Articles | Volume 18, issue 5
https://doi.org/10.5194/cp-18-975-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-975-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Humidity changes and possible forcing mechanisms over the last millennium in arid Central Asia
Shengnan Feng
College of Resource, Environment and Tourism, Capital Normal
University, Beijing 100048, China
College of Resource, Environment and Tourism, Capital Normal
University, Beijing 100048, China
Key Laboratory of Cenozoic Geology and Environment, Institute of
Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Georges Lemaître Centre for Earth and Climate Research, Earth
and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve
1348, Belgium
CAS Center for Excellence in Life and Paleoenvironment, Beijing
100044, China
Xin Mao
College of Resource, Environment and Tourism, Capital Normal
University, Beijing 100048, China
Institute of Hydrogeology and Environmental Geology, Chinese
Academy of Geological Sciences, Shijiazhuang 050061, China
Yun Li
Qinghai Institute of Salt Lakes, Chinese Academy of Sciences,
Xining 810008, China
Jiaping Wang
College of Resource, Environment and Tourism, Capital Normal
University, Beijing 100048, China
Related authors
No articles found.
Chenxi Xu, Masaki Sano, Ashok Priyadarshan Dimri, Rengaswamy Ramesh, Takeshi Nakatsuka, Feng Shi, and Zhengtang Guo
Clim. Past, 14, 653–664, https://doi.org/10.5194/cp-14-653-2018, https://doi.org/10.5194/cp-14-653-2018, 2018
Short summary
Short summary
We have constructed a regional tree ring cellulose oxygen isotope record using a total of five chronologies obtained from the Himalaya. Centennial changes in the regional tree ring record indicate a trend of weakened Indian summer monsoon (ISM) intensity since 1820. Decreasing ISM activity is also observed in various high-resolution ISM records from southwest China and Southeast Asia, and may be the result of reduced land–ocean thermal contrasts since 1820.
Feng Shi, Sen Zhao, Zhengtang Guo, Hugues Goosse, and Qiuzhen Yin
Clim. Past, 13, 1919–1938, https://doi.org/10.5194/cp-13-1919-2017, https://doi.org/10.5194/cp-13-1919-2017, 2017
Short summary
Short summary
We reconstructed the multi-proxy precipitation field for China over the past 500 years, which includes three leading modes (a monopole, a dipole, and a triple) of precipitation variability. The dipole mode may be controlled by the El Niño–Southern Oscillation variability. Such reconstruction is an essential source of information to document the climate variability over decadal to centennial timescales and can be used to assess the ability of climate models to simulate past climate change.
Zhitong Yu, Xiujun Wang, Guangxuan Han, Xingqi Liu, and Enlou Zhang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-353, https://doi.org/10.5194/bg-2017-353, 2017
Manuscript not accepted for further review
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Terrestrial Archives | Timescale: Millenial/D-O
Hydrological change in southern Australia over 1750 years: a bivalve oxygen isotope record from the Coorong Lagoon
Millennial hydrological variability in the continental northern Neotropics during Marine Isotope Stages (MISs) 3–2 (59–15 cal ka BP) inferred from sediments of Lake Petén Itzá, Guatemala
Greenhouse gases modulate the strength of millennial-scale subtropical rainfall, consistent with future predictions
Archaeal lipid-inferred paleohydrology and paleotemperature of Lake Chenghai during the Pleistocene–Holocene transition
Differing pre-industrial cooling trends between tree rings and lower-resolution temperature proxies
Dansgaard–Oeschger-like events of the penultimate climate cycle: the loess point of view
Evaluating model outputs using integrated global speleothem records of climate change since the last glacial
1200 years of warm-season temperature variability in central Scandinavia inferred from tree-ring density
Hydroclimatic variability in the Levant during the early last glacial (∼ 117–75 ka) derived from micro-facies analyses of deep Dead Sea sediments
Detailed insight into Arctic climatic variability during MIS 11c at Lake El'gygytgyn, NE Russia
Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 1: Theory
Impact of postglacial warming on borehole reconstructions of last millennium temperatures
Estimating 750 years of temperature variations and uncertainties in the Pyrenees by tree-ring reconstructions and climate simulations
Briony Kate Chamberlayne, Jonathan James Tyler, Deborah Haynes, Yuexiao Shao, John Tibby, and Bronwyn May Gillanders
Clim. Past, 19, 1383–1396, https://doi.org/10.5194/cp-19-1383-2023, https://doi.org/10.5194/cp-19-1383-2023, 2023
Short summary
Short summary
We used geochemical signals in shells preserved in sediments to create a 1750-year record of hydrological change in the Coorong Lagoon of South Australia. The record is interpreted to reflect the balance of evaporation and precipitation and shows that it has always been a highly evaporated system. The record also shows similarities to other environmental reconstructions from the region. This knowledge can increase our understanding of the potential impacts of environmental change.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Fei Guo, Steven Clemens, Yuming Liu, Ting Wang, Huimin Fan, Xingxing Liu, and Youbin Sun
Clim. Past, 18, 1675–1684, https://doi.org/10.5194/cp-18-1675-2022, https://doi.org/10.5194/cp-18-1675-2022, 2022
Short summary
Short summary
Our high-resolution loess Ca/Ti record displays millennial monsoon oscillations that persist over the last 650 kyr. Wavelet results indicate the ice volume and GHG co-modulation at the 100 kyr band and GHG and local insolation forcing at the precession band for the magnitude of millennial monsoon variability of loess Ca/Ti. The inferred mechanism calls on dynamic linkages to variability in AMOC. At the precession band, combined effects of GHG and insolation lead to increased extreme rainfall.
Weiwei Sun, Enlou Zhang, Jie Chang, James Shulmeister, Michael I. Bird, Cheng Zhao, Qingfeng Jiang, and Ji Shen
Clim. Past, 16, 833–845, https://doi.org/10.5194/cp-16-833-2020, https://doi.org/10.5194/cp-16-833-2020, 2020
Lara Klippel, Scott St. George, Ulf Büntgen, Paul J. Krusic, and Jan Esper
Clim. Past, 16, 729–742, https://doi.org/10.5194/cp-16-729-2020, https://doi.org/10.5194/cp-16-729-2020, 2020
Short summary
Short summary
The PAGES2k multiproxy database offers a new and unique opportunity to study the lack of long-term cooling trends in tree-ring data, which can be expected in Northern Hemisphere summers, particularly in the high latitudes, due to orbitally driven changes in solar irradiance. Tests of different influencing factors reveal that preserving millennial-scale cooling trends related to orbital forcing is not feasible in most tree-ring datasets.
Denis-Didier Rousseau, Pierre Antoine, Niklas Boers, France Lagroix, Michael Ghil, Johanna Lomax, Markus Fuchs, Maxime Debret, Christine Hatté, Olivier Moine, Caroline Gauthier, Diana Jordanova, and Neli Jordanova
Clim. Past, 16, 713–727, https://doi.org/10.5194/cp-16-713-2020, https://doi.org/10.5194/cp-16-713-2020, 2020
Short summary
Short summary
New investigations of European loess records from MIS 6 reveal the occurrence of paleosols and horizon showing slight pedogenesis similar to those from the last climatic cycle. These units are correlated with interstadials described in various marine, continental, and ice Northern Hemisphere records. Therefore, these MIS 6 interstadials can confidently be interpreted as DO-like events of the penultimate climate cycle.
Laia Comas-Bru, Sandy P. Harrison, Martin Werner, Kira Rehfeld, Nick Scroxton, Cristina Veiga-Pires, and SISAL working group members
Clim. Past, 15, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, https://doi.org/10.5194/cp-15-1557-2019, 2019
Short summary
Short summary
We use an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled climate model to provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations and the optimum period for the modern observational baseline. We also illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation.
Peng Zhang, Hans W. Linderholm, Björn E. Gunnarson, Jesper Björklund, and Deliang Chen
Clim. Past, 12, 1297–1312, https://doi.org/10.5194/cp-12-1297-2016, https://doi.org/10.5194/cp-12-1297-2016, 2016
Short summary
Short summary
We present C-Scan, a new Scots pine tree-ring density based reconstruction of warm-season (April-September) temperatures for central Scandinavia back to 850 CE, extending the previous reconstruction by 250 years. Our reconstruction indicates that the warm-season warmth during a relatively-warm period of last millennium is not so pronounced in central Scandinavia, which adds further detail to our knowledge about the spatial pattern of surface air temperature on the regional scale.
I. Neugebauer, M. J. Schwab, N. D. Waldmann, R. Tjallingii, U. Frank, E. Hadzhiivanova, R. Naumann, N. Taha, A. Agnon, Y. Enzel, and A. Brauer
Clim. Past, 12, 75–90, https://doi.org/10.5194/cp-12-75-2016, https://doi.org/10.5194/cp-12-75-2016, 2016
Short summary
Short summary
Micro-facies changes and elemental variations in deep Dead Sea sediments are used to reconstruct relative lake level changes for the early last glacial period. The results indicate a close link of hydroclimatic variability in the Levant to North Atlantic-Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields. First petrographic analyses of gravels in the deep core question the recent hypothesis of a Dead Sea dry-down at the end of the last interglacial.
H. Vogel, C. Meyer-Jacob, M. Melles, J. Brigham-Grette, A. A. Andreev, V. Wennrich, P. E. Tarasov, and P. Rosén
Clim. Past, 9, 1467–1479, https://doi.org/10.5194/cp-9-1467-2013, https://doi.org/10.5194/cp-9-1467-2013, 2013
R. Sundberg, A. Moberg, and A. Hind
Clim. Past, 8, 1339–1353, https://doi.org/10.5194/cp-8-1339-2012, https://doi.org/10.5194/cp-8-1339-2012, 2012
V. Rath, J. F. González Rouco, and H. Goosse
Clim. Past, 8, 1059–1066, https://doi.org/10.5194/cp-8-1059-2012, https://doi.org/10.5194/cp-8-1059-2012, 2012
I. Dorado Liñán, U. Büntgen, F. González-Rouco, E. Zorita, J. P. Montávez, J. J. Gómez-Navarro, M. Brunet, I. Heinrich, G. Helle, and E. Gutiérrez
Clim. Past, 8, 919–933, https://doi.org/10.5194/cp-8-919-2012, https://doi.org/10.5194/cp-8-919-2012, 2012
Cited articles
Aichner, B., Feakins, S. J., Lee, J. E., Herzschuh, U., and Liu, X.: High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia, Clim. Past, 11, 619–633, https://doi.org/10.5194/cp-11-619-2015, 2015.
Aizen, E. M., Aizen, V. B., Melack, J. M., Nakamura, T., and Ohta, T.:
Precipitation and atmospheric circulation patterns at mid-latitudes of Asia,
Int. J. Climatol., 21, 535–556, https://doi.org/10.1002/joc.626, 2001.
Bard, E. and Frank, M.: Climate change and solar variability: What's new
under the sun?, Earth Planet. Sci. Lett., 248, 1–14,
https://doi.org/10.1016/j.epsl.2006.06.016, 2006.
Bard, E., Raisbeck, G., Yiou, F., and Jouzel, J.: Solar irradiance during
the last 1200 years based on cosmogenic nuclides, Tellus B, 52, 985–992, https://doi.org/10.1034/j.1600-0889.2000.d01-7.x, 2000.
Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using
an autoregressive gamma process, Bayesian Anal., 6, 457–474,
https://doi.org/10.1214/ba/1339616472, 2011.
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W.,
Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: Persistent Solar
Infuence on North Atlantic Climate During the Holocene, Science, 294, 2130–2136, 2001.
Boroninaa, A., Renarda, P., Balderera, W., and Christodoulides, A.:
Groundwater resources in the Kouris catchment (Cyprus): data analysis and
numerical modelling, J. Hydrol., 271, 130–149,
https://doi.org/10.1016/S0022-1694(02)00322-0, 2003.
Brahim, Y. A., Wassenburg, J. A., Cruz, F. W., Sifedine, A., Scholz, D.,
Boumchou, L., Dassie, E. P., Jochum, K. P., Edwards, R. L., and Cheng, H.:
Multi-decadal to centennial hydroclimate variability and linkage to solar
forcing in the Western Mediteraanean during the last 1000 years, Sci.
Rep., 8, 1–8, 2018.
Cai, W., Wu, L., Lengaigne, M., Li, T., McGregor, S., Kug, J. S., Yu, J. Y.,
Stuecker, M. F., Santoso, A., Li, X., Ham, Y. G., Chikamoto, Y., Ng, B.,
McPhaden, M. J., Du, Y., Dommenget, D., Jia, F., Kajtar, J. B., Keenlyside,
N., Lin, X., Luo, J. J., Martin-Rey, M., Ruprich-Robert, Y., Wang, G., Xie,
S. P., Yang, Y., Kang, S. M., Choi, J. Y., Gan, B., Kim, G. I., Kim, C. E.,
Kim, S., Kim, J. H., and Chang, P.: Pantropical climate interactions,
Science, 363, 1–11, https://doi.org/10.1126/science.aav4236, 2019.
Cane, M. A.: The evolution of El Niño, past and future, Earth
Planet. Sci. Lett., 230, 227–240, https://doi.org/10.1016/j.epsl.2004.12.003, 2005.
Carlson, A. E. and Clark, P. U.: Ice sheet sources of sea level rise and
freshwater discharge during the last deglaciation, Rev. Geophys.,
50, 1–72, https://doi.org/10.1029/2011rg000371, 2012.
Chen, F., Huang, X., Zhang, J., Holmes, J. A., and Chen, J.: Humid Little
Ice Age in arid central Asia documented by Bosten Lake, Xinjiang, China,
Sci. China Ser. D, 49, 1280–1290,
https://doi.org/10.1007/s11430-006-2027-4, 2006.
Chen, F., Chen, J., Holmes, J., Boomer, I., Austin, P., Gates, J. B., Wang,
N., Brooks, S. J., and Zhang, J.: Moisture changes over the last millennium
in arid central Asia: a review, synthesis and comparison with monsoon
region, Quaternary Sci. Rev., 29, 1055–1068,
https://doi.org/10.1016/j.quascirev.2010.01.005, 2010.
Chen, F., Jia, J., Chen, J., Li, G., Zhang, X., Xie, H., Xia, D., Huang, W.,
and An, C.: A persistent Holocene wetting trend in arid central Asia, with
wettest conditions in the late Holocene, revealed by multi-proxy analyses of
loess-paleosol sequences in Xinjiang, China, Quaternary Sci. Rev.,
146, 134–146, https://doi.org/10.1016/j.quascirev.2016.06.002, 2016.
Chen, F., Chen, J., Huang, W., Chen, S., Huang, X., Jin, L., Jia, J., Zhang,
X., An, C., Zhang, J., Zhao, Y., Yu, Z., Zhang, R., Liu, J., Zhou, A., and
Feng, S.: Westerlies Asia and monsoonal Asia: Spatiotemporal differences in
climate change and possible mechanisms on decadal to sub-orbital timescales,
Earth Sci. Rev., 192, 337–354, https://doi.org/10.1016/j.earscirev.2019.03.005, 2019a.
Chen, J., Chen, F., Feng, S., Huang, W., Liu, J., and Zhou, A.:
Hydroclimatic changes in China and surroundings during the Medieval Climate
Anomaly and Little Ice Age: spatial patterns and possible mechanisms,
Quaternary Sci. Rev., 107, 98–111, https://doi.org/10.1016/j.quascirev.2014.10.012,
2015.
Chen, J., Chen, F., Zhang, E., Brooks, S. J., Zhou, A., and Zhang, J.: A
1000-year chironomid-based salinity reconstruction from varved sediments of
Sugan Lake, Qaidam Basin, arid Northwest China, and its palaeoclimatic
significance, Chi. Sci. Bull., 54, 3749–3759,
https://doi.org/10.1007/s11434-009-0201-8, 2009.
Chen, J., Liu, J., Zhang, X., Chen, S., Huang, W., Chen, J., Zhang, S.,
Zhou, A., and Chen, F.: Unstable Little Ice Age climate revealed by
high-resolution proxy records from northwestern China, Clim. Dynam., 53,
1–10, https://doi.org/10.1007/s00382-019-04685-5, 2019b.
Cheng, Y., Zhou, X., Deng, Z., Tang, Y., and Chen, D.: Interdecadal
Variation of ENSO Predictability in Multiple Models, J. Climate, 21,
4811–4833, https://doi.org/10.1175/2008jcli2193.1, 2008.
D'Arrigo, R., Cook, E. R., Wilson, R. J., Allan, R., and Mann, M. E.: On the
variability of ENSO over the past six centuries, Geophys. Res.
Lett., 32, L03711, https://doi.org/10.1029/2004GL022055., 2005.
Feng, Z., Sun, A., Abdusalih, N., Ran, M., Kurban, A., Lan, B., Zhang, D.,
and Yang, Y.: Vegetation changes and associated climatic changes in the
southern Altai Mountains within China during the Holocene, The Holocene, 27,
683–693, https://doi.org/10.1177/0959683616670469, 2016.
Feng, S., Liu, X., Shi, F., Mao, X., Li, Y., and Wang, J.: Supplementary data for Humidity changes and possible forcing mechanisms over the last millennium in arid Central Asia, 4TU Research Data [data set], https://doi.org/10.4121/16570398, 2022.
Gao, J., Li, M., Xiao, X., Tang, Y., and He, G.: Paleozoic tectonic
evolution of the Tianshan Orogen, northwestern China, Tectonophysics, 287,
213–231, https://doi.org/10.1016/S0040-1951(98)80070-X, 1998.
Gates, J. B., Edmunds, W. M., Ma, J., and Sheppard, P. R.: A 700-year
history of groundwater recharge in the drylands of NW China, The Holocene,
18, 1045–1054, https://doi.org/10.1177/0959683608095575, 2008.
Gimeno, L., Torre, L. d. L., Nieto, R., Garcia, R., Hernandez, E., and
Ribera, P.: Changes in the relationship NAO Northern
hemisphere temperature due to solar activity, Earth Planet. Sci.
Lett., 203, 15–20, https://doi.org/10.1016/S0012-821X(02)01090-7, 2003.
Gleissberg, W.: The eighty-year sunspot cycle, J. Br. Astron. Assoc., 68,
148–152, 1958.
Gleissberg, W.: The eighty-year sunspot cycle in auroral frequency numbers,
J. Br. Astron. Assoc., 75, 227–231, 1965.
Gray, L. J.: The influence of the equatorial upper stratosphere on
stratospheric sudden warmings, Geophys. Res. Lett., 30, 4,
https://doi.org/10.1029/2002gl016430, 2003.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
He, Y., Zhao, C., Wang, Z., Wang, H., Song, M., Liu, W., and Liu, Z.: Late
Holocene coupled moisture and temperature changes on the northern Tibetan
Plateau, Quaternary Sci. Rev., 80, 47–57,
https://doi.org/10.1016/j.quascirev.2013.08.017, 2013.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen,
N.-C., Tong, C. C., and Liu, H. H.: The empirical mode decomposition and the
Hilbert spectrum for nonlinear and non-stationary time series analysis,
Proc. Roy. Soc. London, 454, 903–995,
https://doi.org/10.1098/rspa.1998.0193, 1998.
Huang, W., Chen, F., Feng, S., Chen, J., and Zhang, X.: Interannual
precipitation variations in the mid-latitude Asia and their association with
large-scale atmospheric circulation, Chi. Sci. Bull., 58,
3962–3968, https://doi.org/10.1007/s11434-013-5970-4, 2013.
Huang, W., Feng, S., Chen, J., and Chen, F.: Physical Mechanisms of Summer
Precipitation Variations in the Tarim Basin in Northwestern China, J. Climate, 28, 3579–3591, https://doi.org/10.1175/jcli-d-14-00395.1, 2015a.
Huang, W., Chen, J., Zhang, X., Feng, S., and Chen, F.: Definition of the
core zone of the “westerlies-dominated climatic regime”, and its
controlling factors during the instrumental period, Sci. Chi. Earth
Sci., 58, 676–684, https://doi.org/10.1007/s11430-015-5057-y, 2015b.
Huang, W., Chang, S.-Q., Xie, C.-L., and Zhang, Z.-P.: Moisture sources of
extreme summer precipitation events in North Xinjiang and their relationship
with atmospheric circulation, Adv. Clim. Change Res., 8, 12–17,
https://doi.org/10.1016/j.accre.2017.02.001, 2017.
Huang, X., Oberhänsli, H., von Suchodoletz, H., Prasad, S., Sorrel, P.,
Plessen, B., Mathis, M., and Usubaliev, R.: Hydrological changes in western
Central Asia (Kyrgyzstan) during the Holocene as inferred from a
palaeolimnological study in lake Son Kul, Quaternary Sci. Rev., 103,
134–152, https://doi.org/10.1016/j.quascirev.2014.09.012, 2014.
Hurrell, J. W.: Decadal trends in the north atlantic oscillation: regional
temperatures and precipitation, Science, 269, 676–679,
https://doi.org/10.1126/science.269.5224.676, 1995.
Ineson, S., Scaife, A. A., Knight, J. R., Manners, J. C., Dunstone, N. J.,
Gray, L. J., and Haigh, J. D.: Solar forcing of winter climate variability
in the Northern Hemisphere, Nat. Geosci., 4, 753–757, https://doi.org/10.1038/NGEO1282,
2011.
Jeanpert, J., Iseppi, M., Adler, P. M., Genthon, P., Sevin, B., Thovert, J.
F., Dewandel, B., and Join, J. L.: Fracture controlled permeability of
ultramafic basement aquifers. Inferences from the Koniambo massif, New
Caledonia, Eng. Geol., 256, 67–83, https://doi.org/10.1016/j.enggeo.2019.05.006,
2019.
Jiménez-Moreno, G., Anderson, R. S., and Shinker, J. J.: ENSO, sun and
megadroughts in SW USA during the last 11,000 years, Earth Planet.
Sci. Lett., 576, 117217, https://doi.org/10.1016/j.epsl.2021.117217, 2021.
Jin, L., Chen, F., Morrill, C., Otto-Bliesner, B. L., and Rosenbloom, N.:
Causes of early Holocene desertification in arid central Asia, Clim.
Dynam., 38, 1577–1591, https://doi.org/10.1007/s00382-011-1086-1, 2011.
Jungclaus, J. H., Lohmann, K., and Zanchettin, D.: Enhanced 20th-century heat transfer to the Arctic simulated in the context of climate variations over the last millennium, Clim. Past, 10, 2201–2213, https://doi.org/10.5194/cp-10-2201-2014, 2014.
Kirov, B. and Georgieva, K.: Long-term variations and interrelations of
ENSO, NAO and solar activity, Phys. Chem. Earth, 27,
441–448, https://doi.org/10.1016/S1474-7065(02)00024-4, 2002.
Knudsen, M. F., Jacobsen, B. H., Seidenkrantz, M. S., and Olsen, J.:
Evidence for external forcing of the Atlantic Multidecadal Oscillation since
termination of the Little Ice Age, Nat. Commun., 5, 3323, https://doi.org/10.1038/ncomms4323,
2014.
Kodera, K.: Solar cycle modulation of the North Atlantic Oscillation:
Implication in the spatial structure of the NAO, Geophys. Res.
Lett., 29, 59-51–59-54, https://doi.org/10.1029/2001gl014557, 2002.
Kodera, K. and Kuroda, Y.: Dynamical response to the solar cycle, J.
Geophys. Res.-Atmos., 107, 4749, https://doi.org/10.1029/2002jd002224, 2002.
Lan, J., Xu, H., Sheng, E., Yu, K., Wu, H., Zhou, K., Yan, D., Ye, Y., and
Wang, T.: Climate changes reconstructed from a glacial lake in High Central
Asia over the past two millennia, Quaternary Int., 487, 43–53,
https://doi.org/10.1016/j.quaint.2017.10.035, 2018.
Lan, J., Xu, H., Yu, K., Sheng, E., Zhou, K., Wang, T., Ye, Y., Yan, D., Wu,
H., Cheng, P., Abuliezi, W., and Tan,L.: Late Holocene hydroclimatic
variations and possible forcing mechanisms over the eastern Central Asia,
Sci. China, 62, 1288-1301, https://doi.org/10.1007/s11430-018-9240-x, 2019.
Lauterbach, S., Witt, R., Plessen, B., Dulski, P., Prasad, S., Mingram, J.,
Gleixner, G., Hettler-Riedel, S., Stebich, M., Schnetger, B., Schwalb, A.,
and Schwarz, A.: Climatic imprint of the mid-latitude Westerlies in the
Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic
climate variability during the last 6000 years, The Holocene, 24, 970–984,
https://doi.org/10.1177/0959683614534741, 2014.
Lei, Y., Tian, L., Bird, B. W., Hou, J., Ding, L., Oimahmadov, L., and
Gadoev, M.: A 2540-year record of moisture variations derived from
lacustrine sediment (Sasikul Lake) on the Pamir Plateau, The Holocene, 2014, 1–10,
https://doi.org/10.1177/0959683614530443, 2014.
Li, J., Xie, S.-P., Cook, E. R., Huang, G., D'Arrigo, R., Liu, F., Ma, J.,
and Zheng, X.-T.: Interdecadal modulation of El Niño amplitude during
the past millennium, Nat. Clim. Change, 1, 114–118,
https://doi.org/10.1038/NCLIMATE1086, 2011.
Li, J., Xie, S.-P., Cook, E. R., Morales, M. S., Christie, D. A., Johnson,
N. C., Chen, F., D'Arrigo, R., Fowler, A. M., Gou, X., and Fang, K.: El
Niño modulations over the past seven centuries, Nat. Clim. Change,
3, 822–826, https://doi.org/10.1038/nclimate1936, 2013.
Li, Z., Chen, Y., Wang, Y., and Li, W.: Drought promoted the disappearance
of civilizations along the ancient Silk Road, Environ. Earth Sci.,
75, 1116, https://doi.org/10.1007/s12665-016-5925-6, 2016.
Ling, Y., Dai, X., Zheng, M., Sun, Q., Chu, G., Wang, H., Xie, M., and Shan,
Y.: High-resolution geochemical record for the last 1100 yr from Lake Toson,
northeastern Tibetan Plateau, and its climatic implications, Quaternary
Int., 487, 61–70, https://doi.org/10.1016/j.quaint.2017.03.067, 2018.
Liu, X., Rao, Z., Shen, C. C., Liu, J., Chen, J., Chen, S., Wang, X., and
Chen, F.: Holocene Solar Activity Imprint on Centennial- to
Multidecadal-Scale Hydroclimatic Oscillations in Arid Central Asia, J. Geophys. Res.-Atmos., 124, 2562–2573, https://doi.org/10.1029/2018jd029699,
2019.
Lods, G., Roubinet, D., Matter, J. M., Leprovost, R., and Gouze, P.:
Groundwater flow characterization of an ophiolitic hard-rock aquifer from
cross-borehole multi-level hydraulic experiments, J. Hydrol., 589, 125152,
https://doi.org/10.1016/j.jhydrol.2020.125152, 2020.
Ma, C., Wang, F., Cao, Q., Xia, X., Li, S., and Li, X.: Climate and
environment reconstruction during the Medieval Warm Period in Lop Nur of
Xinjiang, China, Sci. Bull., 53, 3016–3027, https://doi.org/10.1007/s11434-008-0366-6,
2008.
Ma, J. and Edmunds, W. M.: Groundwater and lake evolution in the Badain
Jaran Desert ecosystem, Inner Mongolia, Hydrogeol. J., 14, 1231–1243,
https://doi.org/10.1007/s10040-006-0045-0, 2006.
Ma, Z., Xia, L., Xu, X., Xia, Z., Li, X., and Wang, L.: Geochemical
characteristics of basalts: evidence for the tectonic setting and geological
significance of Kulehu ophiolite, South Tianshan Mountains,
Acta Petrol. Mineral., 25, 387–400, https://doi.org/10.1016/S1872-2040(06)60043-1, 2006 (in
Chinese with English Abstruct).
Mahaney, W. C., Dirszowsky, R. W., Milner, M. W., Menzies, J., Stewart, A.,
Kalm, V., and Bezada, M.: Quartz microtextures and microstructures owing to
deformation of glaciolacustrine sediments in the northern Venezuelan Andes,
J. Quaternary Sci., 19, 23–33, https://doi.org/10.1002/jqs.818, 2004.
Mann, M. E., Bradley, R. S., and Hughes, M. K.: Long-term variability in the
El Niño/Southern Oscillation and associated teleconnections, in: ENSO:
Multiscale Variability and Global and Regional Impacts, edited by: Diaz, H.
F. and Markgraf, V., Cambridge University Press, Cambridge, 357–412, 2000.
Mathis, M., Sorrel, P., Klotz, S., Huang, X., and Oberhänsli, H.:
Regional vegetation patterns at lake Son Kul reveal Holocene climatic
variability in central Tien Shan (Kyrgyzstan, Central Asia), Quaternary
Sci. Rev., 89, 169–185, https://doi.org/10.1016/j.quascirev.2014.01.023, 2014.
McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO as an integrating
concept in Earth science, Science, 314, 1740–1745, 2006.
Meyers, P. A.: Preservation of elemental and isotopic source identification
of sedimentary organic matter, Chem. Geol., 114, 289–302,
https://doi.org/10.1016/0009-2541(94)90059-0, 1994.
Meyers, P. A.: Applications of organic geochemistry to paleolimnological
reconstructions: a summary of examples from the Laurentian Great Lakes,
Organ. Geochem., 34, 261–289, https://doi.org/10.1016/S0146-6380(02)00168-7, 2003.
Moffa-Sánchez, P., Born, A., Hall, I. R., Thornalley, D. J. R., and
Barker, S.: Solar forcing of North Atlantic surface temperature and salinity
over the past millennium, Nat. Geosci., 7, 275–278, https://doi.org/10.1038/NGEO2094,
2014.
Moral Cardona, J. P., Gutiérrez Mas, J. M., Sánchez Bellón, A.,
Domínguez-Bella, S., and Martínez López, J.: Surface textures
of heavy-mineral grains: a new contribution to provenance studies,
Sediment. Geol., 174, 223–235, https://doi.org/10.1016/j.sedgeo.2004.12.006, 2005.
Narisma, G. T., Foley, J. A., Licker, R., and Ramankutty, N.: Abrupt changes
in rainfall during the twentieth century., Geophys. Res. Lett., 34,
306–316, https://doi.org/10.1029/2006GL028628, 2007.
Ogurtsov, M., Lindholm, M., Jalkanen, R., and Veretenenko, S.: Evidence for
the Gleissberg solar cycle at the high-latitudes of the Northern Hemisphere,
Adv. Space Res., 55, 1285–1290, https://doi.org/10.1016/j.asr.2014.11.031, 2015.
Ogurtsov, M. G., Nagovitsyn, Y. A., Kocharov, G. E., and Jungner, H.:
Long-Period Cycles of the Sun's Activity Recorded in Direct Solar Data and
Proxies, Solar Phys., 211, 371–394, https://doi.org/10.1023/A:1022411209257, 2002a.
Ogurtsov, M. G., Kocharov, G. E., Lindholm, M., Meriläinen, J., Eronen,
M., and Nagovitsyn, Y. A.: Evidence of Solar Variation in Tree-Ring-Based
Climate Reconstructions, Solar Phys., 205, 403–417,
https://doi.org/10.1023/A:1014277121166, 2002b.
Ortega, P., Lehner, F., Swingedouw, D., Masson-Delmotte, V., Raible, C. C.,
Casado, M., and Yiou, P.: A model-tested North Atlantic Oscillation
reconstruction for the past millennium, Nature, 523, 71–74,
https://doi.org/10.1038/nature14518, 2015.
Pennington, W., Tutin, T. G., Cambary, R. S., and Fisher, E. M.:
Observations on lake sediments using fallout 137Cs as a tracer, Nature,
242, 324–326, https://doi.org/10.1038/242324a0, 1973.
Rousseau, M., Demory, F., Miramont, C., Brisset, E., Guiter, F., Sabatier,
P., and Sorrel, P.: Palaeoenvironmental change and glacier fluctuations in
the high Tian Shan Mountains during the last millennium based on sediments
from Lake Ala Kol, Kyrgyzstan, Palaeogeography, Palaeoclimatology,
Palaeoecology, 558, 109987, https://doi.org/10.1016/j.palaeo.2020.109987, 2020.
Rustic, G. T., Koutavas, A., Marchitto, T. M., and Linsley, B. K.: Dynamical
excitation of the tropical Pacific Ocean and ENSO variability by Little Ice
Age cooling, Science, 350, 1537–1541, https://doi.org/10.1126/science.aac9937, 2015.
Schwarz, A., Turner, F., Lauterbach, S., Plessen, B., Krahn, K. J.,
Glodniok, S., Mischke, S., Stebich, M., Witt, R., Mingram, J., and Schwalb,
A.: Mid- to late Holocene climate-driven regime shifts inferred from diatom,
ostracod and stable isotope records from Lake Son Kol (Central Tian Shan,
Kyrgyzstan), Quaternary Sci. Rev., 177, 340–356,
https://doi.org/10.1016/j.quascirev.2017.10.009, 2017.
Sha, L., Jiang, H., Seidenkrantz, M.-S., Muscheler, R., Zhang, X., Knudsen,
M. F., Olsen, J., Knudsen, K. L., and Zhang, W.: Solar forcing as an
important trigger for West Greenland sea-ice variability over the last
millennium, Quaternary Sci. Rev., 131, 148–156,
https://doi.org/10.1016/j.quascirev.2015.11.002, 2016.
Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D., and Waple, A.: Solar
Forcing of Regional Climate Change During the Maunder Minimum, Science, 294,
2149–2152, https://doi.org/10.1126/science.1064363, 2001.
Song, M., Zhou, A., Zhang, X., Zhao, C., He, Y., Yang, W., Liu, W., Li, S.,
and Liu, Z.: Solar imprints on Asian inland moisture fluctuations over the
last millennium, The Holocene, 5, 1935–1943, https://doi.org/10.1177/0959683615596839, 2015.
Sorrel, P., Jacq, K., Van Exem, A., Escarguel, G., Dietre, B., Debret, M.,
McGowan, S., Ducept, J., Gauthier, E., and Oberhänsli, H.: Evidence for
centennial-scale Mid-Holocene episodes of hypolimnetic anoxia in a
high-altitude lake system from central Tian Shan (Kyrgyzstan), Quaternary
Sci. Rev., 252, 106748, https://doi.org/10.1016/j.quascirev.2020.106748, 2021.
Swingedouw, D., Terray, L., Cassou, C., Voldoire, A.,
Salas-Mélia, D., and Servonnat, J.: Natural forcing of
climate during the last millennium: fingerprint of solar variability,
Clim. Dynam., 36, 1349–1364, https://doi.org/10.1007/s00382-010-0803-5, 2011.
Syed, F. S., Giorgi, F., Pal, J. S., and King, M. P.: Effect of remote
forcings on the winter precipitation of central southwest Asia part 1:
observations, Theor. Appl. Climatol., 86, 147–160,
https://doi.org/10.1007/s00704-005-0217-1, 2006.
Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., and Frank,
D. C.: Persistent Positive North Atlantic Oscillation Mode Dominated the
Medieval Climate Anomaly, Science, 324, 78–80, https://doi.org/10.1126/science.1166349,
2009.
Wang, J., Yang, B., Ljungqvist, F. C., Luterbacher, J., Osborn, Timothy J.,
Briffa, K. R., and Zorita, E.: Internal and external forcing of multidecadal
Atlantic climate variability over the past 1,200 years, Nat. Geosci.,
10, 512–517, https://doi.org/10.1038/NGEO2962, 2017.
Wolff, C., Plessen, B., Dudashvilli, A. S., Breitenbach, S. F. M., Cheng,
H., Edwards, L. R., and Strecker, M. R.: Precipitation evolution of Central
Asia during the last 5000 years, The Holocene, 27, 142–154,
https://doi.org/10.1177/0959683616652711, 2016.
Wu, D., Zhou, A., Zhang, J., Chen, J., Li, G., Wang, Q., Chen, L., Madsen,
D., Abbott, M., Cheng, B., and Chen, F.: Temperature-induced dry climate in
basins in the northeastern Tibetan Plateau during the early to middle
Holocene, Quaternary Sci. Rev., 237, 106311, https://doi.org/10.1016/j.quascirev.2020.106311,
2020.
Wu, Z. and Huang, N. E.: Ensemble Empirical Mode Decomposition: A
Noise-Assisted Data Analysis Method, Adv. Adapt. Data Anal., 1,
1–41, 2009.
Xiao, W., Windley, B. F., Allen, M. B., and Han, C.: Paleozoic multiple
accretionary and collisional tectonics of the Chinese Tianshan orogenic
collage, Gondwana Res., 23, 1316–1341, https://doi.org/10.1016/j.gr.2012.01.012, 2013.
Yan, D., Xu, H., Lan, J., Zhou, K., Ye, Y., Zhang, J., An, Z., and Yeager,
K. M.: Solar activity and the westerlies dominate decadal hydroclimatic
changes over arid Central Asia, Global Planet. Change, 173, 53–60,
https://doi.org/10.1016/j.gloplacha.2018.12.006, 2019.
Yang, B., Wang, J., Bräuning, A., Dong, Z., and Esper, J.: Late Holocene
climatic and environmental changes in arid central Asia, Quaternary
Int., 194, 68–78, https://doi.org/10.1016/j.quaint.2007.11.020, 2009.
Yeh, S.-W. and Kirtman, B. P.: ENSO amplitude changes due to climate change
projections in different coupled models, J. Climate, 20, 203–217,
https://doi.org/10.1175/JCLI4001.1, 2007.
Yin, Z.-Y., Zhu, H., Huang, L., and Shao, X.: Reconstruction of biological
drought conditions during the past 2847 years in an alpine environment of
the northeastern Tibetan Plateau, China, and possible linkages to solar
forcing, Global Planet. Change, 143, 214–227,
https://doi.org/10.1016/j.gloplacha.2016.04.010, 2016.
Yukimoto, S., Kodera, K., and Thiéblemont, R.: Delayed North Atlantic
Response to Solar Forcing of the Stratospheric Polar Vortex, Sola, 13,
53–58, https://doi.org/10.2151/sola.2017-010, 2017.
Zhang, B., Liu, X., and Li, J.: The aeolian component inferred from lake
sediments in China, Aeolian Res., 50, 100700, https://doi.org/10.1016/j.aeolia.2021.100700,
2021a.
Zhang, M., Liu, X., Yu, Z., and Wang, Y.: Paleolake evolution in response to
climate change since middle MIS 3 inferred from Jilantai Salt Lake in the
marginal regions of the ASM domain, Quaternary Int., 607, 48–57,
https://doi.org/10.1016/j.quaint.2021.06.017, 2021b.
Zhang, Q.-B., Cheng, G., Yao, T., Kang, X., and Huang, J.: A 2,326-year
tree-ring record of climate variability on the northeastern Qinghai-Tibetan
Plateau, Geophys. Res. Lett., 30, 14, https://doi.org/10.1029/2003gl017425, 2003.
Zhang, Q., Liu, X., and Li, H.: Impact of hydrological conditions on the
radiocarbon reservoir effect in lake sediment 14C dating: the case of Kusai
Lake on the northern Qinghai-Tibet Plateau, Quaternary Geochronol., 62, 101149,
https://doi.org/10.1016/j.quageo.2020.101149, 2021c.
Zhang, Y., Kong, Z., Yan, S., Yang, Z., and Ni, J.: “Medieval Warm Period”
on the northern slope of central Tianshan Mountains, Xinjiang, NW China,
Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL037375, 2009.
Zhao, C., Yu, Z., and Ito, E.: Possible orographic and solar controls of
Late Holocene centennialscale moisture oscillations in the northeastern
Tibetan Plateau, Geophys. Res. Lett., 36, L21705,
https://doi.org/10.1029/2009GL040951, 2009.
Zhou, J., Wang, X., and Niu, R.: Climate characteristics of sandstorm in
China in recent 47 years, J. Appl. Meteorol. Sci., 13,
195–200, 2002 (in Chinese with English Abstruct).
Short summary
We present a continuous humidity history in arid Central Asia over the past millennium based on the ~1.8-year high-resolution multiproxy record from Lake Dalongchi. Our findings emphasize that the Gleissberg solar cycle and quasi-regular period of ENSO amplitude play critical roles in controlling the effective humidity at century and multidecadal timescales, respectively. Our analysis provides new insights for hydroclimate predictions and climate simulations in arid Central Asia in the future.
We present a continuous humidity history in arid Central Asia over the past millennium based on...