Articles | Volume 18, issue 4
https://doi.org/10.5194/cp-18-821-2022
https://doi.org/10.5194/cp-18-821-2022
Research article
 | 
19 Apr 2022
Research article |  | 19 Apr 2022

crestr: an R package to perform probabilistic climate reconstructions from palaeoecological datasets

Manuel Chevalier

Data sets

Mean Annual Temperature changes reconstructions from marine core MD96-2048 M. Chevalier, B. M. Chase, L. J. Quick, L. M. Dupont, and T. C. Johnson https://doi.org/10.1594/PANGAEA.915923

Daily high-resolution-blended analyses for sea surface temperature (https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html) R. W. Reynolds, T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax https://doi.org/10.1175/2007JCLI1824.1

Model code and software

crestr R package Manuel Chevalier https://CRAN.R-project.org/package=crestr

crestr: v1.01 Manuel Chevalier https://doi.org/10.5281/zenodo.6458405

Download
Short summary
This paper introduces a new R package to perform quantitative climate reconstructions from palaeoecological datasets. The package includes calibration data for several commonly used terrestrial (e.g. pollen) and marine (e.g. foraminifers) climate proxies to enable its use in various environments globally. In addition, the built-in graphical diagnostic tools simplify the evaluation and interpretations of the results. No coding skills are required to use crestr.