Articles | Volume 18, issue 10
https://doi.org/10.5194/cp-18-2231-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-2231-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Early Eocene carbon isotope excursions in a lignite-bearing succession at the southern edge of the proto-North Sea (Schöningen, Germany)
Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt am Main, Germany
Institute of Applied Geosciences, Technical University Darmstadt,
64287 Darmstadt, Germany
Mara Montag
Institute of Applied Geosciences, Technical University Darmstadt,
64287 Darmstadt, Germany
Volker Wilde
Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt am Main, Germany
Katharina Methner
Department Institute of Geophysics and Geology, University Leipzig,
04103 Leipzig, Germany
Department of Earth System Science, Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
Walter Riegel
Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt am Main, Germany
Andreas Mulch
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325 Frankfurt am Main, Germany
Institute of Geosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
Related authors
Katharina Methner, Olaf Lenz, Walter Riegel, Volker Wilde, and Andreas Mulch
Clim. Past, 15, 1741–1755, https://doi.org/10.5194/cp-15-1741-2019, https://doi.org/10.5194/cp-15-1741-2019, 2019
Short summary
Short summary
We describe the presence of a carbon isotope excursion (CIE) in Paleogene lignites (Schöningen, DE) and assess paleoenvironmental changes in midlatitudinal late Paleocene–early Eocene peat mire records along the paleo-North Sea coast (Schöningen, Cobham, Vasterival). These records share major characteristics of a reduced CIE (~ -1.3 ‰) in terms of bulk organic matter, increased fire activity (pre-CIE), minor plant species changes, and drowning of near-coastal mires during the CIE.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Benita Putlitz, Andreas Mulch, Edwin Gnos, and Marco Herwegh
Eur. J. Mineral., 36, 879–898, https://doi.org/10.5194/ejm-36-879-2024, https://doi.org/10.5194/ejm-36-879-2024, 2024
Short summary
Short summary
We used U–Pb dating and Pb–Sr–O–H isotopes of hydrothermal epidote to characterize fluid circulation in the Aar Massif (central Swiss Alps). Our data support the hypothesis that Permian fluids exploited syn-rift extensional faults. In the Miocene during the Alpine orogeny, fluid sources were meteoric, sedimentary, and/or metamorphic water. Likely, Miocene shear zones were exploited for fluid circulation, with implications for the Sr isotope budget of the granitoids.
Konstantina Agiadi, Iuliana Vasiliev, Geanina Butiseacă, George Kontakiotis, Danae Thivaiou, Evangelia Besiou, Stergios Zarkogiannis, Efterpi Koskeridou, Assimina Antonarakou, and Andreas Mulch
Biogeosciences, 21, 3869–3881, https://doi.org/10.5194/bg-21-3869-2024, https://doi.org/10.5194/bg-21-3869-2024, 2024
Short summary
Short summary
Seven million years ago, the marine gateway connecting the Mediterranean Sea with the Atlantic Ocean started to close, and, as a result, water circulation ceased. To find out how this phenomenon affected the fish living in the Mediterranean Sea, we examined the changes in the isotopic composition of otoliths of two common fish species. Although the species living at the surface fared pretty well, the bottom-water fish starved and eventually became extinct in the Mediterranean.
Armelle Ballian, Maud J. M. Meijers, Isabelle Cojan, Damien Huyghe, Miguel Bernecker, Katharina Methner, Mattia Tagliavento, Jens Fiebig, and Andreas Mulch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2093, https://doi.org/10.5194/egusphere-2024-2093, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
During the Middle Miocene, the Earth transitioned from a warm period to a colder one, significantly impacting global ecosystems and climate patterns. We present a climate record (23–13 Ma) from northern Mediterranean soil carbonates in France, revealing dynamic temperature changes and suggesting early Mediterranean-like climate periods. Our climate record aligns well with terrestrial European and global marine records, enhancing our understanding of Miocene climate dynamics around the Alps.
Daniel Boateng, Sebastian G. Mutz, Armelle Ballian, Maud J. M. Meijers, Katharina Methner, Svetlana Botsyun, Andreas Mulch, and Todd A. Ehlers
Earth Syst. Dynam., 14, 1183–1210, https://doi.org/10.5194/esd-14-1183-2023, https://doi.org/10.5194/esd-14-1183-2023, 2023
Short summary
Short summary
We present model-based topographic sensitivity experiments that provide valuable constraints for interpreting past proxies and records of climate and tectonic processes. The study uses a climate model to quantify the response of regional climate and oxygen isotopic composition of precipitation to diachronous surface uplift scenarios across the European Alps. The results suggest that isotopic signal changes can be measured in geologic archives using stable isotope paleoaltimetry.
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Katharina Methner, Olaf Lenz, Walter Riegel, Volker Wilde, and Andreas Mulch
Clim. Past, 15, 1741–1755, https://doi.org/10.5194/cp-15-1741-2019, https://doi.org/10.5194/cp-15-1741-2019, 2019
Short summary
Short summary
We describe the presence of a carbon isotope excursion (CIE) in Paleogene lignites (Schöningen, DE) and assess paleoenvironmental changes in midlatitudinal late Paleocene–early Eocene peat mire records along the paleo-North Sea coast (Schöningen, Cobham, Vasterival). These records share major characteristics of a reduced CIE (~ -1.3 ‰) in terms of bulk organic matter, increased fire activity (pre-CIE), minor plant species changes, and drowning of near-coastal mires during the CIE.
Related subject area
Subject: Vegetation Dynamics | Archive: Terrestrial Archives | Timescale: Cenozoic
Rapid topographic growth of the Diancang Shan, southeastern margin of the Tibetan Plateau since 5.0–3.5 Ma
Aridification signatures from fossil pollen indicate a drying climate in east-central Tibet during the late Eocene
Palynological evidence for late Miocene stepwise aridification on the northeastern Tibetan Plateau
Climate-vegetation modelling and fossil plant data suggest low atmospheric CO2 in the late Miocene
Late Pliocene and Early Pleistocene vegetation history of northeastern Russian Arctic inferred from the Lake El'gygytgyn pollen record
A pollen-based biome reconstruction over the last 3.562 million years in the Far East Russian Arctic – new insights into climate–vegetation relationships at the regional scale
Late Cenozoic continuous aridification in the western Qaidam Basin: evidence from sporopollen records
Mid-Tertiary paleoenvironments in Thailand: pollen evidence
Chunxia Zhang, Haibin Wu, Xiuli Zhao, Yunkai Deng, Yunxia Jia, Wenchao Zhang, Shihu Li, and Chenglong Deng
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-43, https://doi.org/10.5194/cp-2024-43, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Clarifying the paleoelevation changes of the Diancang Shan (DCS) is important for comprehending both tectonics and the climatic effects in the transition zone between the high Tibetan Plateau and the lower relief of East and South Asia. Our results show low elevations of the DCS between ~7.6 Ma and ~5.0 Ma, followed by significant uplift of 1000–2000 meters between ~5.0 Ma and ~3.5 Ma. It provides a novel method for reconstructing the paleoelevation of mountains like the DCS in orogenic belts.
Qin Yuan, Natasha Barbolini, Catarina Rydin, Dong-Lin Gao, Hai-Cheng Wei, Qi-Shun Fan, Zhan-Jie Qin, Yong-Sheng Du, Jun-Jie Shan, Fa-Shou Shan, and Vivi Vajda
Clim. Past, 16, 2255–2273, https://doi.org/10.5194/cp-16-2255-2020, https://doi.org/10.5194/cp-16-2255-2020, 2020
Short summary
Short summary
Fossil pollen and spores reveal that a strongly seasonal steppe–desert ecosystem existed in the Nangqian Basin, east-central Tibet during the late Eocene (41.2–37.8 Ma). Vegetation was characterized by drought-tolerant shrubs, diverse ferns, and broad-leaved forests. The climate warmed temporarily, then rapidly aridified thereafter due to westward regression of the proto-Paratethys Sea from Eurasia. Sea retreat was a main driver of widespread long-term Asian aridification during the late Eocene.
Jia Liu, Ji Jun Li, Chun Hui Song, Hao Yu, Ting Jiang Peng, Zheng Chuang Hui, and Xi Yan Ye
Clim. Past, 12, 1473–1484, https://doi.org/10.5194/cp-12-1473-2016, https://doi.org/10.5194/cp-12-1473-2016, 2016
Short summary
Short summary
The late Cenozoic basins in the northeastern Tibetan Plateau document both the tectonic uplift process and its associated environmental changes. Here, we investigated a late Miocene sporopollen record from the Tianshui Basin in the northeastern Tibetan Plateau. The results show that a persistent aridification trend parallels the global cooling of the late Miocene, and the stepwise vegetation succession is consistent with the major uplift events of the Tibetan Plateau.
M. Forrest, J. T. Eronen, T. Utescher, G. Knorr, C. Stepanek, G. Lohmann, and T. Hickler
Clim. Past, 11, 1701–1732, https://doi.org/10.5194/cp-11-1701-2015, https://doi.org/10.5194/cp-11-1701-2015, 2015
Short summary
Short summary
We simulated Late Miocene (11-7 Million years ago) vegetation using two plausible CO2 concentrations: 280ppm CO2 and 450ppm CO2. We compared the simulated vegetation to existing plant fossil data for the whole Northern Hemisphere. Our results suggest that during the Late Miocene the CO2 levels have been relatively low, or that other factors that are not included in the models maintained the seasonal temperate forests and open vegetation.
A. A. Andreev, P. E. Tarasov, V. Wennrich, E. Raschke, U. Herzschuh, N. R. Nowaczyk, J. Brigham-Grette, and M. Melles
Clim. Past, 10, 1017–1039, https://doi.org/10.5194/cp-10-1017-2014, https://doi.org/10.5194/cp-10-1017-2014, 2014
P. E. Tarasov, A. A. Andreev, P. M. Anderson, A. V. Lozhkin, C. Leipe, E. Haltia, N. R. Nowaczyk, V. Wennrich, J. Brigham-Grette, and M. Melles
Clim. Past, 9, 2759–2775, https://doi.org/10.5194/cp-9-2759-2013, https://doi.org/10.5194/cp-9-2759-2013, 2013
Y. F. Miao, X. M. Fang, F. L. Wu, M. T. Cai, C. H. Song, Q. Q. Meng, and L. Xu
Clim. Past, 9, 1863–1877, https://doi.org/10.5194/cp-9-1863-2013, https://doi.org/10.5194/cp-9-1863-2013, 2013
P. Sepulchre, D. Jolly, S. Ducrocq, Y. Chaimanee, J.-J. Jaeger, and A. Raillard
Clim. Past, 6, 461–473, https://doi.org/10.5194/cp-6-461-2010, https://doi.org/10.5194/cp-6-461-2010, 2010
Cited articles
Abels, H. A., Clyde, W. C., Gingerich, P. D., Hilgen, F. J., Fricke, H. C.,
Bowen, G. J., and Lourens, L. J.: Terrestrial carbon isotope excursions and
biotic change during Palaeogene hyperthermals, Nat. Geosci., 5, 326–329, https://doi.org/10.1038/ngeo1427, 2012.
Abels , H. A., Lauretano, V., van Yperen, A. E., Hopman, T., Zachos, J. C., Lourens, L. J., Gingerich, P. D., and Bowen, G. J.: Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming, Clim. Past, 12, 1151–1163, https://doi.org/10.5194/cp-12-1151-2016, 2016.
Ahrendt, H., Köthe, A., Lietzow, A., Marheine, D., and Ritzkowski, S.:
Lithostratigraphie, Biostratigraphie und radiometrische Datierung des
Unter-Eozäns von Helmstedt (SE-Niedersachsen), Z. dt. geol. Ges. 146,
450–457, 1995.
Baczynski, A. A., McInerney, F. A., Wing, S. L., Kraus, M. J., Bloch, J. I.,
Boyer, D. M., Secord, R., Morse, P. E., and Fricke, H. C.:
Chemostratigraphic implications of spatial variation in the
Paleocene–Eocene Thermal Maximum carbon isotope excursion, SE Bighorn
Basin, Wyoming, Geochem. Geophys. Geosyst., 14, 4133–4152,
https://doi.org/10.1002/ggge.20265, 2013.
Baczynski, A. A., McInerney, F. A., Wing, S. L., Kraus, M. J., Morse, P. E.,
Bloch, J. I., Chung, A. H., and Freeman, K. H.: Distortion of carbon isotope
excursion in bulk soil organic matter during the Paleocene-Eocene thermal
maximum, GSA Bulletin, 128, 1352–1366, https://doi.org/10.1130/B31389.1, 2016.
Bains, S., Norris, R. D., Corfield, R. M., and Faul, K. L.: Termination of
global warmth at the Palaeocene/Eocene boundary through productivity
feedback, Nature, 407, 171–174, https://doi.org/10.1038/35025035, 2000.
Blumenstengel, H. and Krutzsch, W.: Tertiär, in: Geologie von
Sachsen-Anhalt, edited by: Bachmann, G. H., Ehling, B. C., Eichner, R., and
Schwab M., Schweizerbart, Stuttgart, Germany, 267–273, ISBN 978-3-510-65240-2, 2008.
Bohaty, S. M. and Zachos, J. C.: Significant Southern Ocean warming event in
the late middle Eocene, Geology, 31, 1017–1020,
https://doi.org/10.1130/G19800.1, 2003.
Bohaty, S. M., Zachos, J. C., Florindo, F., and Delaney, M. L.: Coupled
greenhouse warming and deep-sea acidification in the middle Eocene,
Paleoceanography, 24, 1–16, https://doi.org/10.1029/2008PA001676, 2009.
Bowen, G., Maibauer, B., Kraus, M., Röhl, U., Westerhold, T., Steimke,
A., Gingerich, P. D., Wing, S. L., and Clyde, W. C.: Two massive, rapid
releases of carbon during the onset of the Palaeocene–Eocene thermal
maximum, Nat. Geosci., 8, 44–47, https://doi.org/10.1038/ngeo2316,
2015.
Bralower, T. J.: Evidence of surface water oligotrophy during the
Paleocene-Eocene thermal maximum: Nannofossil assemblage data from Ocean
Drilling Program Site 690, Maud Rise, Weddell Sea, Paleoceanography, 17, 1023, https://doi.org/10.1029/2001pa000662, 2002.
Brandes, C., Pollok, L., Schmidt, C., Wilde, V., and Winsemann, J.: Basin
modelling of a lignite-bearing salt rim syncline: insights into rim syncline
evolution and salt diapirism in NW Germany, Basin Res., 24, 699–716, https://doi.org/10.1111/j.1365-2117.2012.00544.x, 2012.
Bujak, J. P. and Brinkhuis, H.: Global warming and dinocyst changes across
the Paleocene/Eocene Epoch boundary, in: Late Paleocene–early Eocene
climatic and biotic events in the marine and terrestrial records, edited by:
Aubry, M. P., Lucas, S. G., and Berggren, W., Columbia University Press, New
York, USA, 277–295, ISBN 978-0231102384, 1998.
Bujak, J. P. and Mudge, D.: A high-resolution North Sea dinocyst zonation,
J. Geol. Soc. Lond., 151, 449–462, 1994.
Cavagnetto, C.: La palynoflore d'un gisement d'ambre de l'Eocène basal
du Bassin Parisien (Le Quesnoy, France), Palaeontographica B, 255, 147–171,
2000.
Chen, Z., Wang, X., Hu, J., Yang, S., Zhu, M., Dong, X., Tang, Z., Peng, P.,
and Ding, Z.: Structure of the carbon isotope excursion in a high-resolution
lacustrine Paleocene–Eocene Thermal Maximum record from central China,
Earth Planet. Sc. Lett., 408, 331–340, https://doi.org/10.1016/j.epsl.2014.10.027, 2014.
Collinson, M. E., Hooker, J. J., and Gröcke, D. R.: Cobham Lignite Bed
and penecontemporaneous macrofloras of southern England: A record of
vegetation and fire across the Paleocene-Eocene Thermal Maximum, in: Causes
and consequences of globally warm climates in the early Paleogene, edited
by: Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E., GSA Special
Paper, 369, 333–349, https://doi.org/10.1130/0-8137-2369-8.333, 2003.
Collinson, M. E., Steart, D. C., Harrington, G. J., Hooker, J. J., Scott, A.
C., Allen, L. O., Glasspool, I. J., and Gibbons, S. J.: Palynological
evidence of vegetation dynamics in response to palaeoenvironmental change
across the onset of the Paleocene-Eocene Thermal Maximum at Cobham, Southern
England, Grana, 48, 38–66, https://doi.org/10.1080/00173130802707980, 2009.
Costa, L. I. and Manum, S. B.: The distribution of the interregional
zonation of the Paleogene (D1–D15) and the Miocene (D16–D20), in: The
Northwest European Tertiary Basin. Results of the International Geological
Correlation Programme, Project 124, edited by: Vinken, R., Geol. Jahrb. A.,
100, 321–330, 1988.
Cramer, B. S., Wright, J. D., Kent, D. V., and Aubry, M. P.: Orbital climate
forcing of δ13C excursions in the late Paleocene–early Eocene
(chrons C24n–C25n), Paleoceanography, 18, 1097,
https://doi.org/10.1029/2003PA000909, 2003.
Crouch, E. M., Heilmann-Clausen, C., Brinkhuis, H., Morgans, H. E. G.,
Rogers, K. M., Egger, H., and Schmitz, B.: Global dinoflagellate event
associated with the late Paleocene thermal maximum, Geology, 29, 315–318,
https://doi.org/10.1130/0091-7613(2001)029<0315:GDEAWT>2.0.CO;2, 2001.
Dalrymple, R. W. and Choi, K.: Morphologic and facies trends through the
fluvial-marine transition in tide-dominated depositional systems: a
schematic framework for environmental and sequence-stratigraphic
interpretation, Earth-Sci. Rev., 81, 135–174,
https://doi.org/10.1016/j.earscirev.2006.10.002, 2007.
DeConto, R. M. and Pollard, D.: A coupled climate-ice sheet modeling
approach to the early Cenozoic history of the Antarctic ice sheet,
Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, 39–52,
https://doi.org/10.1016/S0031-0182(03)00393-6, 2003.
Denison, C. N.: Stratigraphic and sedimentological aspects of the worldwide
distribution of Apectodinium in Paleocene/Eocene Thermal Maximum deposits, Geol. Soc. Spec. Publ., 511, 269–308, https://doi.org/10.1144/SP511-2020-46, 2021.
Dickens, G. R.: Carbon addition and removal during the Late Palaeocene
Thermal Maximum: Basic theory with a preliminary treatment of the isotope
record at ODP Site 1051, Blake Nose, Geol. Soc. Spec. Publ., 183, 293–305,
https://doi.org/10.1144/GSL.SP.2001.183.01.14, 2001.
Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., and Freeman, K.
H.: Global patterns in leaf 13C discrimination and implications for
studies of past and future climate, P. Natl. Acad. Sci. USA, 107, 5738–5743,
https://doi.org/10.1073/pnas.0910513107, 2010.
Domingo, L., López-Martínez, N., Leng, M. J., and Grimes, S. T.:
The Paleocene–Eocene Thermal Maximum record in the organic matter of the
Claret and Tendruy continental sections (South-central Pyrenees, Lleida,
Spain), Earth Planet. Sc. Lett., 281, 226–237,
https://doi.org/10.1016/j.epsl.2009.02.025, 2009.
Dupuy, C., Quesnel, F., and Baele, J.-M.: An unexpected record of the PETM in terrestrial and organic sediments of Avesnois, between the Paris and Belgian Basins, NW Europe, Climatic and Biotic Events of the Paleogene meeting: CBEP 2014, July 2014, Ferrara, Italy, 68–69, https://hal-brgm.archives-ouvertes.fr/hal-01010549 (last access: 10 October 2022), 2014.
Foreman, B. Z., Heller, P. L., and Clementz, M. T.: Fluvial response to
abrupt global warming at the Palaeocene/Eocene boundary, Nature, 491,
92–95, https://doi.org/10.1038/nature11513, 2012.
Garel, S., Schnyder, J., Jacob, J., Dupuis, C., Boussafir, M., Le Milbeau C,
Storme, J. Y., Iakovleva, A. I., Yans, J., Baudin, F., Fléhoc, C., and
Quesnel, F.: Paleohydrological and paleoenvironmental changes recorded in
terrestrial sediments of the Paleocene–Eocene boundary (Normandy, France),
Palaeogeogr. Palaeoclimatol. Palaeoecol., 376, 184–199,
https://doi.org/10.1016/j.palaeo.2013.02.035, 2013.
Garel, S., Dupuis, C., Quesnel, F., Jacob, J., Yans, J., Magioncalda, R.,
Fléhoc, C., and Schnyder J.: Multiple early Eocene carbon isotope
excursions associated with environmental changes in the Dieppe-Hampshire
Basin (NW Europe), BSGF – Earth Sci. Bull., 191, 33,
https://doi.org/10.1051/bsgf/2020030, 2020.
Gedl, P.: Eocene dinoflagellate cysts from the Popiele beds at Koniusza
(Skole Nappe, Flysch Carpathians, Poland): taxonomy, biostratigraphy, and
palaeoenvironmental reconstruction of a marginal marine basin, Stud.
Geol. Polon., 136, 5–197, 2013.
Gingerich, P. D.: Environment and evolution through the Paleocene–Eocene
thermal maximum, Trends Ecol. Evol., 21, 246–253,
https://doi.org/10.1016/j.tree.2006.03.006, 2006.
Giorgioni, M., Jovane, L., Rego, E. S., Rodelli, D., Frontalini, F.,
Coccioni, R., Catanzariti, R., and Öczan, E.: Carbon cycle instability
and orbital forcing during the Middle Eocene Climatic Optimum, Sci. Rep., 9,
9357, https://doi.org/10.1038/s41598-019-45763-2, 2019.
Gramann, F., Harre, W., Kreuzer, H., Look, E. R., and Mattiat, B.: K-Ar ages
of Eocene to Oligocene glauconitic sands from Helmstedt and Lehrte
(Northwestern Germany), Newsl. Stratigr., 4, 71–86, 1975.
Gürs, K.: Das Tertiär Nordwestdeutschlands in der Stratigraphischen
Tabelle von Deutschland 2002, Newsl. Stratigr., 41, 313–322, 2005.
Hammer-Schiemann, G.: Palynologische Untersuchungen zur Fazies und
Ökologie der Unterflözgruppe im Tagebau Schöningen
(Untereozän, Helmstedt, Bez. Braunschweig), PhD thesis, University of
Göttingen, Göttingen, Germany, 107 pp., https://opac.sub.uni-goettingen.de/ (last access: 10 October 2022), 1998.
Haq, B. U., Hardenbol, J., and Vail, P. R.: Chronology of fluctuating sea
levels since the Triassic, Science, 235, 1156–1167,
https://doi.org/10.1126/science.235.4793.1156, 1987a.
Haq, B. U., Hardenbol, J., and Vail, P. R.: The new chronostratigraphic
basis of Cenozoic and Mesozoic sea level cycles, in: Timing and depositional
history of eustatic sequences: Constraints on seismic stratigraphy, edited
by: Ross, C. A. and Harman, D., Cushman Foundation for Foraminiferal
Research Special Publication, 24, 7–13, ISBN 978-9998453067, 1987b.
Haq, B. U., Hardenbol, J., and Vail, P. R.: Mesozoic and Cenozoic
chronostratigraphy and cycles of sea-level change, in: Sea-level changes: An
integrated approach, edited by: Wilgus, C. K., Hastings, B. S., Ross, C. A.,
Posamentier, H. W., Van Wagoner, J., and Kendall, C. G. S. C., Spec. Publ. Soc. Econ. Paleont. Miner., Tulsa, Oklahoma, USA, 42, 71–108,
https://doi.org/10.2110/pec.88.01.0071, 1988.
Heilmann-Clausen, C., Nielsen, O. B., and Gersner, F.: Lithostratigraphy and
depositional environments in the Upper Paleocene and Eocene of Denmark,
Bull. Geol. Soc. Denm., 33, 287–323, 1985.
Hollis, C. J., Handley, L., Crouch, E. M., Morgans, H. E. G., Baker, J. A.,
Creech, J., Collins, K. S., Gibbs, S. J., Huber, M., Schouten, S., Zachos,
J. C., and Pancost, R. D.: Tropical sea temperatures in the high-latitude
South Pacific during the Eocene, Geology, 37, 99–102,
https://doi.org/10.1130/G25200A.1, 2009.
Hooker, J. J. and Collinson, M.: Mammalian faunal turnover across the
Paleocene-Eocene boundary in NW Europe: the roles of displacement, community
evolution and environment, Austrian J. Earth Sci., 105, 17–28, 2012.
Iakovleva, A. I., Brinkhuis, H., and Cavagnetto, C.: Late Palaeocene–Early
Eocene dinoflagellate cysts from the Turgay Strait, Kazakhstan; correlations
across ancient seaways, Palaeogeogr. Palaeoclimatol. Palaeoecol., 172,
243–268, https://doi.org/10.1016/S0031-0182(01)00300-5, 2001.
Iakovleva, A. I., Quesnel, F., Dupuis, C., Storme, J. Y., Breillat, N.,
Magioncalda, R., Iacumin, P., Fléhoc, C., Roche, E., Smith, T., Baele,
J. M., Yans, J., and De Coninck, J.: New integrated high resolution
dinoflagellate cyst stratigraphy and litho- and chemostratigraphy from the
Paris and Dieppe–Hampshire basins for the “Sparnacian”, in: STRATI 2013,
edited by: Rocha, R., Pais, J., Kullberg J., and Finney S., Springer
Geology, Springer, Cham, Switzerland, 107–111,
https://doi.org/10.1007/978-3-319-04364-7_22, 2013.
Iakovleva, A. I., Quesnel, F., and Dupuis, C.: New insights on the Late
Pale–cene – Early Eocene dinoflagellate cyst zonation for the Paris and
Dieppe basins, Earth Sciences Bulletin, 192, 44,
https://doi.org/10.1051/bsgf/2021035, 2021.
Inglis, G. N., Collinson, M. E., Riegel, W., Wilde, V., Robson, B. E., Lenz,
O. K., and Pancost, R. D.: Ecological and biogeochemical change in an early
Paleogene peat-forming environment: Linking biomarkers and palynology,
Palaeogeogr., Palaeoecl., 438, 245–255, https://doi.org/10.1016/j.palaeo.2015.08.001, 2015.
Inglis, G. N., Bragg, F., Burls, N. J., Cramwinckel, M. J., Evans, D., Foster, G. L., Huber, M., Lunt, D. J., Siler, N., Steinig, S., Tierney, J. E., Wilkinson, R., Anagnostou, E., de Boer, A. M., Dunkley Jones, T., Edgar, K. M., Hollis, C. J., Hutchinson, D. K., and Pancost, R. D.: Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene, Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, 2020.
Jaramillo, C., Ochoa, D., Contreras, L., Pagani, M., Carvajal-Ortiz, H.,
Pratt, L. M., Krishnan, S., Cardona, A., Romero, M., Quiroz, L., Rodriguez,
G., Rueda, M. J., de la Parra, F., Morón, S., Green, W., Bayona, G.,
Montes, C., Quintero, O., Ramirez, R., Mora, G., Schouten, S., Bermudez, H.,
Navarewtte, R., Parra, F., Alvarán, M., Osorno, J., Crowley, J. L.,
Valencia, V., and Vervoort, J.: Effects of rapid global warming at the
Paleocene-Eocene Boundary on Neotropical Vegetation, Science, 330, 957–961,
https://doi.org/10.1126/science.1193833, 2010.
Kennett, J. P. and Stott, L. D.: Abrupt deep-sea warming, palaeoceanographic
changes and benthic extinctions at the end of the Palaeocene, Nature, 353,
225–229, https://doi.org/10.1038/353225a0, 1991.
Kirtland Turner, S., Sexton, P., Charles, C. D., and Norris, R. D.:
Persistence of carbon release events through the peak of early Eocene global
warmth, Nat. Geosci., 7, 748–751, https://doi.org/10.1038/ngeo2240, 2014.
Kominz, M. A., Browning, J. V., Miller, K. G., Sugarman, P. J., Misintzeva,
S., and Scotese, C. R.: Late Cretaceous to Miocene sea-level estimates from
the New Jersey and Delaware coastal plain coreholes: An error analysis,
Basin Res., 20, 211–226, https://doi.org/10.1111/j.1365-2117.2008.00354.x,
2008.
Köthe, A.: Paleogene dinoflagellates from Northwest Germany, Geol.
Jahrb. A, 118, 1–111, 1990.
Köthe, A.: Dinozysten-Zonierung im Tertiär Norddeutschlands, Revue
Paléobiologie, 22, 895–923, 2003.
Köthe, A. and Piesker, B.: Stratigraphic distribution of Paleogene and
Miocene dinocysts in Germany, Revue Paléobiologie, 26, 1–39, 2007.
Krutzsch, W.: Die stratigraphisch verwertbaren Sporen- und Pollenformen des
mitteleuropäischen Alttertiärs, J. Geol., 3, 309–379, 1970.
Lauretano, V., Littler, K., Polling, M., Zachos, J. C., and Lourens, L. J.: Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum, Clim. Past, 11, 1313–1324, https://doi.org/10.5194/cp-11-1313-2015, 2015.
Lenz, O. K.: Palynologie und Paläoökologie eines Küstenmoores
aus dem Mittleren Eozän Mitteleuropas – Die Wulfersdorfer Flözgruppe
aus dem Tagebau Helmstedt, Niedersachsen, Palaeontogr. Abt. B, 271, 1–157,
2005.
Lenz, O. K., Riegel, W., and Wilde, V.: Greenhouse conditions in lower Eocene
coastal wetlands? – Lessons from Schöningen, Northern Germany, PLoS ONE,
16, e0232861, https://doi.org/10.1371/journal.pone.0232861, 2021.
Lietzow, A. and Ritzkowski, S.: Das marine Paläogene bei Helmstedt,
südöstliches Niedersachsen, in: Das Tertiär im mitteldeutschen
Ästuar, Stand und aktuelle Probleme, edited by: Friedel, C. H. and
Balaske, P., Exkurs. f. u. Veröfftl. Dt. Ges. Geowiss., 230, Berlin,
Hannover, Germany, 20–22, 2005.
Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thomas, E., Röhl,
U., Bowles, J., and Raffi, I.: Astronomical pacing of late Palaeocene to
early Eocene global warming events, Nature, 235, 1083–1087,
https://doi.org/10.1038/nature03814, 2005.
McCarren, H., Thomas, E., Hasegawa, T., Röhl, U., and Zachos, J. C.:
Depth dependency of the Paleocene-Eocene carbon isotope excursion: Paired
benthic and terrestrial biomarker records (Ocean Drilling Program Leg 208,
Walvis Ridge), Geochem. Geophys. Geosyst., 9, Q10008,
https://doi.org/10.1029/2008GC002116, 2008.
McInerney, F. A. and Wing, S. L.: The Paleocene-Eocene Thermal Maximum: A
perturbation of carbon cycle, climate, and biosphere with implications for
the future, Annu. Rev. Earth Pl. Sci., 39, 489–516,
https://doi.org/10.1146/annurev-earth-040610-133431, 2011.
Methner, K., Mulch, A., Fiebig, J., Wacker, U., Gerdes, A., Graham, S. A.,
and Chamberlain, C. P.: Rapid Middle Eocene temperature change in western
North America, Earth Planet. Sc. Lett., 450, 132–139,
https://doi.org/10.1016/j.epsl.2016.05.053, 2016.
Methner, K., Lenz, O., Riegel, W., Wilde, V., and Mulch, A.: Paleoenvironmental response of midlatitudinal wetlands to Paleocene–early Eocene climate change (Schöningen lignite deposits, Germany), Clim. Past, 15, 1741–1755, https://doi.org/10.5194/cp-15-1741-2019, 2019.
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G.
S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and
Pekar, S. F.: The Phanerozoic record of global sea-level change, Science,
310, 1293–1298, https://doi.org/10.1126/science.1116412, 2005a.
Miller, K. G., Wright, J. D., and Browning J. V.: Visions of ice sheets in a
greenhouse world, Mar. Geol., 217, 215–231, https://doi.org/10.1016/j.margeo.2005.02.007, 2005b.
Mulch, A., Chamberlain, C. P., Cosca, M. A., Theyssier, C., Methner, K.,
Hren, M. T., and Graham, S. A.: Rapid change in high-elevation precipitation
patterns of western North America during the Middle Eocene Climatic Optimum
(MECO), Am. J. Sci., 315, 317–336, https://doi.org/10.2475/04.2015.02, 2015.
Nel, A., de Plöeg, G., Dejax, J., Dutheil, D., Franchesci, D.,
Gheerbrant, E., Godinot, M., Hervet, S., Menier, J. J., Augé, M.,
Bignot, G., Cavagnetto, C., Duffaud, S., Gaudant, J., Hua, S., Jpssang, A.,
de Broin, F. L., Pozzi, J. P., Paicheler, J. C., Beuchet, F., and Rage, J.
C.: Un gisement sparnacien exceptionnel à plantes, arthropodes et
vertébrés (Éocène basal, MP7): Le Quesnoy (France), Comptes
rendus de l'Academie des Sciences, Series IIA, Sciences de la terre et des
planètes, 329, 65–72, https://doi.org/10.1016/S1251-8050(99)80229-8,
1999.
Nickel, B.: Die mitteleozäne Mikroflora von Eckfeld bei
Manderscheid/Eifel, Mainzer Naturw. Archiv Beih., 18, 1–121, 1996.
Nicolo, M. J., Dickens, G. R., and Hollis, C. J.: South Pacific intermediate
water oxygen depletion at the onset of the Paleocene-Eocene thermal maximum
as depicted in New Zealand margin sections, Paleoceanography, 25, PA4210,
https://doi.org/10.1029/2009PA001904, 2010.
Nunes, F. and Norris, R. D.: Abrupt reversal in ocean overturning during the
Palaeocene/Eocene warm period, Nature, 439, 60–63,
https://doi.org/10.1038/nature04386, 2006.
Osman, A., Pollok, L., Brandes, C., and Winsemann, J.: Sequence stratigraphy
of a Paleogene coal bearing rim syncline: interplay of salt dynamics and sea
level changes, Schöningen, Germany, Basin Res., 25, 675–708,
https://doi.org/10.1111/bre.12021, 2013.
Pancost, R. D., Steart, D. S., Handley, L., Collinson, M. E., Hooker, J. J.,
Scott, A. C., Grassineau, N. V., Glasspool, I. J., and Pancost, R. D.:
Increased terrestrial methane cycling at the Palaeocene-Eocene thermal
maximum, Nature, 449, 332–336, https://doi.org/10.1038/nature06012, 2007.
Pflug, H. D.: Palynologie und Stratigraphie der eozänen Braunkohlen von
Helmstedt, Paläont. Z., 26, 112–137, 1952.
Pflug, H. D.: Palyno-Stratigraphie des Eozän/Oligozän im Raum von
Helmstedt, in Nordhessen und im südlichen Anschlussbereich, in:
Nordwestdeutschland im Tertiär, edited by: Tobien, H., Beiträge zur
Regionalen Geologie der Erde, 18: Gebrüder Borntraeger, Berlin,
Stuttgart, Germany, 567–582, ISBN 978-3-443-11018-5, 1986.
Riegel, W. and Wilde, V.: An early Eocene Sphagnum bog at Schöningen,
northern Germany, Int. J. Coal Geol., 159, 57–70,
https://doi.org/10.1016/j.coal.2016.03.021, 2016.
Riegel, W., Bode, T., Hammer, J., Hammer-Schiemann, G., Lenz, O. K., and
Wilde, V.: The paleoecology of the lower and middle Eocene at Helmstedt,
northern Germany – A study in contrasts, Acta Palaeobot. Suppl, 2,
349–358, 1999.
Riegel, W., Wilde, V., and Lenz, O. K.: The early Eocene of Schöningen
(N-Germany) – an interim report, Austrian J. Earth Sci., 105, 88–109,
2012.
Riegel, W., Lenz, O. K., and Wilde, V.: From open estuary to meandering
river in a greenhouse world – An ecological case study from the Middle
Eocene of Helmstedt, northern Germany, Palaios, 30, 304–326,
https://doi.org/10.2110/palo.2014.005, 2015.
Röhl, U., Bralower, T. J., Norris, R. D., and Wefer, G.: New chronology
for the late Paleocene thermal maximum and its environmental implications,
Geology, 28, 927–930, https://doi.org/10.1130/0091-7613(2000)28<927:NCFTLP>2.0.CO;2, 2000.
Röhl, U., Westerhold, T., Monechi, S., Thomas, E., Zachos, J. C., and Donner, B.: The third and final Early Eocene Thermal Maximum: Characteristics, timing and mechanisms of the “X” event, in: Geological Society of America, Salt Lake City Meeting, 16–19 October 2005, Salt Lake City, USA, Abstracts with Programs, vol. 37, no. 7, p. 264, https://gsa.confex.com/gsa/2005AM/webprogram/Paper92425.html (last access: 10 October 2022), 2005.
Röhl, U., Westerhold, T., Bralower, T. J., and Zachos, J. C.: On the
duration of the Paleocene-Eocene thermal maximum (PETM), Geochem. Geophys.
Geosyst., 8, Q12002, https://doi.org/10.1029/2007GC001784, 2007.
Schouten, S., Woltering, M., Rijpstra, W. I. C., Sluijs, A., Brinkhuis, H.,
and Sinninghe Damsté, J. S.: The Paleocene–Eocene carbon isotope
excursion in higher plant organic matter: Differential fractionation of
angiosperms and conifers in the Arctic, Earth Planet. Sc. Lett.,
258, 581–592, https://doi.org/10.1016/j.epsl.2007.04.024, 2007.
Scotese, C. R.: Atlas of Paleogene Paleogeographic Maps (Mollweide
Projection), Maps 8–15, Volume 1, The Cenozoic, PALEOMAP Atlas for ArcGIS,
PALEOMAP Project, Evanston, IL, USA, https://doi.org/10.13140/2.1.3417.6961, 2014.
Sexton, P. F., Norris, R. D., Wilson, P. A., Pälike, H., Westerhold, T.,
Röhl, U., Bolton, C. T., and Gibbs, S.: Eocene global warming events
driven by ventilation of oceanic dissolved organic carbon, Nature, 471,
349–352, https://doi.org/10.1038/nature09826, 2011.
Sluijs, A. and Brinkhuis, H.: A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf, Biogeosciences, 6, 1755–1781, https://doi.org/10.5194/bg-6-1755-2009, 2009.
Sluijs, A. and Dickens, G. R.: Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across early
Paleogene carbon cycle perturbations, Global Biogeochem. Cy., 26, GB4005,
https://doi.org/10.1029/2011GB004224, 2012.
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., Zachos,
J. C., Reichart, G.-J., Sinninghe Damsté, J. S., Crouch, E. M., and
Dickens, G. R.: Environmental precursors to rapid light carbon injection at
the Palaeocene/Eocene boundary, Nature, 450, 1218–1222,
https://doi.org/10.1038/nature06400, 2007.
Sluijs, A., Brinkhuis, H., Crouch, E. M., John, C. M., Handley, L.,
Munsterman, D., Bohaty, S. M., Zachos, J. C., Reichart, G.-J., Schouten, S.,
Pancost, R. D., Sinninghe Damsté J. S., Welters, N. L. D., Lotter, A.
F., and Dickens, G. R.: Eustatic variations during the Paleocene-Eocene
greenhouse world, Paleoceanography, 23, PA4216, https://doi.org/10.1029/2008PA001615,
2008.
Sluijs, A., Schouten, S., Donders, T., Schoon, P. L., Röhl, U.,
Reichart, G.-J., Sangiorgi, F., Kim, J.-H., Sinninghe Damsté J. S., and
Brinkhuis, H.: Warm and wet conditions in the Arctic region during Eocene
Thermal Maximum 2, Nat. Geosci., 2, 777–780, https://doi.org/10.1038/ngeo668, 2009.
Sluijs, A., Bijl, P. K., Schouten, S., Röhl, U., Reichart, G.-J., and Brinkhuis, H.: Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum, Clim. Past, 7, 47–61, https://doi.org/10.5194/cp-7-47-2011, 2011.
Sluijs, A., van Roij, L., Frieling, J., Laks, J., and Reichert, G.-J.:
Single-species dinoflagellate cyst carbon isotope ecology across the
Paleocene-Eocene Thermal Maximum, Geology, 46, 79–82,
https://doi.org/10.1130/G39598.1, 2018.
Smith, F. A., Wing, S. L., and Freeman, K. H.: Magnitude of the carbon
isotope excursion at the Paleocene-Eocene thermal maximum: the role of plant
community change, Earth Planet. Sc. Lett., 262, 50–65,
https://doi.org/10.1016/j.epsl.2007.07.021, 2007.
Speijer, R. P. and Wagner, T.: Sea-level changes and black shales associated
with the late Paleocene thermal maximum: Organic geochemical and
micropaleontologic evidence from the southern Tethyan margin (Egypt-Israel),
in: Catastrophic events and mass extinctions: impacts and beyond, edited by:
Koeberl, C. and MacLeod, K. G., Geol. Soc. Am. Spec. Pap., Boulder,
Colorado, USA, 356, 533–549, https://doi.org/10.1130/0-8137-2356-6.533, 2002.
Speijer, R. P., Scheibner, C., Stassen, P., and Morsi, A. M. M.: Response of
marine ecosystems to deep-time global warming: a synthesis of biotic
patterns across the Paleocene-Eocene Thermal Maximum (PETM), Austrian J.
Earth Sci., 105, 6–16, 2012.
Stach, E., Mackowsky, M. T., Teichmüller, M., Taylor, G. H., Chandra,
D., and Teichmüller, R.: Stach's Textbook of Coal Petrology,
Gebrüder Borntraeger, Berlin, Germany, ISBN 978-3-443-01018-8, 1982.
Standke, G.: Paläogeografie des älteren Tertiärs (Paleozän
bis Untermiozän) im mitteldeutschen Raum, Z. Dtsch. Ges. Geowiss., 159,
81–103, 2008a.
Standke, G.: Tertiär, in: Geologie von Sachsen. Geologischer Bau und
Entwicklungsgeschichte, edited by: Pälchen, W. and Walter, H., E.
Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany, 358–419, ISBN 978-3-510-65239-6, 2008b.
Standke, G., Escher, D., Fischer, J., and Rascher, J.: Das Tertiär
Nordwestsachsens. Ein geologischer Überblick, Sächsisches Landesamt
für Umwelt, Landwirtschaft und Geologie, Dresden, Germany, https://publikationen.sachsen.de/bdb/artikel/12191 (last access: 10 October 2022), 2010.
Steurbaut, E., De Coninck, J., Dupuis, C., and King, C.: Dinoflagellate cyst
events and depositional history of the Paleocene/Eocene boundary interval in
the southern North Sea Basin, Geol. Foren. Stock. För., 122, 154–157,
https://doi.org/10.1080/11035890001221154, 2000.
Steurbaut, E., Magioncalda, R., Dupuis, C., Van Simaeys, S., Roche, E., and
Roche, M.: Palynology, paleoenvironments, and organic carbon isotope
evolution in lagoonal Paleocene-Eocene boundary settings in North Belgium,
in: Causes and consequences of globally warm climates in the early
Paleogene, edited by: Wing, S. L., Gingerich, P. D., Schmitz, B., and
Thomas, E., GSA Special Paper, 369, 291–317,
https://doi.org/10.1130/0-8137-2369-8.291, 2003a.
Steurbaut, E., De Coninck, J., Dupuis, C., and King, C.: Supplemental material: Palynology, paleoenvironments, and organic carbon isotope evolution in lagoonal Paleocene-Eocene boundary settings in North Belgium, Geological Society of America, GSA Data Repository [data set], https://doi.org/10.1130/2003050, 2003b.
Stokke, E. W., Jones, M. T., Tierney, J. E., Svensen, H. H., and Whiteside,
J. H.: Temperature changes across the Paleocene-Eocene Thermal Maximum – a
new high-resolution TEX86 temperature record from the Eastern North Sea
Basin, Earth Planet. Sc. Lett., 544, 116388, https://doi.org/10.1016/j.epsl.2020.116388, 2020.
Storme, J. Y., Dupuis, C., Schnyder, J., Quesnel, F., Garel, S., Iakovleva,
A. I., Iacumin, P., Di Matteo, A., Sebilo, M., and Yans, J.: Cycles of
humid-dry climate conditions around the P/E boundary: new stable isotope
data from terrestrial organic matter in Vasterival section (NW France),
Terra Nova, 24, 114–122, https://doi.org/10.1111/j.1365-3121.2011.01044.x,
2012.
Stottmeister, L.: Tertiär, in: Erläuterungen zur Geologischen Karte
1 : 25 000 von Sachsen-Anhalt (GK25) Blatt Helmstedt 3732, 2nd edition,
edited by: Stottmeister, L., Jordan, H., and Röhling, H.-G., Landesamt
für Geologie und Bergwesen Sachsen-Anhalt, Halle, Germany, 135–155, ISBN 3-929951-22-3, 2007.
Thiele-Pfeiffer, H.: Die Mikroflora aus dem mitteleozänen Ölschiefer
von Messel bei Darmstadt, Palaeontogr. Abt. B, 211, 1–86, 1988.
Thomson, P. W. and Pflug, H.: Pollen und Sporen des mitteleuropäischen
Tertiärs. Gesamtübersicht über die stratigraphisch und
paläontologisch wichtigen Formen, Palaeontogr. Abt. B, 94, 1–138, 1953.
Tremblin, M., Khozyem, H., Adatte, T., Spangenberg, J. E., Fillon, C.,
Grauls, A., Hunger, T., Nowak, A., Läuchli, C., Lasseur, E., Roig,
J.-Y., Serrano, O., Calassou, S., Guillocheau, F., and Castelltort, S.:
Mercury enrichments of the Pyrenean foreland basins sediments support
enhanced volcanism during the Paleocene-Eocene thermal maximum (PETM),
Global Planet. Change, 212, 103794, https://doi.org/10.1016/j.gloplacha.2022.103794, 2022.
Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi, I., Zachos, J. C., and Wilkens, R. H.: Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?, Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, 2017.
Westerhold, T., Röhl, U., Donner, B., Frederichs, T., Kordesch, W. E.
C., Bohaty, S. M., Hodell, D.A., Laskar, J., and Zeebe, R. E.: Late Lutetian
Thermal Maximum – Crossing a thermal threshold in Earth's climate system?,
Geochem. Geophys. Geosyst., 19, 73–82, https://doi.org/10.1002/2017GC007240, 2018a.
Westerhold, T., Röhl, U., Donner, B., and Zachos, J. C.: Global extent
of early Eocene hyperthermal events: A new Pacific benthic foraminiferal
isotope record from Shatsky Rise (ODP Site 1209), Paleoceanography and
Paleoclimatology, 33, 626–642, https://doi.org/10.1029/2017PA003306, 2018b.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D.,
Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E.., Kroon, D.,
Laurentano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H.,
Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An
astronomically dated record of Earth's climate and its predictability over
the last 66 Million Years, Science, 369, 1383–1387,
https://doi.org/10.1126/science.aba6853, 2020.
Widera, M.: Compaction of lignite: a review of methods and results, Acta
Geol. Pol., 65, 367–378, https://doi.org/10.1515/agp-2015-0016, 2015.
Wilde, V., Riegel, W., and Lenz, O. K.: Das Paläogen im Helmstedter
Revier: Ein Forschungsthema im Geopark Harz. Braunschweiger Land. Ostfalen,
in: Wechselbeziehungen zwischen Mensch und Umwelt – Vergangenheit,
Gegenwart und Zukunft im Braunschweiger Land und seinem Umfeld, edited by:
Wilde, V., Zellmer, H., Hillgruber, F., and Serangeli, J., Gaussiana, 1,
28–33, https://doi.org/10.23689/fidgeo-4316, 2021.
Williams, G. L., Damassa, S. P., Fensome, R. A., and Guerstein, G. R.:
Wetzeliella and its allies – the “hole” story: a taxonomic revision of the Paleogene
dinoflagellate subfamily Wetzelielloideae, Palynology, 39, 289–344,
https://doi.org/10.1080/01916122.2014.993888, 2015.
Wing, S. L., Bao, H., and Koch, P. L.: An early Eocene cool period? Evidence
for continental cooling during the warmest part of the Cenozoic, in: Warm
Climates in Earth History, edited by: Huber, B. T., MacLeod, K. G., and Wing,
S. L., Cambridge University Press, Cambridge, UK, 197–237,
https://doi.org/10.1017/CBO9780511564512.008, 1999.
Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M. and
Freeman, K. H.: Transient floral change and rapid global warming at the
Paleocene-Eocene boundary, Science, 310, 993–996,
https://doi.org/10.1126/science.1116913, 2005.
Xie, Y., Wu, F., and Fang, X.: Abrupt collapse of a swamp ecosystem in
northeast China during the Paleocene–Eocene Thermal Maximum,
Palaeogeogr. Palaeocl., 595, 110975, https://doi.org/10.1016/j.palaeo.2022.110975, 2022.
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, and aberrations in global climate 65 Ma to present, Science, 292,
686–693, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J. C., Wara, M. W., Bohaty, S., Delaney, M. L., Petrizzo, M. R., Brill, A., Bralower, T. J., and Premoli-Silva, I.: A
transient rise in tropical sea surface temperature during the
Paleocene-Eocene thermal maximum, Science, 302, 1551–1554,
https://doi.org/10.1126/science.1090110, 2003.
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A.,
Kelly, D. C., Thomas, E., Raffi, I., Lourens, L. J., McCarren, H., and
Kroon, D.: Rapid acidification of the ocean during the Paleocene-Eocene
Thermal Maximum, Science, 308, 1611–1615,
https://doi.org/10.1126/science.1109004, 2005.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic
perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451,
279–283, https://doi.org/10.1038/nature06588, 2008.
Zachos, J. C., McCarren, H., Murphy, B., Röhl, U., and Westerhold, T.:
Tempo and scale of late Paleocene and early Eocene carbon isotope cycles:
Implications for the origin of hyperthermals, Earth Planet. Sc. Lett., 299,
242–249, https://doi.org/10.1016/j.epsl.2010.09.004, 2010.
Zeebe, R. E. and Lourens, L. J.: Solar system chaos and the
Paleocene-Eocene boundary age constrained by geology and astronomy, Science,
365, 926–929, https://doi.org/10.1126/science.aax0612, 2019.
Zeebe, R. E., Ridgwell, A., and Zachos, J. C.: Anthropogenic carbon release
rate unprecedented during the past 66 million years, Nat. Geosci., 9,
325–329, https://doi.org/10.1038/ngeo2681, 2016.
Zhang, Q., Wendler, I., Xu, X., Willems, H., and Ding, L.: Structure and
magnitude of the carbon isotope excursion during the Paleocene-Eocene
thermal maximum, Gondwana Res. 46, 114–123,
https://doi.org/10.1016/j.gr.2017.02.016, 2017.
Zhu, M., Ding, Z., Wang, X., Chen, Z., Jiang, H., Dong, X., Ji, J., Tang, Z.
and Luo, P.: High-resolution carbon isotope record for the Paleocene-Eocene
thermal maximum from the Nanyang Basin, Central China, Chin. Sci. Bull., 55,
3606–3611, https://doi.org/10.1007/s11434-010-4092-5, 2010.
Ziegler, P.: Geological Atlas of Western and Central Europe, Shell
Internationale Petroleum Maatschappij BV/Geological Society of London,
Elsevier, Amsterdam, the Netherlands, ISBN 9789066441255, 1990.
Short summary
We describe different carbon isotope excursions (CIEs) in an upper Paleocene to lower Eocene lignite succession (Schöningen, DE). The combination with a new stratigraphic framework allows for a correlation of distinct CIEs with long- and short-term thermal events of the last natural greenhouse period on Earth. Furthermore, changes in the peat-forming wetland vegetation are correlated with a CIE that can be can be related to the Paleocene–Eocene Thermal Maximum (PETM).
We describe different carbon isotope excursions (CIEs) in an upper Paleocene to lower Eocene...