Articles | Volume 18, issue 12
https://doi.org/10.5194/cp-18-2631-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-2631-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Precessional pacing of tropical ocean carbon export during the Late Cretaceous
Ji-Eun Kim
School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA
Center for Marine Environmental Sciences (MARUM), University of
Bremen, 28359 Bremen, Germany
Laia Alegret
Department of Earth Sciences, University of Zaragoza, 50009 Zaragoza, Spain
Anna Joy Drury
Department of Earth Sciences, University College London, London, WC1E 6BT, UK
Ursula Röhl
Center for Marine Environmental Sciences (MARUM), University of
Bremen, 28359 Bremen, Germany
Elizabeth M. Griffith
CORRESPONDING AUTHOR
School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA
Related authors
No articles found.
Gerald Auer, David De Vleeschouwer, Arisa Seki, Anna Joy Drury, Yusuke Kubo, Minoru Ikehara, Junichiro Kuroda, and the ReC23-01 scientists
EGUsphere, https://doi.org/10.5194/egusphere-2025-2760, https://doi.org/10.5194/egusphere-2025-2760, 2025
Short summary
Short summary
We explore new methods for ice-rafted debris detection in marine sediment cores to detect past climate changes and ice sheet dynamics. Traditional IRD detection methods are destructive and time-consuming. To alleviate this problem, we utilize non-destructive imaging techniques core material from the Indian Ocean. While promising, we found contamination to be an issue. Machine learning identifies density and chemical differences, but rigorous testing is needed to avoid false positives.
Arne M. E. Winguth, Mikaela Brown, Pincelli Hull, Elizabeth Griffith, Christine Shields, Ellen Thomas, and Cornelia Winguth
EGUsphere, https://doi.org/10.5194/egusphere-2024-4209, https://doi.org/10.5194/egusphere-2024-4209, 2025
Short summary
Short summary
The Paleocene-Eocene Thermal Maximum (PETM) about 56 million years ago is characterized by a rapid perturbation of the global carbon cycle. Comparison of sedimentary records with results from a comprehensive Earth system model suggest that environmental changes including benthic foraminifera extinction may have caused by a massive carbon input at the PETM and associate collapse of the ocean circulation due to the greenhouse-gas induced warming.
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Maria Elena Gastaldello, Claudia Agnini, and Laia Alegret
J. Micropalaeontol., 43, 1–35, https://doi.org/10.5194/jm-43-1-2024, https://doi.org/10.5194/jm-43-1-2024, 2024
Short summary
Short summary
This paper examines benthic foraminifera, single-celled organisms, at Integrated Ocean Drilling Program Site U1506 in the Tasman Sea from the Late Miocene to the Early Pliocene (between 7.4 to 4.5 million years ago). We described and illustrated the 36 most common species; analysed the past ocean depth of the site; and investigated the environmental conditions at the seafloor during the Biogenic Bloom phenomenon, a global phase of high marine primary productivity.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Cited articles
Alegret, L. and Thomas, E.: Food supply to the seafloor in the Pacific Ocean
after the Cretaceous/Paleogene boundary event, Mar. Micropaleontol., 73,
105–116, https://doi.org/10.1016/j.marmicro.2009.07.005, 2009.
Alegret, L., Thomas, E., and Lohmann, K. C.: End-Cretaceous marine mass
extinction not caused by productivity collapse, P. Natl. Acad. Sci. USA, 109,
728–732, https://doi.org/10.1073/pnas.1110601109, 2012.
Alegret, L., Arreguín-Rodríguez, G. J., Trasviña-Moreno, C.
A., and Thomas, E.: Turnover and stability in the deep sea: Benthic
foraminifera as tracers of Paleogene global change, Global Planet. Change, 196, 103372, https://doi.org/10.1016/j.gloplacha.2020.103372, 2020.
Barnet, J. S., Littler, K., Kroon, D., Leng, M. J., Westerhold, T.,
Röhl, U., and Zachos, J. C.: A new high-resolution chronology for the
Late Maastrichtian warming event: Establishing robust temporal links with
the onset of Deccan volcanism, Geology, 46, 147–150, 2018.
Barnet, J. S., Littler, K., Westerhold, T., Kroon, D., Leng, M. J., Bailey,
I., Röhl, U., and Zachos, J. C.: A high-fidelity benthic stable isotope
record of Late Cretaceous–Early Eocene climate change and carbon-cycling,
Paleoceanography and Paleoclimatology, 34, 672–691, 2019.
Batenburg, S. J., Sprovieri, M., Gale, A. S., Hilgen, F. J., Hüsing, S.,
Laskar, J., Liebrand, D., Lirer, F., Orue-Etxebarria, X., and Pelosi, N.:
Cyclostratigraphy and astronomical tuning of the Late Maastrichtian at
Zumaia (Basque country, Northern Spain), Earth Planet. Sc. Lett., 359,
264–278, 2012.
Batenburg, S. J., Gale, A. S., Sprovieri, M., Hilgen, F. J., Thibault, N.,
Boussaha, M., and Orue-Etxebarria, X.: An astronomical time scale for the
Maastrichtian based on the Zumaia and Sopelana sections (Basque country,
northern Spain), J. Geol. Soc., 171, 165–180, 2014.
Beaufort, L., Bolton, C. T., Sarr, A.-C., Suchéras-Marx, B., Rosenthal,
Y., Donnadieu, Y., Barbarin, N., Bova, S., Cornuault, P., Gally, Y., Gray,
E., Mazur, J.-C., and Tetard, M.: Cyclic evolution of phytoplankton forced
by changes in tropical seasonality, Nature, 601, 79–84,
https://doi.org/10.1038/s41586-021-04195-7, 2022.
Bralower, T., Premoli Silva, I., and Malone, M.: Leg 198, Proceedings of the
Ocean Drilling Program: Initial Reports, College Station, TX (Ocean Drilling
Program), https://doi.org/10.2973/odp.proc.ir.198.2002, 2002.
Chenet, A.-L., Quidelleur, X., Fluteau, F., Courtillot, V., and Bajpai, S.:
40K–40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration, Earth Planet. Sc. Lett., 263, 1–15, 2007.
Clement, A. C., Seager, R., and Cane, M. A.: Orbital controls on the El
Niño/Southern Oscillation and the tropical climate, Paleoceanography,
14, 441–456, https://doi.org/10.1029/1999PA900013, 1999.
Clement, A. C., Seager, R., and Cane, M. A.: Suppression of El Niño
during the mid-Holocene by changes in the Earth's orbit, Paleoceanography,
15, 731–737, https://doi.org/10.1029/1999PA000466, 2000.
Clement, A. C., Hall, A., and Broccoli, A. J.: The importance of
precessional signals in the tropical climate, Clim. Dynam., 22, 327–341,
https://doi.org/10.1007/s00382-003-0375-8, 2004.
Crowley, T. J., Kim, K.-Y., Mengel, J. G., and Short, D. A.: Modeling
100,000-Year Climate Fluctuations in Pre-Pleistocene Time Series, Science,
255, 705–707, 1992.
Dameron, S. N., Leckie, R. M., Clark, K., MacLeod, K. G., Thomas, D. J., and
Lees, J. A.: Extinction, dissolution, and possible ocean acidification prior
to the Cretaceous/Paleogene (K/Pg) boundary in the tropical Pacific,
Palaeogeogr. Palaeocl., 485, 433–454, 2017.
Davies, A., Kemp, A. E. S., Weedon, G. P., and Barron, J. A.: El
Niño–Southern Oscillation variability from the Late Cretaceous Marca
Shale of California, Geology, 40, 15–18, https://doi.org/10.1130/G32329.1, 2012.
Dymond, J., Suess, E., and Lyle, M.: Barium in deep-sea sediment: A
geochemical proxy for paleoproductivity, Paleoceanography, 7, 163–181,
1992.
Eagle, M., Paytan, A., Arrigo, K. R., van Dijken, G., and Murray, R. W.: A
comparison between excess barium and barite as indicators of carbon export,
Paleoceanography, 18, 1021, https://doi.org/10.1029/2002PA000793, 2003.
Fedorov, A. V., Dekens, P. S., McCarthy, M., Ravelo, A. C., deMenocal, P.
B., Barreiro, M., Pacanowski, R. C., and Philander, S. G.: The Pliocene
Paradox (Mechanisms for a Permanent El Niño), Science, 312, 1485–1489,
https://doi.org/10.1126/science.1122666, 2006.
Forster, A., Schouten, S., Baas, M., and Sinninghe Damsté, J. S.:
Mid-Cretaceous (Albian–Santonian) sea surface temperature record of the
tropical Atlantic Ocean, Geology, 35, 919–922, 2007.
Frank, T. D., Thomas, D. J., Leckie, R. M., Arthur, M. A., Bown, P. R.,
Jones, K., and Lees, J. A.: The Maastrichtian record from Shatsky Rise
(northwest Pacific): A tropical perspective on global ecological and
oceanographic changes, Paleoceanography, 20, PA1008, https://doi.org/10.1029/2004PA001052, 2005.
Friedrich, O., Norris, R. D., and Erbacher, J.: Evolution of middle to Late
Cretaceous oceans – A 55 m.y. record of Earth's temperature and carbon
cycle, Geology, 40, 107–110, https://doi.org/10.1130/g32701.1, 2012.
Gilabert, V., Arz, J. A., Arenillas, I., Robinson, S. A., and Ferrer, D.:
Influence of the Latest Maastrichtian Warming Event on planktic
foraminiferal assemblages and ocean carbonate saturation at Caravaca, Spain,
Cretaceous Res., 125, 104844, https://doi.org/10.1016/j.cretres.2021.104844, 2021.
Gonneea, M. E. and Paytan, A.: Phase associations of barium in marine
sediments, Mar. Chem., 100, 124–135, 2006.
Griffith, E. M., Thomas, E., Lewis, A. R., Penman, D. E., Westerhold, T.,
and Winguth, A. M.: Bentho-Pelagic Decoupling: The Marine Biological Carbon
Pump During Eocene Hyperthermals, Paleoceanography and Paleoclimatology, 36, e2020PA004053, https://doi.org/10.1029/2020PA004053, 2021.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Haynes, S. J., MacLeod, K. G., Ladant, J.-B., Guchte, A. V., Rostami, M. A.,
Poulsen, C. J., and Martin, E. E.: Constraining sources and relative flow
rates of bottom waters in the Late Cretaceous Pacific Ocean, Geology, 48,
509–513, 2020.
Herbert, T. D. and D'Hondt, S. L.: Precessional climate cyclicity in Late
Cretaceous – Early Tertiary marine sediments: a high resolution chronometer
of Cretaceous-Tertiary boundary events, Earth Planet. Sc. Lett., 99, 263–275, https://doi.org/10.1016/0012-821X(90)90115-E, 1990.
Herbert, T. D., Gee, J., and DiDonna, S.: Precessional cycles in the Upper
Cretaceous pelagic sediments of the South Atlantic: Long-term patterns from
high-frequency climate variations, Geological Society of America, Special Papers, 105–120, 1999.
Huber, B. T., MacLeod, K. G., Watkins, D. K., and Coffin, M. F.: The rise
and fall of the Cretaceous Hot Greenhouse climate, Global Planet. Change,
167, 1–23, 2018.
Jenkyns, H., Gale, A., and Corfield, R.: Carbon-and oxygen-isotope
stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic
significance, Geol. Mag., 131, 1–34, https://doi.org/10.1017/S0016756800010451, 1994.
Jorissen, F. J., Fontanier, C., and Thomas, E.: Chapter Seven Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics, Developments in Marine Geology, 1, 263–325,
https://doi.org/10.1016/S1572-5480(07)01012-3, 2007.
Jung, C., Voigt, S., and Friedrich, O.: High-resolution carbon-isotope
stratigraphy across the Campanian–Maastrichtian boundary at Shatsky Rise
(tropical Pacific), Cretaceous Res., 37, 177–185, 2012.
Jung, C., Voigt, S., Friedrich, O., Koch, M. C., and Frank, M.:
Campanian-Maastrichtian ocean circulation in the tropical Pacific, Paleoceanogr. Paleocl., 28, 562–573, 2013.
Keller, G., Punekar, J., and Mateo, P.: Upheavals during the Late
Maastrichtian: Volcanism, climate and faunal events preceding the
end-Cretaceous mass extinction, Palaeogeogr. Palaeocl., 441, 137–151, 2016.
Kim, H. J., Kim, T., Hyeong, K., Yeh, S., Park, J., Yoo, C. M., and Hwang,
J.: Suppressed CO2 outgassing by an enhanced biological pump in the
Eastern Tropical Pacific, J. Geophys. Res.-Oceans, 124, 7962–7973, 2019.
Kim, J.-E., Westerhold, T., Griffith, E. M., Alegret, L., Drury, A., and Röhl, U.: Maastrichtian composite bulk carbonate stable isotopes, XRF scanning, biogenic barium, and benthic foraminiferal records from Shatsky Rise, ODP Sites 1209 and 1210, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.951175, 2022.
Laepple, T. and Lohmann, G.: Seasonal cycle as template for climate
variability on astronomical timescales, Paleoceanography, 24, PA4201,
https://doi.org/10.1029/2008PA001674, 2009.
Larson, R., Steiner, M., Erba, E., and Lancelot, Y.: Paleolatitudes and
tectonic reconstructions of the oldest portion of the Pacific plate: A
comparative study, edited by: Larson, R. L., Lancelot, Y., Fisher, A., and Winterer, E. L., Proceedings of the Ocean Drilling Program, Scientific Results, Leg 129, 615–631, 1992.
Laskar, J.: Chapter 4 – Astrochronology, in: Geologic Time Scale 2020,
edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.,
Elsevier, 139–158, https://doi.org/10.1016/B978-0-12-824360-2.00004-8, 2020.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285, 2004.
Laskar, J., Fienga, A., Gastineau, M., and Manche, H.: La2010: a new orbital
solution for the long-term motion of the Earth, Astron. Astrophys., 532,
A89, https://doi.org/10.1051/0004-6361/201116836, 2011.
Li, L. and Keller, G.: Abrupt deep-sea warming at the end of the Cretaceous,
Geology, 26, 995–998, 1998.
Li, M., Hinnov, L. A., and Kump, L.: Acycle: Time-series analysis software for paleoclimate research and education, Comput. Geosci., 127, 12–21, 2019.
Lu, Z., Liu, Z., Chen, G., and Guan, J.: Prominent precession band variance
in ENSO intensity over the last 300,000 years, Geophys. Res. Lett., 46, 9786–9795, https://doi.org/10.1029/2019GL083410, 2019.
Lyle, M., Dadey, K. A., and Farrell, J. W.: The Late Miocene (11–8 Ma)
eastern Pacific carbonate crash: evidence for reorganization of deep-water
circulation by the closure of the Panama Gateway, 1995 Proceedings of the Ocean Drilling Program, Scientific Results, 138, 821–837, 1995.
MacLeod, K. G. and Huber, B. T.: Reorganization of deep ocean circulation
accompanying a Late Cretaceous extinction event, Nature, 380, 422–425, 1996.
MacLeod, K. G., Huber, B. T., Pletsch, T., Röhl, U., and Kucera, M.:
Maastrichtian foraminiferal and paleoceanographic changes on Milankovitch
timescales, Paleoceanography, 16, 133–154, 2001.
Murray, J. W., Young, J., Newton, J., Dunne, J., Chapin, T., Paul, B., and
McCarthy, J. J.: Export flux of particulate organic carbon from the central
equatorial Pacific determined using a combined drifting trap-234Th approach, Deep-Sea Res. Pt. II, 43, 1095–1132, 1996.
Murray, R. W., Knowlton, C., Leinen, M., Mix, A. C., and Polsky, C.: Export
production and carbonate dissolution in the central equatorial Pacific Ocean
over the past 1 Myr, Paleoceanography, 15, 570–592, 2000.
Olivarez Lyle, A. and Lyle, M. W.: Missing organic carbon in Eocene marine
sediments: Is metabolism the biological feedback that maintains end-member
climates?, Paleoceanography, 21, PA2007, https://doi.org/10.1029/2005PA001230, 2006.
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K.,
Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The
heartbeat of the Oligocene climate system, Science, 314, 1894–1898,
https://doi.org/10.1126/science.1133822, 2006.
PANGAEA: Data Publisher for Earth & Environmental Science, https://www.pangaea.de/, last access: 30 November 2022.
Paytan, A., Kastner, M., and Chavez, F.: Glacial to interglacial
fluctuations in productivity in the equatorial Pacific as indicated by
marine barite, Science, 274, 1355–1357, 1996.
Pena, L. D., Cacho, I., Ferretti, P., and Hall, M. A.: El Niño–Southern
Oscillation–like variability during glacial terminations and
interlatitudinal teleconnections, Paleoceanography, 23, PA3101,
https://doi.org/10.1029/2008PA001620, 2008.
Reitz, A., Pfeifer, K., De Lange, G., and Klump, J.: Biogenic barium and the
detrital ratio: a comparison of their direct and indirect
determination, Mar. Geol., 204, 289–300, 2004.
Renne, P. R., Deino, A. L., Hilgen, F. J., Kuiper, K. F., Mark, D. F., Mitchell, W. S., Morgan, L. E., Mundil, R., and Smit, J.: Time scales of critical events around the Cretaceous-Paleogene boundary, Science, 339, 684–687, 2013.
Sager, W. W., Kim, J., Klaus, A., Nakanishi, M., and Khankishieva, L. M.:
Bathymetry of Shatsky Rise, northwest Pacific Ocean: Implications for ocean
plateau development at a triple junction, J. Geophys. Res.-Sol. Ea., 104,
7557–7576, 1999.
Scotese, C. R. and Wright, N.: PALEOMAP Paleodigital Elevation Models
(PaleoDEMS) for the Phanerozoic,
https://www.earthbyte.org/webdav/ftp/Data_Collections/Scotese_Wright_2018_PaleoDEM/Scotese_Wright2018_PALEOMAP_PaleoDEMs.pdf (last access: 30 November 2022), 2018.
Scudder, R. P., Murray, R. W., Schindlbeck, J. C., Kutterolf, S., Hauff, F.,
and McKinley, C. C.: Regional-scale input of dispersed and discrete volcanic
ash to the Izu-Bonin and Mariana subduction zones, Geochem. Geophy. Geosy., 15, 4369–4379, 2014.
Short, D. A., Mengel, J. G., Crowley, T. J., Hyde, W. T., and North, G. R.:
Filtering of Milankovitch cycles by Earth's geography, Quaternary Res., 35,
157–173, 1991.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B. Am. Meteorol. Soc., 79, 61–78, 1998.
Trenberth, K. E., Stepaniak, D. P., and Caron, J. M.: The global monsoon as
seen through the divergent atmospheric circulation, J. Climate, 13,
3969–3993, 2000.
Turk, D., McPhaden, M. J., Busalacchi, A. J., and Lewis, M. R.: Remotely
sensed biological production in the Equatorial Pacific, Science, 293,
471–474, 2001.
Voigt, S., Gale, A. S., Jung, C., and Jenkyns, H. C.: Global correlation of
Upper Campanian - Maastrichtian successions using carbon-isotope stratigraphy: development of a new Maastrichtian timescale, Newsl. Stratigr., 45, 25–53, 2012.
Wara, M. W., Ravelo, A. C., and Delaney, M. L.: Permanent El Niño-like
conditions during the Pliocene warm period, Science, 309, 758–761, 2005.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S., Bohaty, S. M., De Vleeschouwer, D., and
Florindo, F.: An astronomically dated record of Earth's climate and its
predictability over the last 66 million years, Science, 369, 1383–1387,
2020.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, and aberrations in global climate 65 Ma to present, Science, 292,
686–693, 2001.
Zeebe, R. E., Westerhold, T., Littler, K., and Zachos, J. C.: Orbital
forcing of the Paleocene and Eocene carbon cycle, Paleoceanography, 32,
440–465, 2017.
Zhang, S., Yu, Z., Gong, X., Wang, Y., Chang, F., Lohmman, G., Qi, Y., and
Li, T.: Precession cycles of the El Niño/Southern oscillation-like
system controlled by Pacific upper-ocean stratification, Communications
Earth & Environment, 2, 239, https://doi.org/10.1038/s43247-021-00305-5, 2021.
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
This study attempts to gain a better understanding of the marine biological carbon pump and...