Articles | Volume 19, issue 6
https://doi.org/10.5194/cp-19-1201-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-19-1201-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of ozone levels on climate through Earth history
School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
Colin Goldblatt
School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
Related authors
No articles found.
Jade Skye, Joe R. Melton, Colin Goldblatt, Louis Saumier, Angela Gallego-Sala, Michelle Garneau, R. Scott Winton, Erick B. Bahati, Juan C. Benavides, Lee Fedorchuk, Gérard Imani, Carol Kagaba, Frank Kansiime, Mariusz Lamentowicz, Michel Mbasi, Daria Wochal, Sambor Czerwiński, Jacek Landowski, Joanna Landowska, Vincent Maire, Minna M. Väliranta, Matthew Warren, Lydia E. S. Cole, Marissa A. Davies, Erik A. Lilleskov, Jingjing Sun, and Yuwan Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-432, https://doi.org/10.5194/essd-2025-432, 2025
Preprint under review for ESSD
Short summary
Short summary
Peatlands are large stores of carbon but are vulnerable to human activities and climate change. Comprehensive peatland data are vital to understand these ecosystems, but existing datasets are fragmented and contain errors. To address this, we created Peat-DBase — a standardized global database of peat depth measurements with > 200,000 measurements worldwide, showing average depths of 144 cm. Peat-DBase avoids overlapping data compilation efforts while identifying critical observational gaps.
Daniel Garduno Ruiz, Colin Goldblatt, and Anne-Sofie Ahm
Geosci. Model Dev., 18, 4433–4454, https://doi.org/10.5194/gmd-18-4433-2025, https://doi.org/10.5194/gmd-18-4433-2025, 2025
Short summary
Short summary
Photochemical models describe how the composition of the atmosphere changes due to chemical reactions, transport, and other processes. These models are useful for studying the composition of the Earth's and other planets' atmospheres. Understanding the results of these models can be difficult. Here, we build on previous work to develop open-source code that can identify the reaction chains (pathways) that produce the results of these models, facilitating the understanding of these results.
Cited articles
Alcott, L. J., Mills, B. J. W., and Poulton, S. W.: Stepwise Earth
oxygenation is an inherent property of global biogeochemical cycling, Science, 366, 1333–1337, https://doi.org/10.1126/science.aax6459, 2019. a
Arney, G., Domagal-Goldman, S. D., Meadows, V. S., Wolf, E. T., Schwieterman,
E., Charnay, B., Claire, M., Hébrard, E., and Trainer, M. G.: The Pale
Orange Dot: The Spectrum and Habitability of Hazy Archean Earth,
Astrobiology, 16, 873–899, https://doi.org/10.1089/ast.2015.1422, 2016. a
Bais, A. F., Bernhard, G., McKenzie, R. L., Aucamp, P. J., Young, P. J., Ilyas, M., Jöckel, P., and Deushi, M.: Ozone–climate interactions and effects on solar ultraviolet radiation, Photochem. Photobiol. Sci., 18, 602–640, https://doi.org/10.1039/C8PP90059K, 2019. a
Byrne, B. and Goldblatt, C.: Radiative forcing at high concentrations of
well-mixed greenhouse gases, Geophys. Res. Lett., 41, 152–160,
https://doi.org/10.1002/2013GL058456, 2014a. a
Byrne, B. and Goldblatt, C.: Radiative forcings for 28 potential Archean
greenhouse gases, Clim. Past, 10, 1779–1801, https://doi.org/10.5194/cp-10-1779-2014, 2014b. a
Byrne, B. and Goldblatt, C.: Diminished greenhouse warming from Archean
methane due to solar absorption lines, Clim. Past, 11, 559–570,
https://doi.org/10.5194/cp-11-559-2015, 2015. a, b
Catling, D. C. and Zahnle, K. J.: The Archean atmosphere, Sci. Adv., 6, eaax1420, https://doi.org/10.1126/sciadv.aax1420, 2020. a, b, c
Chapman, S.: XXXV. On ozone and atomic oxygen in the upper atmosphere, The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
10, 369–383, 1930. a
Charnay, B., Forget, F., Wordsworth, R., Leconte, J., Millour, E.,
Codron, F., and Spiga, A.: Exploring the faint young Sun problem and the
possible climates of the Archean Earth with a 3-D GCM, J. Geophys. Res.-Atmos., 118, 10414–10431, https://doi.org/10.1002/jgrd.50808, 2013. a
Charnay, B., Wolf, E. T., Marty, B., and Forget, F.: Is the Faint
Young Sun Problem for Earth Solved?, Space Sci. Rev., 216, 90, https://doi.org/10.1007/s11214-020-00711-9, 2020. a, b
Chervin, R. M.: Interannual variability and seasonal climate predictability,
J. Atmos. Sci., 43, 233–251, 1986. a
Clough, S., Shephard, M., Mlawer, E., Delamere, J., Iacono, M., Cady-Pereira,
K., Boukabara, S., and Brown, P.: Atmospheric radiative transfer modeling: A
summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, 2005. a
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R.,
Williamson, D. L., Kiehl, J. T., Briegleb, B., Bitz, C., Lin, S.-J., Zhang, M., and Dai, Y.: Description of the NCAR community atmosphere model (CAM 3.0), NCAR Tech. Note NCAR/TN-464+STR 226, NCAR, 1326–1334, https://www.researchgate.net/profile/William-Collins-4/publication/224017933_Description_of_the_NCAR_community_atmosphere_model_CAM_30/links/54bee1cd0cf28ce68e6af99c/Description-of-the-NCAR-community-atmosphere-model-CAM-30.pdf (last access: 9 June 2023), 2004. a
Cooke, G. J., Marsh, D. R., Walsh, C., Black, B., and Lamarque, J. F.: A revised lower estimate of ozone columns during Earth's oxygenated
history, Royal Soc. Open Sci., 9, 211165, https://doi.org/10.1098/rsos.211165, 2022. a
Deitrick, R. and Goldblatt, C.: deitrr/DG_Pre-Cambrian_Ozone: Final version (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7946880, 2023a. a
Deitrick, R. and Goldblatt, C.: Climate model output for Earth with Pre-Cambrian ozone levels, Federated Research Data Repository [data set], https://doi.org/10.20383/103.0648, 2023b. a
Dütsch, H.: Vertical ozone distribution on a global scale, Pure Appl. Geophys., 116, 511–529, 1978. a
Goldblatt, C. and Zahnle, K. J.: Clouds and the Faint Young Sun Paradox, Clim. Past, 7, 203–220, https://doi.org/10.5194/cp-7-203-2011, 2011. a, b
Goldblatt, C., Lenton, T. M., and Watson, A. J.: Bistability of
atmospheric oxygen and the Great Oxidation, Nature, 443, 683–686,
https://doi.org/10.1038/nature05169, 2006. a
Goldblatt, C., Claire, M. W., Lenton, T. M., Matthews, A. J., Watson,
A. J., and Zahnle, K. J.: Nitrogen-enhanced greenhouse warming on early
Earth, Nat. Geosci., 2, 891–896, https://doi.org/10.1038/ngeo692, 2009. a
Gregory, B. S., Claire, M. W., and Rugheimer, S.: Photochemical modelling of
atmospheric oxygen levels confirms two stable states, Earth Planet. Sc. Lett., 561, 116818, https://doi.org/10.1016/j.epsl.2021.116818, 2021. a
Holton, J. and Hakim, G.: An Introduction to Dynamic Meteorology, 5th Edn.,
Elsevier, Academic Press, https://doi.org/10.1016/C2009-0-63394-8, 2012. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a
Jaziri, A. Y., Charnay, B., Selsis, F., Leconte, J., and Lefèvre, F.:
Dynamics of the Great Oxidation Event from a 3D photochemical–climate model,
Clim. Past, 18, 2421–2447, https://doi.org/10.5194/cp-18-2421-2022, 2022. a
Kasting, J. F.: Earth's Early Atmosphere, Science, 259, 920–926,
https://doi.org/10.1126/science.11536547, 1993. a
Kasting, J. F. and Donahue, T. M.: The evolution of atmospheric ozone, J. Geophys. Res.-Oceans, 85, 3255–3263, https://doi.org/10.1029/JC085iC06p03255, 1980. a, b, c
Kasting, J. F., Liu, S. C., and Donahue, T. M.: Oxygen levels in the
prebiological atmosphere, J. Geophys. Res.-Oceans, 84, 3097–3107, https://doi.org/10.1029/JC084iC06p03097, 1979. a
Keeble, J., Braesicke, P., Abraham, N. L., Roscoe, H. K., and Pyle, J. A.: The impact of polar stratospheric ozone loss on Southern Hemisphere stratospheric circulation and climate, Atmos. Chem. Phys., 14, 13705–13717, https://doi.org/10.5194/acp-14-13705-2014, 2014. a
Krause, A. J., Mills, B. J. W., Zhang, S., Planavsky, N. J., Lenton,
T. M., and Poulton, S. W.: Stepwise oxygenation of the Paleozoic
atmosphere, Nat. Commun., 9, 4081, https://doi.org/10.1038/s41467-018-06383-y, 2018. a
Lawrence, M. G.: The relationship between relative humidity and the dewpoint
temperature in moist air: A simple conversion and applications, B. Am. Meteorol. Soc., 86, 225–234, 2005. a
Levine, J. S. and Boughner, R. E.: The effect of paleoatmospheric ozone on
surface temperature, Icarus, 39, 310–314, 1979. a
Levine, J. S., Hays, P. B., and Walker, J. C.: The evolution and variability of atmospheric ozone over geological time, Icarus, 39, 295–309,
https://doi.org/10.1016/0019-1035(79)90172-6, 1979. a, b, c
Lyons, T. W., Reinhard, C. T., and Planavsky, N. J.: The rise of oxygen
in Earth's early ocean and atmosphere, Nature, 506, 307–315,
https://doi.org/10.1038/nature13068, 2014. a, b, c, d
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, 1997. a
Monteiro, J., McGibbon, J., Abel, S. D., monalivadje, Kosukhin, S., Kluft, L., and Suhas, D. L.: CliMT/climt: Update Github actions runners (v0.17.12), Zenodo [code], https://doi.org/10.5281/zenodo.1240966, 2023. a
Monteiro, J. M., McGibbon, J., and Caballero, R.: sympl (v. 0.4.0) and climt (v. 0.15.3) – towards a flexible framework for building model hierarchies in
Python, Geosci. Model Dev., 11, 3781–3794, https://doi.org/10.5194/gmd-11-3781-2018, 2018. a
Morss, D. A. and Kuhn, W. R.: Paleoamospheric temperature structure,
Icarus, 33, 40–49, https://doi.org/10.1016/0019-1035(78)90022-2, 1978. a
NCAR – National Center for Atmospheric Research: CESM 1.2, https://www.cesm.ucar.edu/models/ (last access: 26 April 2022), 2022. a
Oreopoulos, L., Mlawer, E., Delamere, J., Shippert, T., Cole, J., Fomin, B.,
Iacono, M., Jin, Z., Li, J., Manners, J., Räisänen, P., Rose, F., Zhang, Y., Wilson, M. J., and Rossow, W. B.: The continual intercomparison of radiation codes: Results from phase I, J. Geophys. Res.-Atmos., 117, D06118,
https://doi.org/10.1029/2011JD016821, 2012. a
Pauluis, O., Czaja, A., and Korty, R.: The Global Atmospheric
Circulation on Moist Isentropes, Science, 321, 1075,
https://doi.org/10.1126/science.1159649, 2008. a
Payne, R. C., Britt, A. V., Chen, H., Kasting, J. F., and Catling,
D. C.: The response of Phanerozoic surface temperature to variations in
atmospheric oxygen concentration, J. Geophys. Res.-Atmos., 121, 10089–10096, https://doi.org/10.1002/2016JD025459, 2016. a
Petty, G. W.: A first course in atmospheric radiation, Sundog Pub, https://sundogpublishingstore.myshopify.com/products/a-first-course-in-atmospheric-radiation-g-w-petty
(last access: 9 June 2023), 2006. a
Pincus, R., Barker, H. W., and Morcrette, J.-J.: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields, J. Geophys. Res.-Atmos., 108, 4376–4380, https://doi.org/10.1029/2002JD003322, 2003. a
Ratner, M. I. and Walker, J. C. G.: Atmospheric Ozone and the History of
Life, J. Atmos. Sci., 29, 803–808,
https://doi.org/10.1175/1520-0469(1972)029<0803:AOATHO>2.0.CO;2, 1972. a, b
rtweb: RRTM (Stand-Alone Model)/RRTMG (GCM Applications), http://rtweb.aer.com/rrtm_frame.html (last access: 26 April 2022, 2022. a
Sauterey, B., Charnay, B., Affholder, A., Mazevet, S., and
Ferrière, R.: Co-evolution of primitive methane-cycling ecosystems and
early Earth's atmosphere and climate, Nat. Commun., 11, 2705,
https://doi.org/10.1038/s41467-020-16374-7, 2020. a
Segura, A., Meadows, V. S., Kasting, J. F., Crisp, D., and Cohen, M.:
Abiotic formation of O2 and O3 in high-CO2 terrestrial
atmospheres, Astron. Astrophys., 472, 665–679, https://doi.org/10.1051/0004-6361:20066663, 2007.
a
Seviour, W. J. M., Gnanadesikan, A., Waugh, D., and Pradal, M.-A.:
Transient Response of the Southern Ocean to Changing Ozone: Regional
Responses and Physical Mechanisms, J. Climate, 30, 2463–2480,
https://doi.org/10.1175/JCLI-D-16-0474.1, 2017a. a
Seviour, W. J. M., Waugh, D. W., Polvani, L. M., Correa, G. J. P., and
Garfinkel, C. I.: Robustness of the Simulated Tropospheric Response to
Ozone Depletion, J. Climate, 30, 2577–2585, https://doi.org/10.1175/JCLI-D-16-0817.1, 2017b. a
Solomon, A., Polvani, L. M., Smith, K. L., and Abernathey, R. P.: The
impact of ozone depleting substances on the circulation, temperature, and
salinity of the Southern Ocean: An attribution study with CESM1(WACCM),
Geophys. Res. Lett., 42, 5547–5555, https://doi.org/10.1002/2015GL064744, 2015. a
Visconti, G.: Radiative-photochemical models of the primitive terrestrial
atmosphere, Planet. Space Sci., 30, 785–793, 1982. a
Wade, D. C., Abraham, N. L., Farnsworth, A., Valdes, P. J., Bragg, F., and
Archibald, A. T.: Simulating the climate response to atmospheric oxygen
variability in the Phanerozoic: a focus on the Holocene, Cretaceous and
Permian, Clim. Past, 15, 1463–1483, https://doi.org/10.5194/cp-15-1463-2019, 2019. a
Walker, J. C. G.: Oxygen and hydrogen in the primitive atmosphere, Pure
Appl. Geophys., 116, 222–231, https://doi.org/10.1007/BF01636879, 1978a. a
Walker, J. C. G.: The early history of oxygen and ozone in the atmosphere,
Pure Appl. Geophys., 117, 498–512, https://doi.org/10.1007/BF00876630, 1978b. a
Way, M. J., Aleinov, I., Amundsen, D. S., Chandler, M. A., Clune,
T. L., Del Genio, A. D., Fujii, Y., Kelley, M., Kiang, N. Y., Sohl,
L., and Tsigaridis, K.: Resolving Orbital and Climate Keys of Earth and
Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General
Circulation Model for Simulating the Climates of Rocky Planets, Astrophys. J. Suppl. Ser., 231, 12, https://doi.org/10.3847/1538-4365/aa7a06, 2017. a
Wogan, N. F., Catling, D. C., Zahnle, K. J., and Claire, M. W.: Rapid
timescale for an oxic transition during the Great Oxidation Event and the
instability of low atmospheric O2, P. Natl. Acad. Sci. USA, 119, e2205618119, https://doi.org/10.1073/pnas.2205618119, 2022. a, b, c
Wolf, E. T. and Toon, O. B.: Hospitable Archean Climates Simulated by a
General Circulation Model, Astrobiology, 13, 656–673,
https://doi.org/10.1089/ast.2012.0936, 2013. a
Wood, R. and Bretherton, C. S.: On the relationship between stratiform low
cloud cover and lower-tropospheric stability, J. Climate, 19, 6425–6432, 2006. a
Zahnle, K. J., Gacesa, M., and Catling, D. C.: Strange messenger: A new
history of hydrogen on Earth, as told by Xenon, Geochim. Cosmochim. Ac., 244, 56–85, https://doi.org/10.1016/j.gca.2018.09.017, 2019. a
Short summary
Prior to 2.5 billion years ago, ozone was present in our atmosphere only in trace amounts. To understand how climate has changed in response to ozone build-up, we have run 3-D climate simulations with different amounts of ozone. We find that Earth's surface is about 3 to 4 °C degrees cooler with low ozone. This is caused by cooling of the upper atmosphere, where ozone is a warming agent. Its removal causes the upper atmosphere to become drier, weakening the greenhouse warming by water vapor.
Prior to 2.5 billion years ago, ozone was present in our atmosphere only in trace amounts. To...