Articles | Volume 19, issue 7
https://doi.org/10.5194/cp-19-1295-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1295-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comparison of pre-millennium eruption (946 CE) and modern temperatures from tree rings in Changbai Mountain, Northeast Asia
Haibo Du
Key Laboratory of Geographical Processes and Ecological Security in
Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
Michael C. Stambaugh
School of Natural Resources, University of Missouri, Columbia,
Missouri, USA
Jesús Julio Camarero
Instituto Pirenaico de Ecología, IPE-CSIC, 50059 Zaragoza, Spain
Mai-He Li
Key Laboratory of Geographical Processes and Ecological Security in
Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
Swiss Federal Institute for Forest, Snow and Landscape Research
WSL, 8903, Birmensdorf, Switzerland
Dapao Yu
CAS Key Laboratory of Forest Ecology and Management, Institute of
Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
Shengwei Zong
Key Laboratory of Geographical Processes and Ecological Security in
Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
Hong S. He
CORRESPONDING AUTHOR
School of Natural Resources, University of Missouri, Columbia,
Missouri, USA
Zhengfang Wu
CORRESPONDING AUTHOR
Key Laboratory of Geographical Processes and Ecological Security in
Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
Related authors
No articles found.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Ruzhen Wang, Xue Wang, Yong Jiang, Artemi Cerdà, Jinfei Yin, Heyong Liu, Xue Feng, Zhan Shi, Feike A. Dijkstra, and Mai-He Li
Biogeosciences, 15, 1763–1774, https://doi.org/10.5194/bg-15-1763-2018, https://doi.org/10.5194/bg-15-1763-2018, 2018
Short summary
Short summary
Our results highlight the importance of soil physicochemical properties (mainly SOC, C : N, and pH) rather than elevation (i.e., canopy cover and environmental factors, especially temperature) in determining base cation and micronutrient availabilities in soils and subsequently their concentrations in plant tissues.
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Historical Records | Timescale: Millenial/D-O
600 years of wine must quality and April to August temperatures in western Europe 1420–2019
Significance of uncertain phasing between the onsets of stadial–interstadial transitions in different Greenland ice core proxies
Christian Pfister, Stefan Brönnimann, Andres Altwegg, Rudolf Brázdil, Laurent Litzenburger, Daniele Lorusso, and Thomas Pliemon
Clim. Past, 20, 1387–1399, https://doi.org/10.5194/cp-20-1387-2024, https://doi.org/10.5194/cp-20-1387-2024, 2024
Short summary
Short summary
This bottle of Riesling from the traditional Bassermann Jordan winery in Deidesheim (Germany) is a relic of the premium wine harvested in 1811. It was named “Comet Wine” after the bright comet that year. The study shows that wine quality can be used to infer summer weather conditions over the past 600 years. After rainy summers with cold winds, wines turned sour, while long periods of high pressure led to excellent qualities. Since 1990, only good wines have been produced due to rapid warming.
Keno Riechers and Niklas Boers
Clim. Past, 17, 1751–1775, https://doi.org/10.5194/cp-17-1751-2021, https://doi.org/10.5194/cp-17-1751-2021, 2021
Short summary
Short summary
Greenland ice core data show that the last glacial cycle was punctuated by a series of abrupt climate shifts comprising significant warming over Greenland, retreat of North Atlantic sea ice, and atmospheric reorganization. Statistical analysis of multi-proxy records reveals no systematic lead or lag between the transitions of proxies that represent different climatic subsystems, and hence no evidence for a potential trigger of these so-called Dansgaard–Oeschger events can be found.
Cited articles
Allan, R., Lindesay, J., and Parker, D.: El Niño southern oscillation
& climatic variability, CSIRO Publishing, Collingwood, 405 pp., ISBN 9780643058033, 1996.
Bernaola-Galván, P., Ivanov, P. C., Nunes Amaral, L. A., and Stanley, H.
E.: Scale Invariance in the Nonstationarity of Human Heart Rate, Phys. Rev.
Lett., 87, 168105, https://doi.org/10.1103/PhysRevLett.87.168105, 2001.
Briffa, K. R., Jones, P. D., Pilcher, J. R., and Hughes, M. K.:
Reconstructing Summer Temperatures in Northern Fennoscandinavia Back to A.D.
1700 Using Tree-Ring Data From Scots Pine, Arct. Alp. Res., 20, 385–394,
https://doi.org/10.1080/00040851.1988.12002691, 1988.
Büntgen, U., Wacker, L., Nicolussi, K., Sigl, M., Güttler, D.,
Tegel, W., Krusic, P. J., and Esper, J.: Extraterrestrial confirmation of
tree-ring dating, Nat. Clim. Change, 4, 404,
https://doi.org/10.1038/nclimate2240, 2014.
Buras, A.: A comment on the expressed population signal, Dendrochronologia,
44, 130–132, https://doi.org/10.1016/j.dendro.2017.03.005, 2017.
Chen, S., Shi, Y., Guo, Y., and Zheng, Y.: Temporal and spatial variation of
annual mean air temperature in arid and semiarid region in northwest China
over a recent 46 year period, J. Arid Land, 2, 87–97,
2010.
Chen, X.-Y., Blockley, S. P. E., Tarasov, P. E., Xu, Y.-G., McLean, D.,
Tomlinson, E. L., Albert, P. G., Liu, J.-Q., Müller, S., Wagner, M., and
Menzies, M. A.: Clarifying the distal to proximal tephrochronology of the
Millennium (B–Tm) eruption, Changbaishan Volcano, northeast China, Quat.
Geochronol., 33, 61–75, https://doi.org/10.1016/j.quageo.2016.02.003, 2016.
Chu, G., Sun, Q., Wang, X., Liu, M., Lin, Y., Xie, M., Shang, W., and Liu,
J.: Seasonal temperature variability during the past 1600 years recorded in
historical documents and varved lake sediment profiles from northeastern
China, Holocene, 22, 785–792, https://doi.org/10.1177/0959683611430413,
2012.
Conroy, J. L., Overpeck, J. T., and Cole, J. E.: El Niño/Southern
Oscillation and changes in the zonal gradient of tropical Pacific sea
surface temperature over the last 1.2 ka, PAGES News, 18, 32–34, 2010.
Cook, E. R.: A time series analysis approach to tree-ring standardization,
Graduate College, University of Arizona, Tucson, http://hdl.handle.net/10150/188110 (last access: 3 April 2023), 1985.
Cook, E. R. and Kairiukstis, L. A.: Methods of Dendrochronology:
Applications in the Environmental Sciences, Springer Netherlands, 394 pp.,
https://doi.org/10.1007/978-94-015-7879-0, 2013.
Cook, E. R., Briffa, K. R., and Jones, P. D.: Spatial regression methods in
dendroclimatology: A review and comparison of two techniques, Int. J.
Climatol., 14, 379–402, https://doi.org/10.1002/joc.3370140404, 1994.
Cook, E. R., Krusic, P. J., Peters, K., and Holmes, R. L.: Program ARSTAN
(version 49), Autoregressive tree–ring standardization program, Tree–Ring
Laboratory of Lamont–Doherty Earth Observatory, USA, https://www.geog.cam.ac.uk/research/projects/dendrosoftware/ (last access: 21 November 2022), 2017.
Cui, Z., Zhang, S., and Tian, J.: The study on volcanic eruption and forest
conflagration since holocene quaternary in Changbai Mt., Geogr. Res., 16,
92–97, 1997.
Ding, Y., Ren, G., Zhao, Z., Xu, Y., Luo, Y., Li, Q., and Zhang, J.:
Detection, causes and projection of climate change over China: An overview
of recent progress, Adv. Atmos. Sci., 24, 954–971,
https://doi.org/10.1007/s00376-007-0954-4, 2007.
Du, H. and Wu, Z.: Data for publication “A comparison of pre-Millennium eruption (946 AD) and modern temperatures from tree rings in the Changbai Mountain, northeast Asia”, Zenodo [data set],
https://doi.org/10.5281/zenodo.6633856, 2020.
Du, H., Liu, J., Li, M.-H., Büntgen, U., Yang, Y., Wang, L., Wu, Z., and
He, H. S.: Warming-induced upward migration of the alpine treeline in the
Changbai Mountains, northeast China, Glob. Change Biol., 24, 1256–1266,
https://doi.org/10.1111/gcb.13963, 2018.
Du, H., Li, M.-H., Rixen, C., Zong, S., Stambaugh, M., Huang, L., He, H. S.,
and Wu, Z.: Sensitivity of recruitment and growth of alpine treeline birch
to elevated temperature, Agr. Forest Meteorol., 304–305, 108403,
https://doi.org/10.1016/j.agrformet.2021.108403, 2021.
Esper, J., Cook, E. R., and Schweingruber, F. H.: Low-Frequency Signals in
Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability,
Science, 295, 2250–2253, https://doi.org/10.1126/science.1066208, 2002.
Fischer, E. M. and Knutti, R.: Anthropogenic contribution to global
occurrence of heavy-precipitation and high-temperature extremes, Nat. Clim.
Change, 5, 560, https://doi.org/10.1038/nclimate2617, 2015.
Fritts, H. C.: Tree rings and climate, Elsevier, New York, ISBN 978-0-12-268450-0, https://doi.org/10.1016/B978-0-12-268450-0.X5001-0, 1976.
Gong, Z.-Q., Feng, G.-L., Wan, S.-Q., and Li, J.-P.: Analysis of features of
climate change of Huabei area and the global climate change based on
heuristic segmentation algorithm, Acta Phys. Sinica, 55, 477,
https://doi.org/10.7498/aps.55.477, 2006.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Guillet, S., Corona, C., Stoffel, M., Khodri, M., Lavigne, F., Ortega, P.,
Eckert, N., Sielenou, P. D., Daux, V., Churakova , Olga V., Davi, N.,
Edouard, J.-L., Zhang, Y., Luckman, Brian H., Myglan, V. S., Guiot, J.,
Beniston, M., Masson-Delmotte, V., and Oppenheimer, C.: Climate response to
the Samalas volcanic eruption in 1257 revealed by proxy records, Nat.
Geosci., 10, 123, https://doi.org/10.1038/ngeo2875, 2017.
Holmes, R. L.: Computer-assisted quality control in tree-ring dating and
measurement, Tree-Ring Bull., 43, 69–78, 1983.
Horn, S. and Schmincke, H.-U.: Volatile emission during the eruption of
Baitoushan Volcano (China/North Korea) ca. 969 AD, B. Volcanol., 61,
537–555, https://doi.org/10.1007/s004450050004, 2000.
IPCC: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I
to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 3–32, https://www.ipcc.ch/report/ar6/wg1/ (last access: 10 September 2021), 2021.
Koprowski, M., Przybylak, R., Zielski, A., and Pospieszyńska, A.: Tree
rings of Scots pine (Pinus sylvestris L.) as a source of information about
past climate in northern Poland, Int. J. Biometeorol., 56, 1–10,
https://doi.org/10.1007/s00484-010-0390-5, 2012.
Li, Z., Shi, C. M., Liu, Y., Zhang, J., Zhang, Q., and Ma, K.: Summer mean
temperature variation from 1710–2005 inferred from tree-ring data of the
Baimang Snow Mountains, northwestern Yunnan, China, Clim. Res., 47, 207–218,
https://doi.org/10.3354/cr01012, 2011.
Liang, E. Y., Shao, X. M., and Xu, Y.: Tree-ring evidence of recent abnormal
warming on the southeast Tibetan Plateau, Theor. Appl. Climatol., 98, 9–18,
https://doi.org/10.1007/s00704-008-0085-6, 2009.
Ljungqvist, F. C.: A new reconstruction of temperature variability in the
extra-tropical northern hemisphere during the last two millennia, Geogr.
Ann. A , 92, 339–351,
https://doi.org/10.1111/j.1468-0459.2010.00399.x, 2010.
Lyu, S., Li, Z., Zhang, Y., and Wang, X.: A 414-year tree-ring-based April–July minimum temperature reconstruction and its implications for the extreme climate events, northeast China, Clim. Past, 12, 1879–1888, https://doi.org/10.5194/cp-12-1879-2016, 2016.
Mann, M. E. and Jones, P. D.: Global surface temperatures over the past two
millennia, Geophys. Res. Lett., 30, 1820, https://doi.org/10.1029/2003GL017814,
2003.
Mann, M. E., Bradley, R. S., and Hughes, M. K.: Northern hemisphere
temperatures during the past millennium: inferences, uncertainties, and
limitations, Geophys. Res. Lett., 26, 759–762, 1999.
Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K.,
Rutherford, S., and Ni, F.: Proxy-based reconstructions of hemispheric and
global surface temperature variations over the past two millennia, P. Natl.
Acad. Sci. USA, 105, 13252, https://doi.org/10.1073/pnas.0805721105, 2008.
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and Karlén,
W.: Highly variable Northern Hemisphere temperatures reconstructed from low-
and high-resolution proxy data, Nature, 433, 613–617,
https://doi.org/10.1038/nature03265, 2005.
Oppenheimer, C., Wacker, L., Xu, J., Galván, J. D., Stoffel, M.,
Guillet, S., Corona, C., Sigl, M., Di Cosmo, N., Hajdas, I., Pan, B.,
Breuker, R., Schneider, L., Esper, J., Fei, J., Hammond, J. O. S., and
Büntgen, U.: Multi-proxy dating the `Millennium Eruption' of
Changbaishan to late 946 CE, Quaternary Sci. Rev., 158, 164–171,
https://doi.org/10.1016/j.quascirev.2016.12.024, 2017.
PAGES 2k Consortium: Continental-scale temperature variability during the
past two millennia, Nat. Geosci., 6, 339, https://doi.org/10.1038/ngeo1797,
2013.
Peters, R. L., Groenendijk, P., Vlam, M., and Zuidema, P. A.: Detecting
long-term growth trends using tree rings: a critical evaluation of methods,
Glob. Change Biol., 21, 2040–2054, https://doi.org/10.1111/gcb.12826, 2015.
Schneider, L., Smerdon, J. E., Büntgen, U., Wilson, R. J. S., Myglan, V.
S., Kirdyanov, A. V., and Esper, J.: Revising midlatitude summer
temperatures back to A.D. 600 based on a wood density network, Geophys. Res.
Lett., 42, 4556–4562, https://doi.org/10.1002/2015GL063956, 2015.
Schweingruber, F. H.: Tree rings and environment: dendroecology, Paul Haupt
AG Bern, Berne, 609 pp., ISBN 3 258 05458 4, https://doi.org/10.1111/j.1469-8137.1998.149-8.x, 1996.
Shao, X. M. and Wu, X. D.: Reconstruction of climate change on Changbai
Mountain, northeast China using tree-ring data, Quaternary Science, 1, 76–85, 1997 (in Chinese with English abstract).
Stone, L., Saparin, P. I., Huppert, A., and Price, C.: El Niño Chaos:
The role of noise and stochastic resonance on the ENSO cycle, Geophys. Res.
Lett., 25, 175–178, https://doi.org/10.1029/97GL53639, 1998.
Sun, C., You, H., Liu, J., Li, X., Gao, J., and Chen, S.: Distribution,
geochemistry and age of the Millennium eruptives of Changbaishan volcano,
Northeast China – A review, Front. Earth Sci., 8, 216–230,
https://doi.org/10.1007/s11707-014-0419-x, 2014.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B.
Am. Meteorol. Soc., 79, 61–78,
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Wang, J., Yang, B., Osborn, T. J., Ljungqvist, F. C., Zhang, H., and
Luterbacher, J.: Causes of East Asian Temperature Multidecadal Variability
Since 850 CE, Geophys. Res. Lett., 45, 13485–13494,
https://doi.org/10.1029/2018GL080725, 2018.
Wang, X., Zhang, M., Ji, Y., Li, Z., Li, M., and Zhang, Y.: Temperature
signals in tree-ring width and divergent growth of Korean pine response to
recent climate warming in northeast Asia, Trees, 31, 415–427,
https://doi.org/10.1007/s00468-015-1341-x, 2017.
Wei, H., Sparks, R. S. J., Liu, R., Fan, Q., Wang, Y., Hong, H., Zhang, H.,
Chen, H., Jiang, C., Dong, J., Zheng, Y., and Pan, Y.: Three active
volcanoes in China and their hazards, J. Asian Earth Sci., 21, 515–526,
https://doi.org/10.1016/S1367-9120(02)00081-0, 2003.
Wigley, T. M. L., Briffa, K. R., and Jones, P. D.: On the Average Value of
Correlated Time Series, with Applications in Dendroclimatology and
Hydrometeorology, J. Clim. Appl. Meteorol., 23, 201–213,
https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2, 1984.
Xu, J., Pan, B., Liu, T., Hajdas, I., Zhao, B., Yu, H., Liu, R., and Zhao,
P.: Climatic impact of the Millennium eruption of Changbaishan volcano in
China: New insights from high-precision radiocarbon wiggle-match dating,
Geophys. Res. Lett., 40, 54–59, https://doi.org/10.1029/2012GL054246, 2013.
Yang, B., Braeuning, A., Johnson, K. R., and Shi, Y.: General
characteristics of temperature variation in China during the last two
millennia, Geophys. Res. Lett., 29, L014485,
https://doi.org/10.1029/2001GL014485, 2002.
Yin, J., Jull, A. J. T., Burr, G. S., and Zheng, Y.: A wiggle-match age for
the Millennium eruption of Tianchi Volcano at Changbaishan, Northeastern
China, Quaternary Sci. Rev., 47, 150–159,
https://doi.org/10.1016/j.quascirev.2012.05.015, 2012.
Yonenobu, H. and Eckstein, D.: Reconstruction of early spring temperature
for central Japan from the tree-ring widths of Hinoki cypress and its
verification by other proxy records, Geophys. Res. Lett., 33, L10701,
https://doi.org/10.1029/2006GL026170, 2006.
Yu, S., Yuan, Y., Wei, W., Chen, F., Zhang, T., Shang, H., Zhang, R., and
Qing, L.: A 352-year record of summer temperature reconstruction in the
western Tianshan Mountains, China, as deduced from tree-ring density, Quaternary
Res., 80, 158–166, https://doi.org/10.1016/j.yqres.2013.05.005, 2013.
Yuan, Y. and Yang, S.: Impacts of Different Types of El Niño on the East
Asian Climate: Focus on ENSO Cycles, J. Climate, 25, 7702–7722,
https://doi.org/10.1175/JCLI-D-11-00576.1, 2012.
Yun, S.-H.: Volcanological Interpretation of Historical Eruptions of Mt.
Baekdusan Volcano, J. Korean Earth Sci. Soc., 34, 456–469, 2013.
Zhang, T., Yuan, Y., Liu, Y., Wei, W., Zhang, R., Chen, F., Yu, S., Shang,
H., and Qin, L.: A tree-ring based temperature reconstruction for the
Kaiduhe River watershed, northwestern China, since A.D. 1680: Linkages to
the North Atlantic Oscillation, Quat. Int., 311, 71–80,
https://doi.org/10.1016/j.quaint.2013.07.026, 2013.
Zhou, Y., Liu, L., Zhang, M., and Yu, J.: Medicinal plant resources and
their diversity in Changbai Mountain National Nature Reserve, Scientia
Silvae Sinicae, 41, 57–64, 2005.
Zhou, Y., Yi, Y., Liu, H., Song, J., Jia, W., and Zhang, S.: Altitudinal
trends in climate change result in radial growth variation of Pinus
yunnanensis at an arid-hot valley of southwest China, Dendrochronologia, 71,
125914, https://doi.org/10.1016/j.dendro.2021.125914, 2022.
Zhu, H. F., Fang, X. Q., Shao, X. M., and Yin, Z. Y.: Tree ring-based February–April temperature reconstruction for Changbai Mountain in Northeast China and its implication for East Asian winter monsoon, Clim. Past, 5, 661–666, https://doi.org/10.5194/cp-5-661-2009, 2009.
Zhu, Y., Chen, L., and Yu, R.: Analysis of the relationship between the
China anomalous climate variation and ENSO cycle on the quasi-four-year
scale, J. Trop. Meteorol., 19, 345–356,
https://doi.org/10.3969/j.issn.1006-8775.2004.01.001, 2004.
Short summary
We reconstruct, for the first time, high-resolution temperatures prior to the Millennium Eruption (946 CE) using a unique tree-ring proxy dataset in Changbai Mountain and compare them with modern temperatures. The temperatures during the last 1.5 centuries have stronger fluctuations, more frequent abruption, and a weaker periodicity of temperature variance compared to the pre-millennium temperatures. These recent changes correspond to long-term anthropogenic influences on regional climate.
We reconstruct, for the first time, high-resolution temperatures prior to the Millennium...