–635, https://doi.org/10.1007/s10933-011-9510-4, 2011.
Dittmann, S., Gordillo, O. L., and Baring, R.: Benthic Macroinvertebrate survey 2018–2019 report Coorong, Lower Lakes and Murray Mouth Icon Site, Adelaide, SA, https://www.mdba.gov.au/sites/default/files/pubs/coorong-lower-lakes-murray-mouth-benthic-macroinvertebrate-survey-2018-2019.pdf (last access: 10 June 2021), 2019.
Dixon, B., Tyler, J., Henley, B. J., and Drysdale, R.: Regional patterns of hydroclimate variability in southeastern Australia over the past 1200 years, Earth Sp. Sci. Open Arch., https://doi.org/10.1002/essoar.10501482.1, 2019.
Dixon, B. C., Tyler, J. J., Lorrey, A. M., Goodwin, I. D., Gergis, J., and Drysdale, R. N.: Low-resolution Australasian palaeoclimate records of the last 2000 years, Clim. Past, 13, 1403–1433, https://doi.org/10.5194/cp-13-1403-2017, 2017.
Emile-Geay, J., Cobb, K. M., Mann, M. E., and Wittenberg, A. T.: Estimating central equatorial pacific SST variability over the past millennium. Part II: Reconstructions and implications, J. Climate, 26, 2329–2352, https://doi.org/10.1175/JCLI-D-11-00511.1, 2013.
Fletcher, M. S., Benson, A., Bowman, D. M. J. S., Gadd, P. S., Heijnis, H., Mariani, M., Saunders, K. M., Wolfe, B. B., and Zawadzki, A.: Centennial-scale trends in the Southern Annular Mode revealed by hemisphere-wide fire and hydroclimatic trends over the past 2400 years, Geology, 46, 363–366, https://doi.org/10.1130/G39661.1, 2018.
Fluin, J., Gell, P., Haynes, D., Tibby, J., and Hancock, G.: Palaeolimnological evidence for the independent evolution of neighbouring terminal lakes, the Murray Darling Basin, Australia, Hydrobiologia, 591, 117–134, https://doi.org/10.1007/s10750-007-0799-y, 2007.
Gallant, A. J. E., Kiem, A. S., Verdon-Kidd, D. C., Stone, R. C., and Karoly, D. J.: Understanding hydroclimate processes in the Murray-Darling Basin for natural resources management, Hydrol. Earth Syst. Sci., 16, 2049–2068, https://doi.org/10.5194/hess-16-2049-2012, 2012.
Gallant, A. J. E., Phipps, S. J., Karoly, D. J., Mullan, A. B., and Lorrey, A. M.: Nonstationary Australasian teleconnections and implications for paleoclimate reconstructions, J. Climate, 26, 8827–8849, https://doi.org/10.1175/JCLI-D-12-00338.1, 2013.
Gebbie, G. and Huybers, P.: The little ice age and 20th-century deep pacific cooling, Science, 363, 70–74, https://doi.org/10.1126/science.aar8413, 2019.
Gillanders, B. M. and Munro, A. R.: Hypersaline waters pose new challenges for reconstructing environmental histories of fish based on otolith chemistry, Limnol. Oceanogr., 57, 1136–1148, https://doi.org/10.4319/lo.2012.57.4.1136, 2012.
Gouramanis, C., Wilkins, D., and De Deckker, P.: 6000 years of environmental changes recorded in Blue Lake, South Australia, based on ostracod ecology and valve chemistry, Palaeogeogr. Palaeocl., 297, 223–237, https://doi.org/10.1016/j.palaeo.2010.08.005, 2010.
Haese, R., Murray, E., and Wallace, L.: Nutrient sources, water quality, and biogeochemical processes in the Coorong,South Australia, Geoscience Australia, ISBN 978-1-921498-78-7, 2009.
Hart, B., Walker, G., Katupitiya, A., and Doolan, J.: Salinity management in the Murray-Darling Basin, Water, 12, 1829, 2020.
Haverd, V., Raupach, M. R., Briggs, P. R., Canadell, J. G., Davis, S. J., Law, R. M., Meyer, C. P., Peters, G. P., Pickett-Heaps, C., and Sherman, B.: The Australian terrestrial carbon budget, Biogeosciences, 10, 851–869, https://doi.org/10.5194/bg-10-851-2013, 2013.
Hendon, H. H., Thompson, D. W. J., and Wheeler, M. C.: Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode, J. Climate, 20, 2452–2467, https://doi.org/10.1175/JCLI4134.1, 2007.
Ho, M., Kiem, A. S., and Verdon-Kidd, D. C.: A paleoclimate rainfall reconstruction in the Murray-Darling Basin (MDB), Australia: 2. Assessing hydroclimatic risk using paleoclimate records of wet and dry epochs, Water Resour. Res., 51, 8380–8396, https://doi.org/10.1111/j.1752-1688.1969.tb04897.x, 2015.
Hogg, A. G., Heaton, T. J., Hua, Q., Palmer, J. G., Turney, C. S., Southon, J., Bayliss, A., Blackwell, P. G., Boswijk, G., Bronk Ramsey, C., Pearson, C., Petchey, F., Reimer, P., Reimer, R., and Wacker, L.: SHCal20 Southern Hemisphere Calibration, 0–55 000 years cal BP, Radiocarbon, 62, 1–20, https://doi.org/10.1017/rdc.2020.59, 2020.
Holgate, C., Evans, J. P., Taschetto, A. S., Gupta, A. S., and Santoso, A.: The Impact of Interacting Climate Modes on East Australian Precipitation Moisture Sources, J. Climate, 35, 3147–3159, https://doi.org/10.1175/JCLI-D-21-0750.1, 2022.
Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J.-C., Joos, F., Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W. R., Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba, R., and Zhang, D.: Paleoclimate, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 433–497, ISBN 978 0521 88009-1, 2007.
Jones, R. N., McMahon, T. A., and Bowler, J. M.: Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c.1840–1990), J. Hydrol., 246, 159–180, https://doi.org/10.1016/S0022-1694(01)00369-9, 2001.
Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Sommer, P. S., Heiri, O., and Davis, B.: Holocene global mean surface temperature, a multi-method reconstruction approach, Sci. Data, 7, 1–13, https://doi.org/10.1038/s41597-020-0530-7, 2020.
Kiem, A. S., Johnson, F., Westra, S., van Dijk, A., Evans, J. P., O'Donnell, A., Rouillard, A., Barr, C., Tyler, J., Thyer, M., Jakob, D., Woldemeskel, F., Sivakumar, B., and Mehrotra, R.: Natural hazards in Australia: droughts, Climatic Change, 139, 37–54, https://doi.org/10.1007/s10584-016-1798-7, 2016.
King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M., and Brown, J. R.: The role of climate variability in Australian drought, Nat. Clim. Change, 10, 173–183, https://doi.org/10.1038/s41558-020-0712-5, 2020.
Kingsford, R. T., Walker, K. F., Lester, R. E., Young, W. J., Fairweather, P. G., Sammut, J., and Geddes, M. C.: A ramsar wetland in crisis the coorong, lower lakes and murray mouth, Australia, Mar. Freshwater Res., 62, 255–265, https://doi.org/10.1071/MF09315, 2011.
Krull, E., Haynes, D., Lamontagne, S., Gell, P., McKirdy, D., Hancock, G., McGowan, J., and Smernik, R.: Changes in the chemistry of sedimentary organic matter within the Coorong over space and time, Biogeochemistry, 92, 9–25, https://doi.org/10.1007/s10533-008-9236-1, 2009.
Lower, C. S., Cann, J. H., and Haynes, D.: Microfossil evidence for salinity events in the Holocene Coorong Lagoon, South Australia, Aust. J. Earth Sci., 60, 573–587, https://doi.org/10.1080/08120099.2013.823112, 2013.
Ma, X., Huete, A., Cleverly, J., Eamus, D., Chevallier, F., Joiner, J., Poulter, B., Zhang, Y., Guanter, L., Meyer, W., Xie, Z., and Ponce-Campos, G.: Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia, Sci. Rep.-UK, 6, 1–9, https://doi.org/10.1038/srep37747, 2016.
Maheshwari, B. L., Walker, K. F., and McMahon, T. A.: Effects of regulation on the flow regime of the river Murray, Australia, Regul. River., 10, 15–38, https://doi.org/10.1002/rrr.3450100103, 1995.
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., and Fenbiao, N.: Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly, Science, 326, 1256–1260, https://doi.org/10.1126/science.1177303, 2018.
Marshall, G. J.: Trends in the Southern Annular Mode from observations and reanalyses, J. Climate, 16, 4134–4143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2, 2003.
McGowan, H. A., Marx, S. K., Denholm, J., Soderholm, J., and Kamber, B. S.: Reconstructing annual inflows to the headwater catchments of the Murray River, Australia, using the Pacific Decadal Oscillation, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2008GL037049, 2009.
McKirdy, D. M., Thorpe, C. S., Haynes, D. E., Grice, K., Krull, E., Halverson, G. P., and Webster, L. J.: The biogeochemical evolution of the Coorong during the mid- to late Holocene: An elemental, isotopic and biomarker perspective, Org. Geochem., 41, 96–110, 2010.
Moros, M., De Deckker, P., Jansen, E., Perner, K., and Telford, R. J.: Holocene climate variability in the Southern Ocean recorded in a deep-sea sediment core off South Australia, Quaternary Sci. Rev., 28, 1932–1940, https://doi.org/10.1016/j.quascirev.2009.04.007, 2009.
Mosley, L., Priestley, S., Brookes, J., Dittmann, S., Farkaš, J., Farrell, M., Ferguson, A., Gibbs, M., Hipsey, M., Leslie, J. , Huang, O., Lam-Gordillo, O., Simpson, S., Teasdale, P., Tyler, J., Waycott, M., and Welsh, D.: Coorong water quality synthesis with a focus on the drivers of eutrophication, http://www.goyderinstitute.org (last access: 21 May 2021), 2020.
Mosley, L., Priestley, S., Brookes, J., Dittmann, S., Farkaš, J., Farrell, M., Ferguson, A., Gibbs, M., Hipsey, M., Huang, O., Lam-Gordillo, O., Simpson, S., Tyler, J., Waycott, M., and Welsh, D.: Extreme eutrophication and salinisation in the Coorong estuarine-lagoon ecosystem of Australia's largest river basin (Murray-Darling), Mar. Pollut. Bull., 188, 114648, https://doi.org/10.1016/j.marpolbul.2023.114648, 2023.
Murray-Darling Basin (MDBA): The Murray-Darling Basin and why it's important, https://www.mdba.gov.au/importance-murray-darling-basin, last access: 17 May 2021.
Murray-Wallace, C. V.: Quaternary History of the Coorong Coastal Plain, Southern Australia, Springer, ISBN 9783319893419, 2018.
Neukom, R. and Gergis, J.: Southern Hemisphere high-resolution palaeoclimate records of the last 2000 years, The Holocene, 22, 501–524, https://doi.org/10.1177/0959683611427335, 2011.
Ngarrindjeri Nation and Hemming, S.: Ngarrindjeri Nation Yarrluwar-Ruwe Plan: Caring for Ngarrindjeri Country and Culture: Kungun Ngarrindjeri Yunnan (Listen to Ngarrindjeri People Talking), in: Natural History of the Coorong, Lower Lakes and Murray Mouth Region (Yarluwar-Ruwe), edited by: Mosley, L., Ye, Q., Shepherd, S., Hemming, S., and Fitzpatrick, R., University of Adelaide Press, Adelaide, Australia, 3–21, ISBN 9781925261806, 2019.
O'Donnell, A. J., Mccaw, W. L., Cook, E. R., and Grierson, P. F.: Megadroughts and pluvials in southwest Australia: 1350–2017 CE, Clim. Dynam., 57, 1817–1831, https://doi.org/10.1007/s00382-021-05782-0, 2021.
Paton, D. C., Rogers, D. J., Hill, B. M., Bailey, C. P., and Ziembicki, M.: Temporal changes to spatially stratified waterbird communities of the Coorong, South Australia: Implications for the management of heterogenous wetlands, Anim. Conserv., 12, 408–417, https://doi.org/10.1111/j.1469-1795.2009.00264.x, 2009.
Perner, K., Moros, M., De Deckker, P., Blanz, T., Wacker, L., Telford, R., Siegel, H., Schneider, R., and Jansen, E.: Heat export from the tropics drives mid to late Holocene palaeoceanographic changes offshore southern Australia, Quaternary Sci. Rev., 180, 96–110, https://doi.org/10.1016/j.quascirev.2017.11.033, 2018.
Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet, G., Canadell, J. G., Chevallier, F., Liu, Y. Y., Running, S. W., Sitch, S., and Van Der Werf, G. R.: Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle, Nature, 509, 600–603, https://doi.org/10.1038/nature13376, 2014.
Priestley, S. C., Tyler, J., Liebelt, S. R., Mosley, L. M., Wong, W. W., Shao, Y., Woolston, Z., Farrell, M., Welsh, D. T., Brookes, J. D., and Collins, A. S.: N and C isotope variations along an extreme eutrophication and salinity gradient in the Coorong Lagoon, South Australia, Front. Earth Sci., 9, 1345, https://doi.org/10.3389/feart.2021.727971, 2022.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, last access 17 May 2021.
Reeves, J. M., Haynes, D., García, A., and Gell, P. A.: Hydrological Change in the Coorong Estuary, Australia, Past and Present: Evidence from Fossil Invertebrate and Algal Assemblages, Estuar. Coast., 38, 2101–2116, https://doi.org/10.1007/s12237-014-9920-4, 2015.
Risbey, J. S., Pook, M. J., McIntosh, P. C., Wheeler, M. C., and Hendon, H. H.: On the remote drivers of rainfall variability in Australia, Mon. Weather Rev., 137, 3233–3253, https://doi.org/10.1175/2009MWR2861.1, 2009.
Rustic, G. T., Koutavas, A., Marchitto, T. M., and Linsley, B. K.: Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling, Science, 350, 1537–1541, https://doi.org/10.1126/science.aac9937, 2015.
Saunders, K. M. and Taffs, K. H.: Palaeoecology: A tool to improve the management of Australian estuaries, J. Environ. Manage., 90, 2730–2736, https://doi.org/10.1016/j.jenvman.2009.03.001, 2009.
Scanes, E., Scanes, P. R., and Ross, P. M.: Climate change rapidly warms and acidifies Australian estuaries, Nat. Commun., 11, 1–11, https://doi.org/10.1038/s41467-020-15550-z, 2020.
Shao, Y., Farkaš, J., Holmden, C., Mosley, L., Kell-Duivestein, I., Izzo, C., Reis-Santos, P., Tyler, J., Törber, P., Frýda, J., Taylor, H., Haynes, D., Tibby, J., and Gillanders, B. M.: Calcium and strontium isotope systematics in the lagoon-estuarine environments of South Australia: Implications for water source mixing, carbonate fluxes and fish migration, Geochim. Cosmochim. Ac., 239, 90–108, https://doi.org/10.1016/j.gca.2018.07.036, 2018.
Shao, Y., Farkaš, J., Mosley, L., Tyler, J., Wong, H., Chamberlayne, B. K., Raven, M., Samanta, M., Holmden, C., Gillanders, B. M., Kolevica, A., and Eisenhauer, A.: Impact of salinity and carbonate saturation on stable Sr isotopes ( ) in a lagoon-estuarine system, Geochim. Cosmochim. Ac., 293, 461–476, https://doi.org/10.1016/j.gca.2020.11.014, 2021.
Soulet, G.,: Methods and codes for reservoir-atmosphere 14C age offset calculations, Quat. Geochronol., 29, 97–103, https://doi.org/10.1016/j.quageo.2015.05.023, 2015.
Tibby, J., Reid, M. A., Fluin, J., Hart, B. T., and Kershaw, A. P.: Assessing long-term pH change in an Australian river catchment using monitoring and palaeolimnological data, Environ. Sci. Technol., 37, 3250–3255, https://doi.org/10.1021/es0263644, 2003.
Tibby, J., Tyler, J. J., and Barr, C.: Post little ice age drying of eastern Australia conflates understanding of early settlement impacts, Quaternary Sci. Rev., 202, 45–52, https://doi.org/10.1016/j.quascirev.2018.10.033, 2018.
Tozer, C. R., Vance, T. R., Roberts, J. L., Kiem, A. S., Curran, M. A. J., and Moy, A. D.: An ice core derived 1013 year catchment-scale annual rainfall reconstruction in subtropical eastern Australia, Hydrol. Earth Syst. Sci., 20, 1703–1717, https://doi.org/10.5194/hess-20-1703-2016, 2016.
Tulipani, S., Grice, K., Krull, E., Greenwood, P., and Revill, A. T.: Salinity variations in the norther Coorong Lagoon, South Australia: Significant changes in the ecosystem following human alteration to the natural water regime, Org. Geochem., 75, 74–86, 2014.
Tyler, J. J., Mills, K., Barr, C., Sniderman, J. M. K., Gell, P. A., and Karoly, D. J.: Identifying coherent patterns of environmental change between multiple, multivariate records: an application to four 1000 year diatom records from Victoria, Australia, Quaternary Sci. Rev., 119, 94–105, https://doi.org/10.1016/j.quascirev.2015.04.010, 2015.
Ummenhofer, C. C., England, M. H., Mclntosh, P. C., Meyers, G. A., Pook, M. J., Risbey, J. S., Gupta, A. S., and Taschetto, A. S.: What causes southeast Australia's worst droughts?, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2008GL036801, 2009.
Vance, T. R., Van Ommen, T. D., Curran, M. A. J., Plummer, C. T., and Moy, A. D.: A millennial proxy record of ENSO and eastern Australian rainfall from the law dome ice core, east Antarctica, J. Climate, 26, 710–725, https://doi.org/10.1175/JCLI-D-12-00003.1, 2013.
Verdon, D. and Franks, S. W.: Long-term drought risk assessment in the Lachlan River Valley – a paleoclimate perspective, Australas. J. Water Resour., 11, 145–152, https://doi.org/10.1080/13241583.2007.11465319, 2007.
Wanamaker, A. D., Butler, P. G., Scourse, J. D., Heinemeier, J., Eiríksson, J., Knudsen, K. L., and Richardson, C. A.: Surface changes in the North Atlantic meridional overturning circulation during the last millennium, Nat. Commun., 3, 899, https://doi.org/10.1038/ncomms1901, 2012.
Wang, G. and Hendon, H. H.: Sensitivity of Australian rainfall to inter-El Niño variations, J. Climate, 20, 4211–4226, https://doi.org/10.1175/JCLI4228.1, 2007.
Wells, F. E. and Threlfall, T. J.: Salinity and temperture tolerance of Hydrococcus brazieri (T. Woods, 1876) and Arthritica semen (Menke, 1843) from the Peel-Harvey estuarine system, Western Australia, J. Malacol. Soc. Aust., 5, 151–156, 1982.
Wilkins, D., De Deckker, P., Fifield, L. K., Gouramanis, C., and Olley, J.: Comparative optical and radiocarbon dating of laminated Holocene sediments in two maar lakes: Lake Keilambete and Lake Gnotuk, south-western Victoria, Australia, Quat. Geochronol., 9, 3–15, https://doi.org/10.1016/j.quageo.2012.01.008, 2012.
Wilkins, D., Gouramanis, C., De Deckker, P., Fifield, L. K., and Olley, J.: Holocene lake-level fluctuations in Lakes Keilambete and Gnotuk, southwestern Victoria, Australia, The Holocene, 23, 784–795, https://doi.org/10.1177/0959683612471983, 2013.
Short summary
We used geochemical signals in shells preserved in sediments to create a 1750-year record of hydrological change in the Coorong Lagoon of South Australia. The record is interpreted to reflect the balance of evaporation and precipitation and shows that it has always been a highly evaporated system. The record also shows similarities to other environmental reconstructions from the region. This knowledge can increase our understanding of the potential impacts of environmental change.
We used geochemical signals in shells preserved in sediments to create a 1750-year record of...