Articles | Volume 19, issue 6
https://doi.org/10.5194/cp-19-1201-2023
https://doi.org/10.5194/cp-19-1201-2023
Research article
 | 
20 Jun 2023
Research article |  | 20 Jun 2023

Effects of ozone levels on climate through Earth history

Russell Deitrick and Colin Goldblatt

Related authors

The Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP): experimental design and protocols
Colin Goldblatt, Lucas Kavanagh, and Maura Dewey
Geosci. Model Dev., 10, 3931–3940, https://doi.org/10.5194/gmd-10-3931-2017,https://doi.org/10.5194/gmd-10-3931-2017, 2017
Short summary
Measurement of geologic nitrogen using mass spectrometry, colorimetry, and a newly adapted fluorometry technique
Benjamin W. Johnson, Natashia Drage, Jody Spence, Nova Hanson, Rana El-Sabaawi, and Colin Goldblatt
Solid Earth, 8, 307–318, https://doi.org/10.5194/se-8-307-2017,https://doi.org/10.5194/se-8-307-2017, 2017
Short summary
Diminished greenhouse warming from Archean methane due to solar absorption lines
B. Byrne and C. Goldblatt
Clim. Past, 11, 559–570, https://doi.org/10.5194/cp-11-559-2015,https://doi.org/10.5194/cp-11-559-2015, 2015
Short summary
Radiative forcings for 28 potential Archean greenhouse gases
B. Byrne and C. Goldblatt
Clim. Past, 10, 1779–1801, https://doi.org/10.5194/cp-10-1779-2014,https://doi.org/10.5194/cp-10-1779-2014, 2014

Related subject area

Subject: Climate Modelling | Archive: Modelling only | Timescale: Pre-Cenozoic
Climate and ocean circulation in the aftermath of a Marinoan snowball Earth
Lennart Ramme and Jochem Marotzke
Clim. Past, 18, 759–774, https://doi.org/10.5194/cp-18-759-2022,https://doi.org/10.5194/cp-18-759-2022, 2022
Short summary
Deep ocean temperatures through time
Paul J. Valdes, Christopher R. Scotese, and Daniel J. Lunt
Clim. Past, 17, 1483–1506, https://doi.org/10.5194/cp-17-1483-2021,https://doi.org/10.5194/cp-17-1483-2021, 2021
Short summary
The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity
Alan M. Haywood, Julia C. Tindall, Harry J. Dowsett, Aisling M. Dolan, Kevin M. Foley, Stephen J. Hunter, Daniel J. Hill, Wing-Le Chan, Ayako Abe-Ouchi, Christian Stepanek, Gerrit Lohmann, Deepak Chandan, W. Richard Peltier, Ning Tan, Camille Contoux, Gilles Ramstein, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Qiong Zhang, Qiang Li, Youichi Kamae, Mark A. Chandler, Linda E. Sohl, Bette L. Otto-Bliesner, Ran Feng, Esther C. Brady, Anna S. von der Heydt, Michiel L. J. Baatsen, and Daniel J. Lunt
Clim. Past, 16, 2095–2123, https://doi.org/10.5194/cp-16-2095-2020,https://doi.org/10.5194/cp-16-2095-2020, 2020
Short summary
Paleogeographic controls on the evolution of Late Cretaceous ocean circulation
Jean-Baptiste Ladant, Christopher J. Poulsen, Frédéric Fluteau, Clay R. Tabor, Kenneth G. MacLeod, Ellen E. Martin, Shannon J. Haynes, and Masoud A. Rostami
Clim. Past, 16, 973–1006, https://doi.org/10.5194/cp-16-973-2020,https://doi.org/10.5194/cp-16-973-2020, 2020
Short summary
Stripping back the modern to reveal the Cenomanian–Turonian climate and temperature gradient underneath
Marie Laugié, Yannick Donnadieu, Jean-Baptiste Ladant, J. A. Mattias Green, Laurent Bopp, and François Raisson
Clim. Past, 16, 953–971, https://doi.org/10.5194/cp-16-953-2020,https://doi.org/10.5194/cp-16-953-2020, 2020
Short summary

Cited articles

Alcott, L. J., Mills, B. J. W., and Poulton, S. W.: Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling, Science, 366, 1333–1337, https://doi.org/10.1126/science.aax6459, 2019. a
Arney, G., Domagal-Goldman, S. D., Meadows, V. S., Wolf, E. T., Schwieterman, E., Charnay, B., Claire, M., Hébrard, E., and Trainer, M. G.: The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth, Astrobiology, 16, 873–899, https://doi.org/10.1089/ast.2015.1422, 2016. a
Bais, A. F., Bernhard, G., McKenzie, R. L., Aucamp, P. J., Young, P. J., Ilyas, M., Jöckel, P., and Deushi, M.: Ozone–climate interactions and effects on solar ultraviolet radiation, Photochem. Photobiol. Sci., 18, 602–640, https://doi.org/10.1039/C8PP90059K, 2019. a
Byrne, B. and Goldblatt, C.: Radiative forcing at high concentrations of well-mixed greenhouse gases, Geophys. Res. Lett., 41, 152–160, https://doi.org/10.1002/2013GL058456, 2014a. a
Byrne, B. and Goldblatt, C.: Radiative forcings for 28 potential Archean greenhouse gases, Clim. Past, 10, 1779–1801, https://doi.org/10.5194/cp-10-1779-2014, 2014b. a
Download
Short summary
Prior to 2.5 billion years ago, ozone was present in our atmosphere only in trace amounts. To understand how climate has changed in response to ozone build-up, we have run 3-D climate simulations with different amounts of ozone. We find that Earth's surface is about 3 to 4 °C degrees cooler with low ozone. This is caused by cooling of the upper atmosphere, where ozone is a warming agent. Its removal causes the upper atmosphere to become drier, weakening the greenhouse warming by water vapor.