Articles | Volume 18, issue 4
https://doi.org/10.5194/cp-18-821-2022
https://doi.org/10.5194/cp-18-821-2022
Research article
 | 
19 Apr 2022
Research article |  | 19 Apr 2022

crestr: an R package to perform probabilistic climate reconstructions from palaeoecological datasets

Manuel Chevalier

Related authors

More is not always better: downscaling climate model outputs from 30 to 5-minute resolution has minimal impact on coherence with Late Quaternary proxies
Lucy Timbrell, James Blinkhorn, Margherita Colucci, Michela Leonardi, Manuel Chevalier, Matt Grove, Eleanor Scerri, and Andrea Manica
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-53,https://doi.org/10.5194/cp-2024-53, 2024
Preprint under review for CP
Short summary
Global biome changes over the last 21,000 years inferred from model-data comparisons
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, and Ulrike Herzschuh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1862,https://doi.org/10.5194/egusphere-2024-1862, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
EUPollMap: the European atlas of contemporary pollen distribution maps derived from an integrated Kriging interpolation approach
Fabio Oriani, Gregoire Mariethoz, and Manuel Chevalier
Earth Syst. Sci. Data, 16, 731–742, https://doi.org/10.5194/essd-16-731-2024,https://doi.org/10.5194/essd-16-731-2024, 2024
Short summary
Regional pollen-based Holocene temperature and precipitation patterns depart from the Northern Hemisphere mean trends
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023,https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
LegacyClimate 1.0: a dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites covering the last 30 kyr and beyond
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023,https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary

Related subject area

Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Pleistocene
Simultaneous seasonal dry/wet signals in eastern and central Asia since the Last Glacial Maximum
Simin Peng, Yu Li, Zhansen Zhang, Mingjun Gao, Xiaowen Chen, Junjie Duan, and Yaxin Xue
Clim. Past, 20, 2415–2429, https://doi.org/10.5194/cp-20-2415-2024,https://doi.org/10.5194/cp-20-2415-2024, 2024
Short summary
Seasonal aridity in the Indo-Pacific Warm Pool during the Late Glacial driven by El Niño-like conditions
Petter L. Hällberg, Frederik Schenk, Kweku A. Yamoah, Xueyuen Kuang, and Rienk H. Smittenberg
Clim. Past, 18, 1655–1674, https://doi.org/10.5194/cp-18-1655-2022,https://doi.org/10.5194/cp-18-1655-2022, 2022
Short summary
A new perspective on permafrost boundaries in France during the Last Glacial Maximum
Kim H. Stadelmaier, Patrick Ludwig, Pascal Bertran, Pierre Antoine, Xiaoxu Shi, Gerrit Lohmann, and Joaquim G. Pinto
Clim. Past, 17, 2559–2576, https://doi.org/10.5194/cp-17-2559-2021,https://doi.org/10.5194/cp-17-2559-2021, 2021
Short summary
The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021,https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Pollen-based temperature and precipitation changes in the Ohrid Basin (western Balkans) between 160 and 70 ka
Gaia Sinopoli, Odile Peyron, Alessia Masi, Jens Holtvoeth, Alexander Francke, Bernd Wagner, and Laura Sadori
Clim. Past, 15, 53–71, https://doi.org/10.5194/cp-15-53-2019,https://doi.org/10.5194/cp-15-53-2019, 2019
Short summary

Cited articles

Amante, C. and Eakins, B. W.: Etopo1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA [data set], https://doi.org/10.7289/V5C8276M, 2009. a
Birks, H. J. B., Heiri, O., Seppä, H., and Bjune, A. E.: Strengths and weaknesses of quantitative climate reconstructions based on Late-Quaternary biological proxies, The Open Ecology Journal, 3, 68–110, https://doi.org/10.2174/1874213001003020068, 2010. a
Bivand, R. and Rundel, C.: rgeos: Interface to Geometry Engine – Open Source (“GEOS”), r package version 0.5-5, https://CRAN.R-project.org/package=rgeos (last access: February 2022), 2020. a
Bivand, R., Keitt, T., and Rowlingson, B.: rgdal: Bindings for the “Geospatial” Data Abstraction Library, r package version 1.5-23, https://CRAN.R-project.org/package=rgdal (last access: February 2022), 2021. a
Bivand, R. S., Pebesma, E., and Gomez-Rubio, V.: Applied spatial data analysis with R, 2nd edn., Springer, NY, ISBN: 978-1-4614-7617-7, https://asdar-book.org/ (last access: February 2022), 2013. a
Download
Short summary
This paper introduces a new R package to perform quantitative climate reconstructions from palaeoecological datasets. The package includes calibration data for several commonly used terrestrial (e.g. pollen) and marine (e.g. foraminifers) climate proxies to enable its use in various environments globally. In addition, the built-in graphical diagnostic tools simplify the evaluation and interpretations of the results. No coding skills are required to use crestr.