Articles | Volume 18, issue 8
https://doi.org/10.5194/cp-18-1867-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1867-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Heavy mineral assemblages of the De Long Trough and southern Lomonosov Ridge glacigenic deposits: implications for the East Siberian Ice Sheet extent
Raisa Alatarvas
CORRESPONDING AUTHOR
Oulu Mining School, University of Oulu, Oulu 90570, Finland
Matt O'Regan
Department of Geological Sciences, Stockholm University, Stockholm
106 91, Sweden
Kari Strand
Oulu Mining School, University of Oulu, Oulu 90570, Finland
Related authors
No articles found.
Madeleine Santos, Lisa Bröder, Matt O'Regan, Iván Hernández-Almeida, Tommaso Tesi, Lukas Bigler, Negar Haghipour, Daniel B. Nelson, Michael Fritz, and Julie Lattaud
EGUsphere, https://doi.org/10.5194/egusphere-2025-3953, https://doi.org/10.5194/egusphere-2025-3953, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Our study examined how sea ice in the Beaufort Sea has changed over the past 13,000 years to better understand today’s rapid losses. By analyzing chemical tracers preserved in seafloor sediments, we found that the Early Holocene was largely ice-free, with warmer waters and lower salinity. Seasonal ice began forming about 7,000 years ago and expanded as the climate cooled. These long-term patterns show that continued warming could return the region to mostly ice-free conditions.
Jamie Barnett, Felicity Alice Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-653, https://doi.org/10.5194/egusphere-2025-653, 2025
Short summary
Short summary
Understanding how ice sheets have changed in the past can allow us to make better predictions for the future. By running a state-of-the-art model of Ryder Glacier, North Greenland, over the past 12,000 years we find that both a warming atmosphere and ocean play a key role in the evolution of the Glacier. Our conclusions stress that accurately quantifying the ice sheet’s interactions with the ocean are required to predict future changes and reliable sea level rise estimates.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Lara F. Pérez, Paul C. Knutz, John R. Hopper, Marit-Solveig Seidenkrantz, Matt O'Regan, and Stephen Jones
Sci. Dril., 33, 33–46, https://doi.org/10.5194/sd-33-33-2024, https://doi.org/10.5194/sd-33-33-2024, 2024
Short summary
Short summary
The Greenland ice sheet is highly sensitive to global warming and a major contributor to sea level rise. In Northeast Greenland, ice–ocean–tectonic interactions are readily observable today, but geological records that illuminate long-term trends are lacking. NorthGreen aims to promote scientific drilling proposals to resolve key scientific questions on past changes in the Northeast Greenland margin that further affected the broader Earth system.
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023, https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
Gabriel West, Darrell S. Kaufman, Martin Jakobsson, and Matt O'Regan
Geochronology, 5, 285–299, https://doi.org/10.5194/gchron-5-285-2023, https://doi.org/10.5194/gchron-5-285-2023, 2023
Short summary
Short summary
We report aspartic and glutamic acid racemization analyses on Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean (AO). The rates of racemization in the species are compared. Calibrating the rate of racemization in C. wuellerstorfi for the past 400 ka allows the estimation of sample ages from the central AO. Estimated ages are older than existing age assignments (as previously observed for N. pachyderma), confirming that differences are not due to taxonomic effects.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Cited articles
Akinin, V. V. and Miller, E. L.: Evolution of Calc-Alkaline Magmas of the
Okhotsk–Chukotka Volcanic Belt, Petrology, 19, 237–277,
https://doi.org/10.1134/S0869591111020020, 2011.
Akinin, V. V. and Zhulanova, L. L.: Age and geochemistry of zircon from the
oldest metamorphic rocks of the Omolon Massif (Northeast Russia),
Geochem. Int., 54, 651–659, https://doi.org/10.1134/S0016702916060021, 2016.
Avchenko, O. V. and Chudnenko, K. V.: The Probable Metapelite Nature of
Sapphirine–Spinel and Garnet Gedritites of the Aulandzha Block of the
Omolon Massif, Russ. Geol. Geophys., 61, 689–699, https://doi.org/10.15372/RGG2019157, 2020.
Backman, J., Fornaciari, E., and Rio, D.: Biochronology and paleoceanography
of late Pleistocene and Holocene calcareous nannofossil abundances across
the Arctic Basin, Mar. Micropaleontol., 72, 86–98, https://doi.org/10.1016/j.marmicro.2009.04.001, 2009.
Basilyan, A., Nikol'skyi, P., and Anisimov, M.: Pleistocene glaciation of
the New Siberian Islands – no more doubt, IPY News, 12, 7–9, 2008.
Batchelor, C. L. and Dowdeswell, J. A.: The physiography of High Arctic
cross-shelf troughs, Quaternary Sci. Rev., 92, 68–96, https://doi.org/10.1016/j.quascirev.2013.05.025, 2014.
Behrends, M.: Reconstruction of sea-ice drift and terrigenous sediment supply in the Late Quaternary: Heavy mineral associations in sediments of the Laptev Sea continental margin and the central Arctic Ocean, PhD thesis, University of Bremen, Reports on Polar Research, 310, 167 pp., https://doi.org/10.2312/BzP_0310_1999, 1999 (in German).
Behrends, M., Hoops, E., and Peregovich, B.: Distribution Patterns of Heavy
Minerals in Siberian Rivers, the Laptev Sea and the Eastern Arctic Ocean: An
Approach to Identify Sources, Transport and Pathways of Terrigenous Matter.
in: Land-Ocean Systems in the Siberian Arctic, edited by:
Kassesns, H., Bauch, H. A., Dmitrenko, I. A., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., and Timokhov, L. A., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-60134-7_24, 1999.
Belyi, V. F.: Stratigrafiya i struktury Okhotsko–Chukotskogo vulkanogennego poyasa (Stratigraphy and Structures of the OkhotskMChukotka
Volcanogenic Belt), Nauka, Moscow, 1977.
Cochran, J. R., Edwards, M. H., and Coakley B. J.: Morphology and structure of
the Lomonosov Ridge, Arctic Ocean, Geochem. Geophy. Geosy., 7, Q05019, https://doi.org/10.1029/2005GC001114, 2006.
Cronin, T. M., O'Regan, M., Pearce, C., Gemery, L., Toomey, M., Semiletov, I., and Jakobsson, M.: Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins, Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, 2017.
Darby, D. A., Ortiz, J., Polyak, L., Lund, S., Jakobsson, M., and Woodgate,
R. A.: The role of currents and sea ice in both slowly deposited central
Arctic and rapidly deposited Chukchi-Alaskan margin sediments, Global Planet. Change, 68, 58–72, https://doi.org/10.1016/j.gloplacha.2009.02.007, 2009.
Dong, L., Polyak, L., Liu, Y., Shi, X., Zhang, J., and Huang, Y.: Isotopic
Fingerprints of Ice-Rafted Debris Offer New Constraints on Middle to Late
Quaternary Arctic Circulation and Glacial History, Geochem. Geophy. Geosy., 21, e2020GC009019, https://doi.org/10.1029/1010GC009019, 2020.
Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K.,
and Hogan, K. A.: The variety and distribution of submarine glacial landforms
and implications for ice-sheet reconstruction, Geological Society, London,
Memoirs, 46, 519–552, https://doi.org/10.1144/M46.183, 2016.
Drachev, S. S.: Fold belts and sedimentary basins of the Eurasian Arctic,
Arktos, 2, 21, https://doi.org/10.1007/s41063-015-0014-8, 2016.
Drachev, S. S., Malyshev, N. A., and Nikishin, A. M.: Tectonic history and
petroleum geology of the Russian Arctic Shelves: an overview, Petroleum
Geology Conference series, 7, 591–619, https://doi.org/10.1144/0070591, 2010.
Drachev, S. S., Mazur, S., Campbell, S., Green, C., and Tishchenko, A.:
Crustal architecture of the East Siberian Arctic Shelf and adjacent Arctic
Ocean constrained by seismic data and gravity modelling results, J. Geodyn., 119, 123–148, https://doi.org/10.1016/j.jog.2018.03.005, 2018.
Elverhøi, A., Norem, H., Andersen, E. S., Dowdeswell, J. A., Fossen, I.,
Haflidason, H., Kenyon, N. H., Laberg, J. S., King, E. L., Sejrup, H. P.,
Solheim, A., and Vorren, T.: On the origin and flow behaviour of submarine
slides on deep-sea fans along the Norwegian–Barents Sea continental margin,
Geo-Mar. Lett., 17, 119–125, https://doi.org/10.1007/s003670050016, 1997.
Filatova, N. I. and Khain, V. E.: Development of the Verkhoyansk–Kolyma
Orogenic System As a Result of Interaction of Adjacent Continental and
Oceanic Plates, Geotectonics, 42, 258–285, https://doi.org/10.1134/S001685210804002X, 2008.
Jakobsson, M., Nilsson, J., O'Regan, M., Backman, J., Löwemark, L.,
Dowdeswell, J.A., Mayer, L., Polyak, L., Colleoni, F., Anderson, L. G.,
Björk, G., Darby, D., Eriksson, B., Hanslik, D., Hell, B., Marcussen,
C., Sellén E., and Wallin, Å.: An Arctic Ocean ice shelf during MIS 6 constrained by new geophysical and geological data, Quaternary Sci.
Rev., 29, 3505–3517, https://doi.org/10.1016/j.quascirev.2010.03.015, 2010.
Jakobsson, M., Mayer, L. A., Coakley, B., Dowdeswell, J. A., Forbes, S.,
Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M.,
Schenke, H.-W., Zarayskaya, Y., Accettella, A. D., Armstrong, A., Anderson,
R. M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell, B., Hestvik, O. B., Kristoffersen, Y., Marcussen, C.,
Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The International Bathymetric Chart of the Arctic Ocean
(IBCAO) Version 3.0, Geophys. Res. Lett., 39, L12609, https://doi.org/10.1029/2012GL052219, 2012.
Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., Dove, D.,
Dowdeswell, J. A., England, J. H., Funder, S., Hogan, K., Ingólfsson,
Ó., Jennings, A., Larsen, N. K., Kirchner, N., Landvik, J. Y., Mayer,
L., Mikkelsen, N., Möller, P., Niessen, F., Nilsson, J., O'Regan, M.,
Polyak, L., Nørgaard-Pedersen, N., and Stein, R.: Arctic Ocean glacial
history, Quaternary Sci. Rev., 92, 40–67, https://doi.org/10.1016/j.quascirev.2013.07.033, 2014.
Jakobsson, M., Nilsson, J., Anderson, L., Backman, J., Björk, G.,
Cronin, T.M., Kirchner, N., Koshurnikov, A., Mayer, L., Noormets, R.,
O'Regan, M., Stranne, C., Ananiev, R., Barrientos Macho, N., Cherniykh, D.,
Coxall, H., Eriksson, B., Flodén, T., Gemery, L., Gustafsson, Ö.,
Jerram, K., Johansson, C., Khortov, A., Mohammad, R., and Semiletov, I.:
Evidence for an ice shelf covering the central Arctic Ocean during the
penultimate glaciation, Nat. Commun. 7, 10365, https://doi.org/10.1038/ncomms10365, 2016.
Jokat, W., and Ickrath, M.: Structure of ridges and basins off East Siberia
along 81∘N, Arctic Ocean, Mar. Petrol. Geol., 64, 222–232, https://doi.org/10.1016/j.marpetgeo.2015.02.047, 2015.
Kabanova, O. I., Tikhomirov, P. L., and Yapaskurt, V. O.: Phenocrysts in
Silicic Volcanic Rocks in the Northern Part of the Okhotsk–Chukotka Belt
and Their Crystallization Conditions, Petrology, 19, 278–296, https://doi.org/10.1134/S0869591111030040, 2011.
Kaparulina, E., Strand, K., and Lunkka, J. P.: Provenance analysis of central
Arctic Ocean sediments: Implications for circum-Arctic ice sheet dynamics
and ocean circulation during Late Pleistocene, Quaternary Sci. Rev., 147, 210–220, https://doi.org/10.1016/j.quascirev.2015.09.017, 2016.
Katkov, S. M., Strickland, A., Miller, E. L., and Toro, J.: Age of Granite
Batholiths in the Anyui–Chukotka Foldbelt, Dokl. Earth Sci., 414, 515–518, https://doi.org/10.1134/S1028334X07040058, 2007.
Klemann, V., Heim, B., Bauch, H. A., Wetterich, S., and Opel, T: Sea-level
evolution of the Laptev Sea and the East Siberian Sea since the last glacial
maximum, Arktos, 1, 1, https://doi.org/10.1007/s41063-015-0004-x, 2015.
Konstantinovsky, A. A.: Structure and Geodynamics of the Verkhoyansk
Fold–Thrust Belt, Geotectonics, 41, 337–354, https://doi.org/10.1134/S0016852107050019, 2007.
Kristoffersen, Y.: Eurasia Basin, Geological Society of America, L, 365–378, https://doi.org/10.1130/DNAG-GNA-L.365, 1990.
Laberg, J. S. and Vorren, T. O.: Late Weichselian submarine debris flow
deposits on the Bear Island Trough Mouth Fan, Mar. Geol., 127, 45–72,
https://doi.org/10.1016/0025-3227(95)00055-4, 1995.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene, P.
Natl. Acad. Sci. USA, 111, 15296–15303, https://doi.org/10.1073/pnas.1411762111, 2014.
Licht, K. J. and Hemming, S. R.: Analysis of Antarctic glacigenic sediment
provenance trough geochemical and petrologic applications, Quaternary Sci. Rev., 164, 1–24, 2017.
Mange, M. A. and Maurer, F. W.: Heavy minerals in Colour, Chapman & Hall,
London, ISBN 978-94-011-2308-2, 1992.
Miller, E. L., Katkov, S. M., Strickland, A., Toro, J., Akinin, V. V., and Dumitru, T. A.: Geochronology and thermochronology of Cretaceous plutons and metamorphic country rocks, Anyui-Chukotka fold belt, North East Arctic Russia, Stephan Mueller Spec. Publ. Ser., 4, 157–175, https://doi.org/10.5194/smsps-4-157-2009, 2009.
Müller, C. and Stein, R.: Variability of fluvial sediment supply to the
Laptev Sea continental margin during Late Weichselian to Holocene times:
implications from clay mineral records, Int. J. Earth Sci., 89, 592–604, https://doi.org/10.1007/s005310000112, 2000.
Naugler, F. P., Silverberg, N., and Creager, J. S.: Recent Sediments of the
East Siberian Sea, in: Marine Geology and Oceanography of the Arctic Seas, edited by: Herman, Y., Springer, Berlin, Heidelberg, 191–210, https://doi.org/10.1007/978-3-642-87411-6, 1974.
Niessen, F., Hong, J. K., Hegewald, A., Matthiessen, J., Stein, R., Kim, H.,
Kim, S., Jensen, L., Jokat, W., and Nam, S.: Repeated Pleistocene glaciation
of the East Siberian continental margin, Nat. Geosci., 6, 842–846,
https://doi.org/10.1038/ngeo1904, 2013.
Nikolaeva, N. A., Derkachev, A. N., and Dudarev, O. V.: Mineral composition of sediments from the Eastern Laptev Sea shelf and East Siberian Sea,
Oceanology, 53, 472–480, https://doi.org/10.1134/S0001437013040073, 2013.
Ó Cofaigh, C., Taylor, J., Dowdeswell, J. A., and Pudsey, C. J.:
Palaeo-ice streams, trough mouth fans and high-latitude continental slope
sedimentation, Boreas, 32, 37–55, https://doi.org/10.1080/03009480310001858, 2003.
O'Regan, M., Sellén, E., and Jakobsson, M.: Middle to Late Quaternary grain size variations and sea-ice rafting on the Lomonosov Ridge, Polar Res., 33, 23672, https://doi.org/10.3402/polar.v33.23672, 2014.
O'Regan, M., Preto, P., Stranne, C., Jakobsson, M., and Koshurnikov, A.: Surface heat flow measurements from the East Siberian continental slope southern Lomonosov Ridge, Arctic Ocean, Geochem. Geophy. Geosy., 17, 1608–1622, https://doi.org/10.1002/2016GC006284, 2016.
O'Regan, M., Backman, J., Barrientos, N., Cronin, T. M., Gemery, L., Kirchner, N., Mayer, L. A., Nilsson, J., Noormets, R., Pearce, C., Semiletov, I., Stranne, C., and Jakobsson, M.: The De Long Trough: a newly discovered glacial trough on the East Siberian continental margin, Clim. Past, 13, 1269–1284, https://doi.org/10.5194/cp-13-1269-2017, 2017.
O'Regan, M., Backman, J., Fornaciari, E., Jakobsson, M., and West, G.:
Calcareous nannofossils anchor chronologies for Arctic Ocean sediments back
to 500 ka, Geology, 48, 1115–1119, https://doi.org/10.1130/G47479.1, 2020.
Polyak, L., Curry, W. B., Darby, D. A., Bischof, J., and Cronin, T. M.:
Contrasting glacial/interglacial regimes in theWestern Arctic Ocean as
exemplied by a sedimentary record from the Mendeleev Ridge, Palaeogeogr.
Palaeocl., 203, 73–93, 2004.
Polyak, L., Bischof, J., Ortiz, J. D., Darby, D. A., Channell, J. E. T.,
Xuan, C., Kaufman, D. S., Lovlie, R., Schneider, D. A., Eberl, D. D., Adler,
R. E., and Council, E. A.: Late Quaternary stratigraphy and sedimentation
patterns in the western Arctic Ocean, Global Planet. Change, 68, 5–17,
2009.
Polyak, L., Alley, R. B., Andrews, J. T., Brigham-Grette, J., Cronin, T. M.,
Darby, D. A., Dyke, A. S., Fitzpatrick, J. J., Funder, S., Holland, M.,
Jennings, A. E., Miller, G. H., O'Regan, M., Savelle, J., Serreze, M., St.
Jhn, K., White, J. W. C., and Wolff, E.: History of sea in the Arctic,
Quaternary Sci. Rev., 29, 1757–1778, https://doi.org/10.1016/j.quascirev.2010.02.010, 2010.
Prokopiev, A. V., Toro, J., Hourigan, J. K., Bakharev, A. G., and Miller, E. L.: Middle Paleozoic-Mesozoic boundary of the North Asian craton and the Okhotsk terrane: new geochemical and geochronological data and their geodynamic interpretation, Stephan Mueller Spec. Publ. Ser., 4, 71–84, https://doi.org/10.5194/smsps-4-71-2009, 2009.
Rachor, E. (Ed.): Scientific cruise report of the Arctic Expedition ARK-XI/1
of RV “Polarstern” in 1995, Reports on Polar Research, 226, 157 pp., https://doi.org/10.2312/BzP_0226_1997, 1997.
Rohling, E. J., Foster, G. L., Grant, K. M, Marina, G., Roberts, A. P.,
Tamisiea, M. E., and Williams, F.: Sea-level and deep-seatemperature
variability over the past 5.3 million years, Nature, 508, 477–482,
https://doi.org/10.1038/nature13230, 2014.
Schoster, F., Behrends, M., Müller, C., Stein, R., and Wahsner, M.: Modern river discharge in the Eurasian Arctic Ocean: evidence from mineral
assemblages and major and minor element distribution, Int. J. Earth Sci., 89,
486–495, https://doi.org/10.1007/s005310000120, 2000.
Stein, R.: Arctic Ocean sediments: processes, proxies, and paleoenvironment,
in: Developments in Marine Geology, edited by: Chamley, H., Elsevier, Vol. 2, 587 pp., https://doi.org/10.1016/S1572-5480(08)00014-6, 2008.
Stein, R. (Ed.): The Expedition PS115/2 of the Research Vessel POLARSTERN to
the Arctic Ocean in 2018, Reports on Polar and Marine Research 728, 249 pp.,
https://doi.org/10.2312/BzPM_0728_2019, 2019.
Stein, R., Boucsein, B., Fahl, K., Garcia de Oteyza, T., Knies, J., and
Niessen, J.: Accumulation of particulate organic carbon at the Eurasian
continental margin during late Quaternary times: controlling mechanisms and
paleoenvironmental significance, Global Planet. Change, 31, 87–104,
https://doi.org/10.1016/S0921-8181(01)00114-X, 2001.
Stein, R., Fahl, K., and Müller, J.: Proxy Reconstruction of Cenozoic
Arctic Ocean Sea-Ice History – from IRD to IP25, Polaforschung, 82, 37–71, 2012.
Stein, R. (Ed.): The Expedition PS87 of the Research Vessel POLARSTERN to
the Arctic Ocean in 2014, Reports on Polar and Marine Research 688, 273 pp.,
http://doi.org/10.2312/BzPM_0688_2015, 2015.
Stein, R., Fahl, K., Gierz, P., Niessen, F., and Lohmann, G.: Arctic Ocean sea ice cover during the penultimate glacial and last interglacial, Nat.
Commun, 8, 373, https://doi.org/10.1038/s41467-017-00552-1, 2017.
Stein, R., St. John, K., and Everest, J.: Expedition 377 Scientific
Prospectus: Arctic Ocean Paleoceanography (ArcOP), International Ocean
Discovery Program, https://doi.org/10.14379/iodp.sp.377.2021, 2021.
The SWERUS Scientific Party: Cruise Report SWERUS-C3 Leg 2, Bolin Centre for
Climate Research No 2, Stockholm University, ISBN 978-91-87355-21-9, 2014.
Tikhomirov, P. L., Kalinina, E. A., Moriguti, T., Makishima, A., Kobayashi,
K., Cherepanova, I. Yu., and Nakamura, E.: The Cretaceous Okhotsk–Chukotka
Volcanic Belt (NE Russia): Geology, geochronology, magma output rates, and
implocations on the genesis of silicic LIPs, J. Volcanol. Geoth. Res., 221–222, 14–32, https://doi.org/10.1016/j.jvolgeores.2011.12.011, 2012.
Tschegg, C., Ntaflos, T., and Akinin, V. V.: Polybaric petrogenesis of
Neogene alkaline magmas in an extensional tectonic environment: Viliga
Volcanic Field, northeast Russia, Lithos, 122, 13–24, https://doi.org/10.1016/j.lithos.2010.11.009, 2011.
Viscosi-Shirley, C., Mammone, K., Pisias, N., and Dymond, J.: Clay
mineralogy and multi-element chemistry of surface sediments on the
Siberian-Arctic shelf: implications for sediment provenance and grain size
sorting, Cont. Shelf Res., 23, 1175–1200, https://doi.org/10.1016/S0278-4343(03)00091-8, 2003.
West, G., Alexanderson, H., Jakobsson, M., and O'Regan, M.: Optically
stimulated luminescence dating supports pre-Eemian age for glacial ice on
the Lomonosov Ridge off the East Siberian continental shelf, Quaternary
Sci. Rev., 267, 107082, https://doi.org/10.1016/j.quascirev.2021.107082, 2021.
Ye, L., Zhang, W., Wang, R., Yu, X., and Jin, L.: Ice events along the East
Siberian continental margin during the last two glaciations: Evidence from
clay minerals, Mar. Geol., 428, 106289, https://doi.org/10.1016/j.margeo.2020.106289, 2020.
Short summary
This research contributes to efforts solving research questions related to the history of ice sheet decay in the Northern Hemisphere. The East Siberian continental margin sediments provide ideal material for identifying the mineralogical signature of ice sheet derived material. Heavy mineral analysis from marine glacial sediments from the De Long Trough and Lomonosov Ridge was used in interpreting the activity of the East Siberian Ice Sheet in the Arctic region.
This research contributes to efforts solving research questions related to the history of ice...