Articles | Volume 18, issue 2
https://doi.org/10.5194/cp-18-341-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-341-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse –a model–data comparison
Agathe Toumoulin
CORRESPONDING AUTHOR
Aix Marseille Université, CNRS, IRD, INRA, Collège de France, CEREGE, 13545 Aix-en-Provence, France
Delphine Tardif
Aix Marseille Université, CNRS, IRD, INRA, Collège de France, CEREGE, 13545 Aix-en-Provence, France
Institut de physique du globe de Paris, Université de Paris, CNRS, 75005 Paris, France
Yannick Donnadieu
Aix Marseille Université, CNRS, IRD, INRA, Collège de France, CEREGE, 13545 Aix-en-Provence, France
Alexis Licht
Aix Marseille Université, CNRS, IRD, INRA, Collège de France, CEREGE, 13545 Aix-en-Provence, France
Jean-Baptiste Ladant
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Lutz Kunzmann
Senckenberg Natural History Collections Dresden, 01109 Dresden, Germany
Guillaume Dupont-Nivet
Géosciences Rennes, UMR CNRS 6118, Université de Rennes, 35042 Rennes, France
Institute of Geosciences, Potsdam University, 14469 Potsdam, Germany
Related authors
No articles found.
Pierre Maffre, Yves Goddéris, Guillaume Le Hir, Élise Nardin, Anta-Clarisse Sarr, and Yannick Donnadieu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-220, https://doi.org/10.5194/gmd-2024-220, 2024
Preprint under review for GMD
Short summary
Short summary
A new version (v7) of the numerical model GEOCLIM is presented here. GEOCLIM models the evolution of ocean and atmosphere chemical composition on multi-million years timescale, including carbon and oxygen cycles, CO2 and climate. GEOCLIM is associated to a climate model, and a new procedure to link the climate model to GEOCLIM is presented here. GEOCLIM is applied here to investigate the evolution of ocean oxygenation following Earth's orbital parameter variations, around 94 million years ago.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Megan A. Mueller, Alexis Licht, Andreas Möller, Cailey B. Condit, Julie C. Fosdick, Faruk Ocakoğlu, and Clay Campbell
Geochronology, 6, 265–290, https://doi.org/10.5194/gchron-6-265-2024, https://doi.org/10.5194/gchron-6-265-2024, 2024
Short summary
Short summary
Sedimentary provenance refers to the study of the origin of sedimentary rocks, tracing where sediment particles originated. Common sedimentary provenance techniques struggle to track mafic igneous and metamorphic rock sources and rutile forms in these rock types. We use rutile form ancient sedimentary rocks in Türkiye to present new recommendations and workflows for integrating rutile U–Pb ages and chemical composition into an accurate sedimentary provenance reconstruction.
Slah Boulila, Guillaume Dupont-Nivet, Bruno Galbrun, Hugues Bauer, and Jean-Jacques Châteauneuf
Clim. Past, 17, 2343–2360, https://doi.org/10.5194/cp-17-2343-2021, https://doi.org/10.5194/cp-17-2343-2021, 2021
Short summary
Short summary
The Eocene–Oligocene climate transition (EOT) is one of the most drastic climate changes of the Cenozoic era and the final stage of the shift from ice-free to icehouse Earth. Here we present high-resolution records (geophysical, geochemical and sedimentological proxy data) of the EOT from lake deposits to detect the atmospheric expression of the EOT via the hydrological cycle. Such records provide strong constraints on climate modeling and on our comprehension of the forcing mechanisms of EOT.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Yurui Zhang, Thierry Huck, Camille Lique, Yannick Donnadieu, Jean-Baptiste Ladant, Marina Rabineau, and Daniel Aslanian
Clim. Past, 16, 1263–1283, https://doi.org/10.5194/cp-16-1263-2020, https://doi.org/10.5194/cp-16-1263-2020, 2020
Short summary
Short summary
The early Eocene (~ 55 Ma) was an extreme warm period accompanied by a high atmospheric CO2 level. We explore the relationships between ocean dynamics and this warm climate with the aid of the IPSL climate model. Our results show that the Eocene was characterized by a strong overturning circulation associated with deepwater formation in the Southern Ocean, which is analogous to the present-day North Atlantic. Consequently, poleward ocean heat transport was strongly enhanced.
Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Ethé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Szopa, and Delphine Tardif
Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, https://doi.org/10.5194/gmd-13-3011-2020, 2020
Short summary
Short summary
Our paper describes IPSL-CM5A2, an Earth system model that can be integrated for long (several thousands of years) climate simulations. We describe the technical aspects, assess the model computing performance and evaluate the strengths and weaknesses of the model, by comparing pre-industrial and historical runs to the previous-generation model simulations and to observations. We also present a Cretaceous simulation as a case study to show how the model simulates deep-time paleoclimates.
Jean-Baptiste Ladant, Christopher J. Poulsen, Frédéric Fluteau, Clay R. Tabor, Kenneth G. MacLeod, Ellen E. Martin, Shannon J. Haynes, and Masoud A. Rostami
Clim. Past, 16, 973–1006, https://doi.org/10.5194/cp-16-973-2020, https://doi.org/10.5194/cp-16-973-2020, 2020
Short summary
Short summary
Understanding of the role of ocean circulation on climate is contingent on the ability to reconstruct its modes and evolution. Here, we show that earth system model simulations of the Late Cretaceous predict major changes in ocean circulation as a result of paleogeographic and gateway evolution. Comparisons of model results with available data compilations demonstrate reasonable agreement but highlight that various plausible theories of ocean circulation change coexist during this period.
Marie Laugié, Yannick Donnadieu, Jean-Baptiste Ladant, J. A. Mattias Green, Laurent Bopp, and François Raisson
Clim. Past, 16, 953–971, https://doi.org/10.5194/cp-16-953-2020, https://doi.org/10.5194/cp-16-953-2020, 2020
Short summary
Short summary
To quantify the impact of major climate forcings on the Cretaceous climate, we use Earth system modelling to progressively reconstruct the Cretaceous state by changing boundary conditions one by one. Between the preindustrial and the Cretaceous simulations, the model simulates a global warming of more than 11°C. The study confirms the primary control exerted by atmospheric CO2 on atmospheric temperatures. Palaeogeographic changes represent the second major contributor to the warming.
Delphine Tardif, Frédéric Fluteau, Yannick Donnadieu, Guillaume Le Hir, Jean-Baptiste Ladant, Pierre Sepulchre, Alexis Licht, Fernando Poblete, and Guillaume Dupont-Nivet
Clim. Past, 16, 847–865, https://doi.org/10.5194/cp-16-847-2020, https://doi.org/10.5194/cp-16-847-2020, 2020
Short summary
Short summary
The Asian monsoons onset has been suggested to be as early as 40 Ma, in a palaeogeographic and climatic context very different from modern conditions. We test the likeliness of an early monsoon onset through climatic modelling. Our results reveal a very arid central Asia and several regions in India, Myanmar and eastern China experiencing highly seasonal precipitations. This suggests that monsoon circulation is not paramount in triggering the highly seasonal patterns recorded in the fossils.
Alan T. Kennedy-Asser, Daniel J. Lunt, Paul J. Valdes, Jean-Baptiste Ladant, Joost Frieling, and Vittoria Lauretano
Clim. Past, 16, 555–573, https://doi.org/10.5194/cp-16-555-2020, https://doi.org/10.5194/cp-16-555-2020, 2020
Short summary
Short summary
Global cooling and a major expansion of ice over Antarctica occurred ~ 34 million years ago at the Eocene–Oligocene transition (EOT). A large secondary proxy dataset for high-latitude Southern Hemisphere temperature before, after and across the EOT is compiled and compared to simulations from two coupled climate models. Although there are inconsistencies between the models and data, the comparison shows amongst other things that changes in the Drake Passage were unlikely the cause of the EOT.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Svetlana Botsyun, Pierre Sepulchre, Camille Risi, and Yannick Donnadieu
Clim. Past, 12, 1401–1420, https://doi.org/10.5194/cp-12-1401-2016, https://doi.org/10.5194/cp-12-1401-2016, 2016
Short summary
Short summary
We use an isotope-equipped GCM and develop original theoretical expression for the precipitation composition to assess δ18O of paleo-precipitation changes with the Tibetan Plateau uplift. We show that δ18O of precipitation is very sensitive to climate changes related to the growth of mountains, notably changes in relative humidity and precipitation amount. Topography is shown to be not an exclusive controlling factor δ18O in precipitation that have crucial consequences for paleoelevation studies
G. Hoareau, B. Bomou, D. J. J. van Hinsbergen, N. Carry, D. Marquer, Y. Donnadieu, G. Le Hir, B. Vrielynck, and A.-V. Walter-Simonnet
Clim. Past, 11, 1751–1767, https://doi.org/10.5194/cp-11-1751-2015, https://doi.org/10.5194/cp-11-1751-2015, 2015
Short summary
Short summary
The impact of Neo-Tethys closure on early Cenozoic warming has been tested. First, the volume of subducted sediments and the amount of CO2 emitted along the northern Tethys margin has been calculated. Second, corresponding pCO2 have been tested using the GEOCLIM model. Despite high CO2 production, maximum pCO2 values (750ppm) do not reach values inferred from proxies. Other cited sources of excess CO2 such as the NAIP are also below fluxes required by GEOCLIM to fit with proxy data.
A. Pohl, Y. Donnadieu, G. Le Hir, J.-F. Buoncristiani, and E. Vennin
Clim. Past, 10, 2053–2066, https://doi.org/10.5194/cp-10-2053-2014, https://doi.org/10.5194/cp-10-2053-2014, 2014
J.-B. Ladant, Y. Donnadieu, and C. Dumas
Clim. Past, 10, 1957–1966, https://doi.org/10.5194/cp-10-1957-2014, https://doi.org/10.5194/cp-10-1957-2014, 2014
G. Le Hir, Y. Teitler, F. Fluteau, Y. Donnadieu, and P. Philippot
Clim. Past, 10, 697–713, https://doi.org/10.5194/cp-10-697-2014, https://doi.org/10.5194/cp-10-697-2014, 2014
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Cenozoic
CO2-driven and orbitally driven oxygen isotope variability in the Early Eocene
The warm winter paradox in the Pliocene northern high latitudes
Impacts of Tibetan Plateau uplift on atmospheric dynamics and associated precipitation δ18O
Fallacies and fantasies: the theoretical underpinnings of the Coexistence Approach for palaeoclimate reconstruction
A model–model and data–model comparison for the early Eocene hydrological cycle
A massive input of coarse-grained siliciclastics in the Pyrenean Basin during the PETM: the missing ingredient in a coeval abrupt change in hydrological regime
The relative roles of CO2 and palaeogeography in determining late Miocene climate: results from a terrestrial model–data comparison
Regional climate model experiments to investigate the Asian monsoon in the Late Miocene
The early Eocene equable climate problem revisited
High resolution climate and vegetation simulations of the Late Pliocene, a model-data comparison over western Europe and the Mediterranean region
Julia Campbell, Christopher J. Poulsen, Jiang Zhu, Jessica E. Tierney, and Jeremy Keeler
Clim. Past, 20, 495–522, https://doi.org/10.5194/cp-20-495-2024, https://doi.org/10.5194/cp-20-495-2024, 2024
Short summary
Short summary
In this study, we use climate modeling to investigate the relative impact of CO2 and orbit on Early Eocene (~ 55 million years ago) climate and compare our modeled results to fossil records to determine the context for the Paleocene–Eocene Thermal Maximum, the most extreme hyperthermal in the Cenozoic. Our conclusions consider limitations and illustrate the importance of climate models when interpreting paleoclimate records in times of extreme warmth.
Julia C. Tindall, Alan M. Haywood, Ulrich Salzmann, Aisling M. Dolan, and Tamara Fletcher
Clim. Past, 18, 1385–1405, https://doi.org/10.5194/cp-18-1385-2022, https://doi.org/10.5194/cp-18-1385-2022, 2022
Short summary
Short summary
The mid-Pliocene (MP; ∼3.0 Ma) had CO2 levels similar to today and average temperatures ∼3°C warmer. At terrestrial high latitudes, MP temperatures from climate models are much lower than those reconstructed from data. This mismatch occurs in the winter but not the summer. The winter model–data mismatch likely has multiple causes. One novel cause is that the MP climate may be outside the modern sample, and errors could occur when using information from the modern era to reconstruct climate.
Svetlana Botsyun, Pierre Sepulchre, Camille Risi, and Yannick Donnadieu
Clim. Past, 12, 1401–1420, https://doi.org/10.5194/cp-12-1401-2016, https://doi.org/10.5194/cp-12-1401-2016, 2016
Short summary
Short summary
We use an isotope-equipped GCM and develop original theoretical expression for the precipitation composition to assess δ18O of paleo-precipitation changes with the Tibetan Plateau uplift. We show that δ18O of precipitation is very sensitive to climate changes related to the growth of mountains, notably changes in relative humidity and precipitation amount. Topography is shown to be not an exclusive controlling factor δ18O in precipitation that have crucial consequences for paleoelevation studies
Guido W. Grimm and Alastair J. Potts
Clim. Past, 12, 611–622, https://doi.org/10.5194/cp-12-611-2016, https://doi.org/10.5194/cp-12-611-2016, 2016
Short summary
Short summary
We critically assess, for the first time since its inception in 1997, the theory behind the Coexistence Approach. This method has reconstructed purportedly accurate, often highly precise, palaeoclimates for a wide range of Cenozoic Eurasian localities. We argue that its basic assumptions clash with modern biological and statistical theory and that its modus operandi is fundamentally flawed. We provide guidelines on how to establish robust taxon-based palaeoclimate reconstruction methods.
Matthew J. Carmichael, Daniel J. Lunt, Matthew Huber, Malte Heinemann, Jeffrey Kiehl, Allegra LeGrande, Claire A. Loptson, Chris D. Roberts, Navjit Sagoo, Christine Shields, Paul J. Valdes, Arne Winguth, Cornelia Winguth, and Richard D. Pancost
Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, https://doi.org/10.5194/cp-12-455-2016, 2016
Short summary
Short summary
In this paper, we assess how well model-simulated precipitation rates compare to those indicated by geological data for the early Eocene, a warm interval 56–49 million years ago. Our results show that a number of models struggle to produce sufficient precipitation at high latitudes, which likely relates to cool simulated temperatures in these regions. However, calculating precipitation rates from plant fossils is highly uncertain, and further data are now required.
V. Pujalte, J. I. Baceta, and B. Schmitz
Clim. Past, 11, 1653–1672, https://doi.org/10.5194/cp-11-1653-2015, https://doi.org/10.5194/cp-11-1653-2015, 2015
Short summary
Short summary
An abrupt increase in seasonal precipitation during the PETM in the Pyrenean Gulf has been proposed, based on the occurrence of extensive fine-grained siliciclastic deposits. This paper provides evidence that coarse-grained siliciclastics were also delivered, indicative of episodes of intense rainy intervals in an otherwise semiarid PETM climate. Further, evidence is presented that PETM kaolinites were most likely resedimented from Cretaceous lateritic profiles developed in the basement.
C. D. Bradshaw, D. J. Lunt, R. Flecker, U. Salzmann, M. J. Pound, A. M. Haywood, and J. T. Eronen
Clim. Past, 8, 1257–1285, https://doi.org/10.5194/cp-8-1257-2012, https://doi.org/10.5194/cp-8-1257-2012, 2012
H. Tang, A. Micheels, J. Eronen, and M. Fortelius
Clim. Past, 7, 847–868, https://doi.org/10.5194/cp-7-847-2011, https://doi.org/10.5194/cp-7-847-2011, 2011
M. Huber and R. Caballero
Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, https://doi.org/10.5194/cp-7-603-2011, 2011
A. Jost, S. Fauquette, M. Kageyama, G. Krinner, G. Ramstein, J.-P. Suc, and S. Violette
Clim. Past, 5, 585–606, https://doi.org/10.5194/cp-5-585-2009, https://doi.org/10.5194/cp-5-585-2009, 2009
Cited articles
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and
the hydrologic cycle, Nature, 419, 228–232,
https://doi.org/10.1038/nature01092, 2002.
Antoine, P.-O., Yans, J., Castillo, A. A., Stutz, N., Abello, M. A., Adnet,
S., Custódio, M. A., Benites-Palomino, A., Billet, G., Boivin, M.,
Herrera, F., Jaramillo, C., Mártinez, C., Moreno, F., Navarrete, R. E.,
Negri, F. R., Parra, F., Pujos, F., Rage, J.-C., Ribeiro, A. M., Robinet,
C., Roddaz, M., Tejada-Lara, J. V., Varas-Malca, R., Ventura Santos, R.,
Salas-Gismondi, R., and Marivaux, L.: Biotic community and landscape changes
around the Eocene–Oligocene transition at Shapaja, Peruvian Amazonia:
Regional or global drivers?, Global Planet. Change, 202, 103512,
https://doi.org/10.1016/j.gloplacha.2021.103512, 2021.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., and Dijkstra, H. A.: The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5, Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, 2020.
Barbolini, N., Woutersen, A., Dupont-Nivet, G., Silvestro, D., Tardif, D.,
Coster, P. M. C., Meijer, N., Chang, C., Zhang, H.-X., Licht, A., Rydin, C.,
Koutsodendris, A., Han, F., Rohrmann, A., Liu, X.-J., Zhang, Y., Donnadieu,
Y., Fluteau, F., Ladant, J.-B., Hir, G. L., and Hoorn, C.: Cenozoic
evolution of the steppe-desert biome in Central Asia, Sci. Adv., 6, eabb8227,
https://doi.org/10.1126/sciadv.abb8227, 2020.
Barrier, E., Vrielynck, B., Brouillet, J.-F., and Brunet, M.-F.:
Paleotectonic Reconstruction of the Central Tethyan Realm.
Tectonono-Sedimentary-Palinspastic maps from Late Permian to Pliocene,
CCGM/CGMW, Paris, available at: http://www.ccgm.org (last access: 18 February 2022), 2018.
Bishop, P. and Bamber, R. K.: Silicified wood of Early Miocene Nothofagus,
Acacia and Myrtaceae (aff. Eucalyptus B) from the upper Lachlan valley, New
South Wales, Alcheringa, 9,
221–228, https://doi.org/10.1080/03115518508618969, 1985.
Blondel, C.: The Eocene – Oligocene ungulates from Western Europe and their
environment, Palaeogeogr. Palaeocl., 168,
125–139, https://doi.org/10.1016/S0031-0182(00)00252-2, 2001.
Bougeois, L., Dupont-Nivet, G., de Rafélis, M., Tindall, J. C., Proust,
J.-N., Reichart, G.-J., de Nooijer, L. J., Guo, Z., and Ormukov, C.: Asian
monsoons and aridification response to Paleogene sea retreat and Neogene
westerly shielding indicated by seasonality in Paratethys oysters, Earth
Planet Sci. Lett., 485, 99–110,
https://doi.org/10.1016/j.epsl.2017.12.036, 2018.
Bozukov, V., Utescher, T., and Ivanov, D.: Late Eocene to early Miocene
climate and vegetation of Bulgaria, Rev. Palaeobot. Palyno., 153, 360–374,
https://doi.org/10.1016/j.revpalbo.2008.10.005, 2009.
Budantsev, L. Y.: Late Eocene flora of western Kamchatka, Proceedings of Komarov Botanical Institute, Russian Academy of Sciences, 19, 1–115, 1997.
Caballero, R. and Huber, M.: State-dependent climate sensitivity in past
warm climates and its implications for future climate projections,
P. Natl. Acad. Sci., 110, 14162–14167,
https://doi.org/10.1073/pnas.1303365110, 2013.
Carmichael, M. J., Lunt, D. J., Huber, M., Heinemann, M., Kiehl, J., LeGrande, A., Loptson, C. A., Roberts, C. D., Sagoo, N., Shields, C., Valdes, P. J., Winguth, A., Winguth, C., and Pancost, R. D.: A model–model and data–model comparison for the early Eocene hydrological cycle, Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, 2016.
Carter, A., Riley, T. R., Hillenbrand, C.-D., and Rittner, M.: Widespread
Antarctic glaciation during the Late Eocene, Earth Planet. Sci.
Lett., 458, 49–57,
https://doi.org/10.1016/j.epsl.2016.10.045, 2017.
Colwyn, D. A. and Hren, M. T.: An abrupt decrease in Southern Hemisphere
terrestrial temperature during the Eocene–Oligocene transition, Earth Planet. Sci.
Lett., 512, 227–235,
https://doi.org/10.1016/j.epsl.2019.01.052, 2019.
Coxall, H. K. and Pearson, P. N.: The Eocene–Oligocene Transition, in:
Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer
Models and Biological Proxies, edited by: Williams, M., Haywood, A. M.,
Gregory, F. J., and Schmidt, D. N., The Geological Society of London on
behalf of The Micropalaeontological Society, 351–387,
https://doi.org/10.1144/TMS002.16, 2007.
Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J.:
Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation
in the Pacific Ocean, Nature, 433, 53–57,
https://doi.org/10.1038/nature03135, 2005.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont,
O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp,
L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic,
A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165,
https://doi.org/10.1007/s00382-012-1636-1, 2013.
Dupont-Nivet, G., Krijgsman, W., Langereis, C. G., Abels, H. A., Dai, S.,
and Fang, X.: Tibetan plateau aridification linked to global cooling at the
Eocene–Oligocene transition, 445, Nature, 635–638,
https://doi.org/10.1038/nature05516, 2007.
Eldrett, J. S., Greenwood, D. R., Harding, I. C., and Huber, M.: Increased seasonality through the Ecocene to Oligocene transition in northern high latitudes, Nature, 459, 969, https://doi.org/10.1038/nature08069, 2009.
Fichefet, T. and Maqueda, M. A. M.: Sensitivity of a global sea ice model to
the treatment of ice thermodynamics and dynamics, J. Geophys. Res.-Oceans, 102, 12609–12646,
https://doi.org/10.1029/97JC00480, 1997.
Foster, C. S. P., Sauquet, H., van der Merwe, M., McPherson, H., Rossetto,
M., and Ho, S. Y. W.: Evaluating the Impact of Genomic Data and Priors on
Bayesian Estimates of the Angiosperm Evolutionary Timescale, Syst.
Biol., 66, 338–351, https://doi.org/10.1093/sysbio/syw086,
2017.
Galeotti, S., DeConto, R., Naish, T., Stocchi, P., Florindo, F., Pagani, M.,
Barrett, P., Bohaty, S. M., Lanci, L., Pollard, D., Sandroni, S., Talarico,
F. M., and Zachos, J. C.: Antarctic Ice Sheet variability across the
Eocene-Oligocene boundary climate transition, Science, 352, 76–80,
https://doi.org/10.1126/science.aab0669, 2016.
Goldner, A., Huber, M., and Caballero, R.: Does Antarctic glaciation cool the world?, Clim. Past, 9, 173–189, https://doi.org/10.5194/cp-9-173-2013, 2013.
Goldner, A., Herold, N., and Huber, M.: Antarctic glaciation caused ocean
circulation changes at the Eocene–Oligocene transition, Nature, 511, 574–577,
https://doi.org/10.1038/nature13597, 2014.
Gough, D. O.: Solar interior structure and luminosity variations, Sol. Phys.,
74, 21–34, https://doi.org/10.1007/BF00151270, 1981.
Grein, M., Oehm, C., Konrad, W., Utescher, T., Kunzmann, L., and
Roth-Nebelsick, A.: Atmospheric CO2 from the late Oligocene to early Miocene
based on photosynthesis data and fossil leaf characteristics,
Palaeogeogr. Palaeocl., 374, 41–51,
https://doi.org/10.1016/j.palaeo.2012.12.025, 2013.
Grimes, S. T., Hooker, J. J., Collinson, M. E., and Mattey, D. P.: Summer
temperatures of late Eocene to early Oligocene freshwaters, Geology, 33, 189–192,
https://doi.org/10.1130/G21019.1, 2005.
Grimm, G. W. and Potts, A. J.: Fallacies and fantasies: the theoretical underpinnings of the Coexistence Approach for palaeoclimate reconstruction, Clim. Past, 12, 611–622, https://doi.org/10.5194/cp-12-611-2016, 2016.
Held, I. M. and Soden, B. J.: Robust Responses of the Hydrological Cycle to
Global Warming, J. Climate, 19, 5686–5699,
https://doi.org/10.1175/JCLI3990.1, 2006.
Hooker, J. J., Collinson, M. E., and Sille, N. P.: Eocene–Oligocene
mammalian faunal turnover in the Hampshire Basin, UK: calibration to the
global time scale and the major cooling event, J. Geol. Soc., 161, 161–172,
https://doi.org/10.1144/0016-764903-091, 2004.
Hourdin, F., Grandpeix, J.-Y., Rio, C., Bony, S., Jam, A., Cheruy, F.,
Rochetin, N., Fairhead, L., Idelkadi, A., Musat, I., Dufresne, J.-L.,
Lahellec, A., Lefebvre, M.-P., and Roehrig, R.: LMDZ5B: the atmospheric
component of the IPSL climate model with revisited parameterizations for
clouds and convection, Clim. Dyn., 40, 2193–2222,
https://doi.org/10.1007/s00382-012-1343-y, 2013.
Huang, H., Morley, R., Licht, A., Dupont-Nivet, G., Grímsson, F.,
Zetter, R., Westerweel, J., Win, Z., Wa Aung, D., and Hoorn, C.: Eocene
palms from central Myanmar in a South-East Asian and global perspective:
evidence from the palynological record, Bot. J. Linn. Soc., 194, 177–206,
https://doi.org/10.1093/botlinnean/boaa038, 2020.
Huber, M. and Caballero, R.: The early Eocene equable climate problem revisited, Clim. Past, 7, 603–633, https://doi.org/10.5194/cp-7-603-2011, 2011.
Hutchinson, D. K., de Boer, A. M., Coxall, H. K., Caballero, R., Nilsson, J., and Baatsen, M.: Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1, Clim. Past, 14, 789–810, https://doi.org/10.5194/cp-14-789-2018, 2018.
Hutchinson, D. K., Coxall, H. K., O'Regan, M., Nilsson, J., Caballero, R.,
and de Boer, A. M.: Arctic closure as a trigger for Atlantic overturning at
the Eocene-Oligocene Transition, Nat. Commun., 10, 3797, https://doi.org/10.1038/s41467-019-11828-z, 2019.
Hutchinson, D. K., Coxall, H. K., Lunt, D. J., Steinthorsdottir, M., de Boer, A. M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-Asser, A. T., Kunzmann, L., Ladant, J.-B., Lear, C. H., Moraweck, K., Pearson, P. N., Piga, E., Pound, M. J., Salzmann, U., Scher, H. D., Sijp, W. P., Śliwińska, K. K., Wilson, P. A., and Zhang, Z.: The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons, Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, 2021.
IPSL Climate Modelling Centre: IPSL-CM5A-VLR branche
IPSLCM5A2.1_11192019, IPSL [code], available at:
http://forge.ipsl.jussieu.fr/igcmg/svn/modipsl/branches/publications/IPSLCM5A2.1_11192019, last access: 16 February 2022a.
IPSL Climate Modelling Centre: IPSL climate models documentation, IPSL [code], available at: http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Config/IPSLCM5A2, last access: 16 February 2022b.
Ivany, L. C., Patterson, W. P., and Lohmann, K. C.: Cooler winters as a
possible cause of mass extinctions at the Eocene/Oligocene boundary, Nature,
407, 887–890, https://doi.org/10.1038/35038044, 2000.
Jacobs, B. F., Pan, A. D., and Scotese, C. R.: A Review of the Cenozoic
Vegetation History of Africa, in: Cenozoic Mammals of Africa, University of
California Press,
https://doi.org/10.1525/california/9780520257214.003.0005, 2010.
Jaramillo, C., Rueda, M. J., and Mora, G.: Cenozoic Plant Diversity in the
Neotropics, Science, 311, 1893–1896,
https://doi.org/10.1126/science.1121380, 2006.
Joomun, S. C., Hooker, J. J., and Collinson, M. E.: Changes in dental wear
of Plagiolophus minor (Mammalia: Perissodactyla) across the
Eocene–Oligocene transition, J. Vertebr. Paleontol., 30, 563–576,
https://doi.org/10.1080/02724631003618124, 2010.
Katz, M. E., Miller, K. G., Wright, J. D., Wade, B. S., Browning, J. V.,
Cramer, B. S., and Rosenthal, Y.: Stepwise transition from the Eocene
greenhouse to the Oligocene icehouse, Nat. Geosci., 1, 329–334,
https://doi.org/10.1038/ngeo179, 2008.
Kayseri-Özer, M. S.: Spatial distribution of climatic conditions from
the Middle Eocene to Late Miocene based on palynoflora in Central, Eastern
and Western Anatolia, Geodin. Acta, 26, 122–157,
https://doi.org/10.1080/09853111.2013.877237, 2013.
Kennedy, A. T., Farnsworth, A., Lunt, D. J., Lear, C. H., and Markwick, P.
J.: Atmospheric and oceanic impacts of Antarctic glaciation across the
Eocene–Oligocene transition, Philos. T. R. Soc. A, 373, 20140419, https://doi.org/10.1098/rsta.2014.0419, 2015.
Kennedy-Asser, A. T., Lunt, D. J., Farnsworth, A., and Valdes, P. J.:
Assessing Mechanisms and Uncertainty in Modeled Climatic Change at the
Eocene-Oligocene Transition, Paleoceanogr. Paleoclimatol., 34, 16–34, https://doi.org/10.1029/2018PA003380, 2019.
Kennedy-Asser, A. T., Lunt, D. J., Valdes, P. J., Ladant, J.-B., Frieling, J., and Lauretano, V.: Changes in the high-latitude Southern Hemisphere through the Eocene–Oligocene transition: a model–data comparison, Clim. Past, 16, 555–573, https://doi.org/10.5194/cp-16-555-2020, 2020.
Kocsis, L., Ozsvárt, P., Becker, D., Ziegler, R., Scherler, L., and
Codrea, V.: Orogeny forced terrestrial climate variation during the late
Eocene–early Oligocene in Europe, Geology, 42, 727–730, https://doi.org/10.1130/G35673.1, 2014.
Kohn, M. J., Strömberg, C. A. E., Madden, R. H., Dunn, R. E., Evans, S.,
Palacios, A., and Carlini, A. A.: Quasi-static Eocene–Oligocene climate in
Patagonia promotes slow faunal evolution and mid-Cenozoic global cooling,
Palaeogeogr. Palaeocl., 435, 24–37,
https://doi.org/10.1016/j.palaeo.2015.05.028, 2015.
Kraatz, B. P. and Geisler, J. H.: Eocene–Oligocene transition in Central
Asia and its effects on mammalian evolution, Geology, 38, 111–114,
https://doi.org/10.1130/G30619.1, 2010.
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher,
J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biogeochem. Cy., 19, GMB1015, https://doi.org/10.1029/2003GB002199, 2005.
Kunzmann, L., Kvacek, Z., Teodoridis, V., Müller, C., and Moraweck, K.:
Vegetation dynamics of riparian forest in central Europe during the late
Eocene, Palaeontogr. Abt. B, 295, 69–89,
https://doi.org/10.1127/palb/295/2016/69, 2016.
Kvaček, Z., Teodoridis, V., Mach, K., Přikryl, T., and
Dvořák, Z.: Tracing the Eocene-Oligocene transition: A case study
from North Bohemia, B. Geosci., 89, 21–66,
https://doi.org/10.3140/bull.geosci.1411, 2014.
Ladant, J.-B., Donnadieu, Y., and Dumas, C.: Links between CO2, glaciation and water flow: reconciling the Cenozoic history of the Antarctic Circumpolar Current, Clim. Past, 10, 1957–1966, https://doi.org/10.5194/cp-10-1957-2014, 2014a.
Ladant, J.-B., Donnadieu, Y., Lefebvre, V., and Dumas, C.: The respective
role of atmospheric carbon dioxide and orbital parameters on ice sheet
evolution at the Eocene-Oligocene transition: Ice sheet evolution at the
EOT, Paleoceanography, 29, 810–823,
https://doi.org/10.1002/2013PA002593, 2014b.
Lauretano, V., Kennedy-Asser, A. T., Korasidis, V. A., Wallace, M. W.,
Valdes, P. J., Lunt, D. J., Pancost, R. D., and Naafs, B. D. A.: Eocene to
Oligocene terrestrial Southern Hemisphere cooling caused by declining pCO2, Nat. Geosci., 14, 659–664,
https://doi.org/10.1038/s41561-021-00788-z, 2021.
Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K., and Rosenthal,
Y.: Cooling and ice growth across the Eocene-Oligocene transition, Geology, 36, 251, https://doi.org/10.1130/G24584A.1, 2008.
Li, S., Xing, Y., Valdes, P. J., Huang, Y., Su, T., Farnsworth, A., Lunt, D.
J., Tang, H., Kennedy, A. T., and Zhou, Z.: Oligocene climate signals and
forcings in Eurasia revealed by plant macrofossil and modelling results, Gondwana Res., 61,
115–127, https://doi.org/10.1016/j.gr.2018.04.015, 2018.
Li, Y., Smith, T., Svetlana, P., Yang, J., Jin, J.-H., and Li, C.-S.:
Paleobiogeography of the lotus plant (Nelumbonaceae: Nelumbo) and its
bearing on the paleoclimatic changes, Palaeogeogr. Palaeoclimatol. Palaeoecol., 399, 284–293,
https://doi.org/10.1016/j.palaeo.2014.01.022, 2014.
Lunt, D. J., Farnsworth, A., Loptson, C., Foster, G. L., Markwick, P., O'Brien, C. L., Pancost, R. D., Robinson, S. A., and Wrobel, N.: Palaeogeographic controls on climate and proxy interpretation, Clim. Past, 12, 1181–1198, https://doi.org/10.5194/cp-12-1181-2016, 2016.
Lunt, D. J., Bragg, F., Chan, W.-L., Hutchinson, D. K., Ladant, J.-B., Morozova, P., Niezgodzki, I., Steinig, S., Zhang, Z., Zhu, J., Abe-Ouchi, A., Anagnostou, E., de Boer, A. M., Coxall, H. K., Donnadieu, Y., Foster, G., Inglis, G. N., Knorr, G., Langebroek, P. M., Lear, C. H., Lohmann, G., Poulsen, C. J., Sepulchre, P., Tierney, J. E., Valdes, P. J., Volodin, E. M., Dunkley Jones, T., Hollis, C. J., Huber, M., and Otto-Bliesner, B. L.: DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data, Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, 2021.
Madec, G.: NEMO ocean engine, Note du Pôle de modélisation de l’Institut Pierre-Simon Laplace, 27, 396, 2016.
Marigó, J., Susanna, I., Minwer-Barakat, R., Madurell-Malapeira, J.,
Moyà-Solà, S., Casanovas-Vilar, I., Robles, J. M., and Alba, D. M.:
The primate fossil record in the Iberian Peninsula, J. Iber. Geol., 40, 157–166, https://doi.org/10.5209/rev_JIGE.2014.v40.n1.44094, 2014.
Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M.,
and Müller, R. D.: Global plate boundary evolution and kinematics since
the late Paleozoic, Global Planet. Change, 146, 226–250,
https://doi.org/10.1016/j.gloplacha.2016.10.002, 2016.
Meng, J. and McKenna, M. C.: Faunal turnovers of Palaeogene mammals from the
Mongolian Plateau, Nature, 394, 364–367,
https://doi.org/10.1038/28603, 1998.
Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G.
S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from
deep-sea geochemical and continental margin records, Sci. Adv., 6, eaaz1346,
https://doi.org/10.1126/sciadv.aaz1346, 2020.
Moraweck, K., Grein, M., Konrad, W., Kvaček, J., Kova-Eder, J.,
Neinhuis, C., Traiser, C., and Kunzmann, L.: Leaf traits of long-ranging
Paleogene species and their relationship with depositional facies, climate
and atmospheric CO2 level, Palaeontogr. Abt. B, 298, 93–172,
https://doi.org/10.1127/palb/2019/0062, 2019.
Mosbrugger, V. and Utescher, T.: The coexistence approach – a method for
quantitative reconstructions of Tertiary terrestrial palaeoclimate data
using plant fossils, Palaeogeogr. Palaeocl., 134,
61–86, https://doi.org/10.1016/S0031-0182(96)00154-X, 1997.
Mosbrugger, V., Utescher, T., and Dilcher, D. L.: Cenozoic continental
climatic evolution of Central Europe, P. Natl. Acad. Sci. USA, 102, 14964–14969,
https://doi.org/10.1073/pnas.0505267102, 2005.
Nott, J. F. and Owen, J. A. K.: An Oligocene palynoflora from the middle
Shoalhaven catchment N. S. W. and the Tertiary evolution of flora and climate
in the southeast Australian highlands, Palaeogeogr. Palaeocl.,
95, 135–151, https://doi.org/10.1016/0031-0182(92)90169-6, 1992.
Page, M., Licht, A., Dupont-Nivet, G., Meijer, N., Barbolini, N., Hoorn, C.,
Schauer, A., Huntington, K., Bajnai, D., Fiebig, J., Mulch, A., and Guo, Z.:
Synchronous cooling and decline in monsoonal rainfall in northeastern Tibet
during the fall into the Oligocene icehouse, Geology, 47, 203–206,
https://doi.org/10.1130/G45480.1, 2019.
PALAEOSENS Project Members: Making sense of palaeoclimate sensitivity,
Nature, 491, 683–691, https://doi.org/10.1038/nature11574,
2012.
Poblete, F., Dupont-Nivet, G., Licht, A., Van Hinsbergenm, D. J. J. Roperch, P., Mihalynuk, M. G., Jonston, S. T. Guillocheau, F., Barby, G., Fluteau, F., Robin, C., Van Der Linden, T. J. M., Ruiz, D., and Baatsen, M. L. J.: Towards interactive global paleographic maps, new reconstructions at 60, 40 and 20 Ma, Earth Sci. Rev., 214, 103508, https://doi.org/10.1016/j.earscirev.2021.103508, 2021.
Pocknall, D. T.: Late eocene to early Miocene vegetation and climate history
of New Zealand, J. Royal Soc. New Zeal., 19, 1–18,
https://doi.org/10.1080/03036758.1989.10426451, 1989.
Pound, M. J. and Salzmann, U.: Heterogeneity in global vegetation and
terrestrial climate change during the late Eocene to early Oligocene
transition, Sci. Rep., 7, 43386, https://doi.org/10.1038/srep43386, 2017.
Prothero, D. R. and Heaton, T. H.: Faunal stability during the Early
Oligocene climatic crash, Palaeogeogr. Palaeocl.,
127, 257–283, https://doi.org/10.1016/S0031-0182(96)00099-5,
1996.
Quan, C., Liu, Y.-S. (C.), and Utescher, T.: Paleogene temperature
gradient, seasonal variation and climate evolution of northeast China,
Palaeogeogr. Palaeocl., 313–314, 150–161, https://doi.org/10.1016/j.palaeo.2011.10.016, 2012.
R Core Team: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.r-project.org/ (last access: 18 February 2022), 2020.
Rage, J.-C.: The Amphibians and Reptiles at the Eocene-Oligocene Transition
in Western Europe: An Outline of the Faunal Alterations., in: Developments
in Palaeontology and Stratigraphy, vol. 9, edited by: Pomerol, C. and
Premoli-Silva, I., Elsevier, 309–310,
https://doi.org/10.1016/S0920-5446(08)70135-3, 1986.
Rage, J.-C.: Mesozoic and Cenozoic squamates of Europe, Palaeobio. Palaeoenv.,
93, 517–534, https://doi.org/10.1007/s12549-013-0124-x, 2013.
Rasmussen, D. T., Brown, T. M., and Simons, E. L.: The Eocene–Oligocene
Transition in continental Africa, in: Eocene–Oligocene Climatic and Biotic
Evolution, edited by: Prothero, D. R. and Berggren, W. A., Princeton
University Press, Princeton, 548–567, ISBN 9781400862924, 1992.
Roček, Z. and Rage, J.-C.: Evolution of anuran assemblages in the
Tertiary and Quaternary of Europe, in the context of palaeoclimate and
palaeogeography, Amphibia-Reptilia, 24, 133–167,
https://doi.org/10.1163/156853803322390408, 2003.
Saarinen, J., Mantzouka, D., and Sakala, J.: Aridity, Cooling, Open
Vegetation, and the Evolution of Plants and Animals During the Cenozoic, in:
Nature through Time, edited by: Martinetto, E., Tschopp, E., and Gastaldo,
R. A., Springer International Publishing, Cham, 83–107,
https://doi.org/10.1007/978-3-030-35058-1_3, 2020.
Sagoo, N., Valdes, P., Flecker, R., and Gregoire, L. J.: The Early Eocene
equable climate problem: can perturbations of climate model parameters
identify possible solutions?, P. R. Soc. A, 371, 20130123,
https://doi.org/10.1098/rsta.2013.0123, 2013.
Scher, H. D., Bohaty, S. M., Smith, B. W., and Munn, G. H.: Isotopic
interrogation of a suspected late Eocene glaciation: hidden glaciation
revealed in the Eocene, Paleoceanography, 29, 628–644,
https://doi.org/10.1002/2014PA002648, 2014.
Sepulchre, P., Caubel, A., Ladant, J.-B., Bopp, L., Boucher, O., Braconnot, P., Brockmann, P., Cozic, A., Donnadieu, Y., Dufresne, J.-L., Estella-Perez, V., Ethé, C., Fluteau, F., Foujols, M.-A., Gastineau, G., Ghattas, J., Hauglustaine, D., Hourdin, F., Kageyama, M., Khodri, M., Marti, O., Meurdesoif, Y., Mignot, J., Sarr, A.-C., Servonnat, J., Swingedouw, D., Szopa, S., and Tardif, D.: IPSL-CM5A2 – an Earth system model designed for multi-millennial climate simulations, Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, 2020.
Stehlin H. G.: Remarques sur les faunules de mammifères des couches éocènes et oligocènes du Bassin de Paris, B. Soc. Géol. Fr., 9, 488–520, 1909.
Stucky, R. K.: Mammalian Faunas in North America of Bridgerian to Early
Arikareean “Ages” (Eocene and Oligocene), in: Eocene-Oligocene Climatic
and Biotic Evolution, Princeton University Press, 464–493, https://doi.org/10.1515/9781400862924.464, 1992.
Sun, J., Ni, X., Bi, S., Wu, W., Ye, J., Meng, J., and Windley, B. F.:
Synchronous turnover of flora, fauna and climate at the Eocene–Oligocene
Boundary in Asia, Sci. Rep., 4, 7463,
https://doi.org/10.1038/srep07463, 2015.
Tanrattana, M., Boura, A., Jacques, F. M. B., Villier, L., Fournier, F.,
Enguehard, A., Cardonnet, S., Voland, G., Garcia, A., Chaouch, S., and De
Franceschi, D.: Climatic evolution in Western Europe during the Cenozoic:
insights from historical collections using leaf physiognomy, Geodiversitas,
42, 151, https://doi.org/10.5252/geodiversitas2020v42a11, 2020.
Tardif, D., Fluteau, F., Donnadieu, Y., Le Hir, G., Ladant, J.-B., Sepulchre, P., Licht, A., Poblete, F., and Dupont-Nivet, G.: The origin of Asian monsoons: a modelling perspective, Clim. Past, 16, 847–865, https://doi.org/10.5194/cp-16-847-2020, 2020.
Tardif, D., Toumoulin, A., Fluteau, F., Donnadieu, Y., Le Hir, G.,
Barbolini, N., Licht, A., Ladant, J.-B., Sepulchre, P., Viovy, N., Hoorn,
C., and Dupont-Nivet, G.: Orbital variations as a major driver of climate
and biome distribution during the greenhouse to icehouse transition, Sci.
Adv., 7, eabh2819, https://doi.org/10.1126/sciadv.abh2819,
2021.
Teodoridis, V. and Kvaček, Z.: Palaeoenvironmental evaluation of
Cainozoic plant assemblages from the Bohemian Massif (Czech Republic) and
adjacent Germany, B. Geosci., 90, 695–720,
https://doi.org/10.3140/bull.geosci.1553, 2015.
Tosal, A., Valero, L., Sanjuan, J., and Martín-Closas, C.: Influence of
short-and long-term climatic cycles on floristic change across the
Eocene–Oligocene boundary in the Ebro Basin (Catalonia, Spain), C. R. Palevol., 18,
925–947, https://doi.org/10.1016/j.crpv.2019.10.003, 2019.
Toumoulin, A., Donnadieu, Y., Ladant, J.-B., Batenburg, S. J., Poblete, F.,
and Dupont-Nivet, G.: Quantifying the Effect of the Drake Passage Opening on
the Eocene Ocean, Paleoceanogr. Paleoclimatol., 35, e2020PA003889,
https://doi.org/10.1029/2020PA003889, 2020.
Toumoulin, A., Tardif, D.; Donnadieu, Y., Licht, A., Ladant, J.-B., Kunzmann, L., and Dupont-Nivet, G.: Continental temperature seasonality from Eocene Warmhouse to Oligocene Coolhouse, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.930422, 2021.
Utescher, T., Bruch, A. A., Erdei, B., François, L., Ivanov, D.,
Jacques, F. M. B., Kern, A. K., Liu, Y.-S., Mosbrugger, V., and
Spicer, R. A.: The Coexistence Approach – Theoretical background and
practical considerations of using plant fossils for climate quantification,
Palaeogeogr. Palaeocl, 410, 58–73,
https://doi.org/10.1016/j.palaeo.2014.05.031, 2014.
Utescher, T., Bondarenko, O. V., and Mosbrugger, V.: The Cenozoic Cooling –
continental signals from the Atlantic and Pacific side of Eurasia, Earth
Planet. Sci. Lett., 415, 121–133,
https://doi.org/10.1016/j.epsl.2015.01.019, 2015.
Wade, B. S., Houben, A. J. P., Quaijtaal, W., Schouten, S., Rosenthal, Y.,
Miller, K. G., Katz, M. E., Wright, J. D., and Brinkhuis, H.: Multiproxy
record of abrupt sea-surface cooling across the Eocene-Oligocene transition
in the Gulf of Mexico, Geology, 40, 159–162,
https://doi.org/10.1130/G32577.1, 2012.
Wing, S. L.: Eocene and Oligocene Floras and Vegetation of the Rocky
Mountains, Ann. Missouri Bot. Gard., 74, 748–784, https://doi.org/10.2307/2399449, 1987.
Wolfe, J. A.: 21. Climatic, Floristic, and Vegetational Changes near the
Eocene/Oligocene Boundary in North America, in: Eocene-Oligocene Climatic
and Biotic Evolution, edited by: Prothero, D. R. and Berggren, W. A.,
Princeton University Press, Princeton, 421–436,
https://doi.org/10.1515/9781400862924.421, 1992.
Wolfe, J. A.: A method of obtaining climatic parameters from leaf
assemblages, U.S. Geological Survey Bulletin 2040, Washington, USA,
https://doi.org/10.3133/b2040, 1993.
Wolfe, J. A.: Tertiary climatic changes at middle latitudes of western North
America, Palaeogeogr. Palaeocl., 108, 195–205,
https://doi.org/10.1016/0031-0182(94)90233-X, 1994.
Yang, J., Spicer, R. A., Spicer, T. E. V., and Li, C.-S.: “CLAMP Online”: a
new web-based palaeoclimate tool and its application to the terrestrial
Paleogene and Neogene of North America, Palaeobio. Palaeoenv., 91, 163,
https://doi.org/10.1007/s12549-011-0056-2, 2011.
Zachos, J., Pagani, M., Sloan, L. C., Thomas, E., and Billups, K.: Trends,
Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science, 292, 686–693,
https://doi.org/10.1126/science.1059412, 2001.
Zanazzi, A., Kohn, M. J., MacFadden, B. J., and Terry, D. O.: Large
temperature drop across the Eocene–Oligocene transition in central North
America, Nature, 445, 639–642, https://doi.org/10.1038/nature05551,
2007.
Zanazzi, A., Judd, E., Fletcher, A., Bryant, H., and Kohn, M. J.:
Eocene–Oligocene latitudinal climate gradients in North America inferred
from stable isotope ratios in perissodactyl tooth enamel, Palaeogeogr. Palaeoclimatol. Palaeoecol., 417, 561–568,
https://doi.org/10.1016/j.palaeo.2014.10.024, 2015.
Zhang, R., Kravchinsky, V. A., and Yue, L.: Link between global cooling and
mammalian transformation across the Eocene–Oligocene boundary in the
continental interior of Asia, Int. J. Earth Sci., 101,
2193–2200, https://doi.org/10.1007/s00531-012-0776-1, 2012.
Zhu, J., Poulsen, C. J., and Tierney, J. E.: Simulation of Eocene extreme
warmth and high climate sensitivity through cloud feedbacks, Sci. Adv., 5, eaax1874, https://doi.org/10.1126/sciadv.aax1874, 2019.
Short summary
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants describe its middle Eocene to early Oligocene increase in the Northern Hemisphere, but underlying mechanisms have not been studied in detail yet. Using climate simulations, we map global seasonality changes and show that major contemporary forcing – atmospheric CO2 lowering, Antarctic ice-sheet expansion and particularly related sea level drop – participated in this phenomenon and its spatial distribution.
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants...