Articles | Volume 18, issue 8
https://doi.org/10.5194/cp-18-1797-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1797-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception
Institute of Geological Sciences, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Lena Mareike Thöle
Institute of Geological Sciences, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Ingrid Stimac
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, Bremerhaven, Germany
Walter Geibert
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, Bremerhaven, Germany
Minoru Ikehara
Center for Advanced Marine Core Research, Kochi University, Kochi, Japan
Gerhard Kuhn
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, Bremerhaven, Germany
Oliver Esper
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, Bremerhaven, Germany
Samuel Laurent Jaccard
Institute of Geological Sciences, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
Related authors
No articles found.
Zanna Chase, Karen E. Kohfeld, Amy Leventer, David Lund, Xavier Crosta, Laurie Menviel, Helen C. Bostock, Matthew Chadwick, Samuel L. Jaccard, Jacob Jones, Alice Marzocchi, Katrin J. Meissner, Elisabeth Sikes, Louise C. Sime, and Luke Skinner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3504, https://doi.org/10.5194/egusphere-2025-3504, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The impact of recent dramatic declines in Antarctic sea ice on the Earth system are uncertain. We reviewed how sea ice affects ocean circulation, ice sheets, winds, and the carbon cycle by considering theory and modern observations alongside paleo-proxy reconstructions. We found evidence for connections between sea ice and these systems but also conflicting results, which point to missing knowledge. Our work highlights the complex role of sea ice in the Earth system.
Gerald Auer, David De Vleeschouwer, Arisa Seki, Anna Joy Drury, Yusuke Kubo, Minoru Ikehara, Junichiro Kuroda, and the ReC23-01 scientists
EGUsphere, https://doi.org/10.5194/egusphere-2025-2760, https://doi.org/10.5194/egusphere-2025-2760, 2025
Short summary
Short summary
We explore new methods for ice-rafted debris detection in marine sediment cores to detect past climate changes and ice sheet dynamics. Traditional IRD detection methods are destructive and time-consuming. To alleviate this problem, we utilize non-destructive imaging techniques core material from the Indian Ocean. While promising, we found contamination to be an issue. Machine learning identifies density and chemical differences, but rigorous testing is needed to avoid false positives.
Daniel Müller, Bo Liu, Walter Geibert, Moritz Holtappels, Lasse Sander, Elda Miramontes, Heidi Taubner, Susann Henkel, Kai-Uwe Hinrichs, Denise Bethke, Ingrid Dohrmann, and Sabine Kasten
Biogeosciences, 22, 2541–2567, https://doi.org/10.5194/bg-22-2541-2025, https://doi.org/10.5194/bg-22-2541-2025, 2025
Short summary
Short summary
Coastal and shelf sediments are the most important sinks for organic carbon (OC) on Earth. We produced a new high-resolution sediment and porewater data set from the Helgoland Mud Area (HMA), North Sea, to determine which depositional factors control the preservation of OC. The burial efficiency is highest in an area of high sedimentation and terrigenous OC. The HMA covers 0.09 % of the North Sea but accounts for 0.76 % of its OC accumulation, highlighting the importance of the depocentre.
Wee Wei Khoo, Juliane Müller, Oliver Esper, Wenshen Xiao, Christian Stepanek, Paul Gierz, Gerrit Lohmann, Walter Geibert, Jens Hefter, and Gesine Mollenhauer
Clim. Past, 21, 299–326, https://doi.org/10.5194/cp-21-299-2025, https://doi.org/10.5194/cp-21-299-2025, 2025
Short summary
Short summary
Using a multiproxy approach, we analyzed biomarkers and diatom assemblages from a marine sediment core from the Powell Basin, Weddell Sea. The results reveal the first continuous coastal Antarctic sea ice record since the Last Penultimate Glacial. Our findings contribute valuable insights into past glacial–interglacial sea ice responses to a changing climate and enhance our understanding of ocean–sea ice–ice shelf interactions and dynamics.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Matthew Chadwick, Xavier Crosta, Oliver Esper, Lena Thöle, and Karen E. Kohfeld
Clim. Past, 18, 1815–1829, https://doi.org/10.5194/cp-18-1815-2022, https://doi.org/10.5194/cp-18-1815-2022, 2022
Short summary
Short summary
Algae preserved in seafloor sediments have allowed us to reconstruct how Antarctic sea ice has varied between cold and warm time periods in the last 130 000 years. The patterns and timings of sea-ice increase and decrease vary between different parts of the Southern Ocean. Sea ice is most sensitive to changing climate at the external edges of Southern Ocean gyres (large areas of rotating ocean currents).
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
María H. Toyos, Gisela Winckler, Helge W. Arz, Lester Lembke-Jene, Carina B. Lange, Gerhard Kuhn, and Frank Lamy
Clim. Past, 18, 147–166, https://doi.org/10.5194/cp-18-147-2022, https://doi.org/10.5194/cp-18-147-2022, 2022
Short summary
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Frerk Pöppelmeier, David J. Janssen, Samuel L. Jaccard, and Thomas F. Stocker
Biogeosciences, 18, 5447–5463, https://doi.org/10.5194/bg-18-5447-2021, https://doi.org/10.5194/bg-18-5447-2021, 2021
Short summary
Short summary
Chromium (Cr) is a redox-sensitive element that holds promise as a tracer of ocean oxygenation and biological activity. We here implemented the oxidation states Cr(III) and Cr(VI) in the Bern3D model to investigate the processes that shape the global Cr distribution. We find a Cr ocean residence time of 5–8 kyr and that the benthic source dominates the tracer budget. Further, regional model–data mismatches suggest strong Cr removal in oxygen minimum zones and a spatially variable benthic source.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Cited articles
Adkins, J. F.: The role of deep ocean circulation in setting glacial climates, Paleoceanography, 28, 539–561, https://doi.org/10.1002/palo.20046, 2013.
Adkins, J. F., McIntyre, K., and Schrag, D. P.: The salinity, temperature,
and δ18O of the glacial deep ocean, Science, 298, 69–73,
https://doi.org/10.1126/science.1076252, 2002.
Ai, X. E., Studer, A. S., Sigman, D. M., Martínez-García, A.,
Fripiat, F., Thöle, L. M., Michel, E., Gottschalk, J., Arnold, L.,
Moretti, S., Schmitt, M., Oleynik, S., Jaccard, S. L., and Haug, G. H.:
Southern Ocean upwelling, Earth's obliquity, and
glacial-interglacial atmospheric CO2 change, Science, 370,
1348–1352, https://doi.org/10.1126/science.abd2115, 2020.
Amsler, H. E.: Paleoceanographic dynamics of the
Southern Indian Ocean reconstructed from geochemical
and sedimentological proxies across the last glacial cycle, BORIS [data set], https://doi.org/10.48620/69, 2022.
Anderson, R. F. and Fleer, A. P.: Determination of Natural Actinides and
Plutonium in Marine Particulate Material, Anal. Chem. 54, 1142–1147,
https://doi.org/10.1021/ac00244a030, 1982.
Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher,
M. Q., Anderson, B. E., and Burckle, L. H.: Wind-driven Upwelling in the
Southern Ocean and the Deglacial Rise in Atmospheric CO2, Science, 323, 1443–1448, https://doi.org/10.1126/science.1167441, 2009.
Anderson, R. F., Barker, S., Fleisher, M., Gersonde, R., Goldstein, S. L.,
Kuhn, G., Mortyn, P. G., Pahnke, K., and Sachs, J. P.: Biological response
to millennial variability of dust and nutrient supply in the Subantarctic
South Atlantic Ocean, Philos. Trans. Roy. Soc. A, 372, 20130054,
https://doi.org/10.1098/rsta.2013.0054, 2014.
Anderson, R. F., Sachs, J. P., Fleisher, M. Q., Allen, K. A., Yu, J.,
Koutavas, A., and Jaccard, S. L.: Deep-sea oxygen depletion and ocean carbon
sequestration during the last ice age, Global Biogeochem. Cy., 33,
301–317, https://doi.org/10.1029/2018GB006049, 2019.
Bard, E.: Correction of accelerator mass spectrometry 14C ages measured
in planktic foraminifera: paleoceanographic implications, Paleoceanography,
3, 635–645, https://doi.org/10.1029/PA003i006p00635, 1988.
Basak, C., Fröllje, H., Lamy, F., Gersonde, R., Benz, V., Anderson, R.
F., Molina-Kescher, M., and Pahnke, K.: Breakup of last glacial deep
stratification in the South Pacific, Science, 359, 900–904,
https://doi.org/10.1126/science.aao2473, 2018.
Bauska, T. K., Baggenstos, D., Brook, E. J., Mix, A. C., Marcott, S. E.,
Petrenko, V. V., Schaefer, H., Severinghaus, J. P., and Lee, J. E.: Carbon
isotopes characterize rapid changes in atmospheric carbon dioxide during the
last deglaciation, P. Natl. Acad. Sci. USA, 113, 13, https://doi.org/10.1073/pnas.1513868113, 2016.
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T.
F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA
Dome C CO2 record from 800 to 600 kyr before present, Geophys. Res.
Lett., 42, 542–549, https://doi.org/10.1002/2014GL061957, 2015.
Bharti, N., Bhushan, R., Skinner, L. C., Muruganantham, M., Jena, P. S.,
Dabhi, A., and Shivama, A.: Evidence of poorly ventilated deep Central
Indian Ocean during the last glaciation, Earth Planet. Sci. Lett., 582,
117438, https://doi.org/10.1016/j.epsl.2022.117438, 2022.
Bourne, M. D., Thomas, A. L., Mac Niocaill, C., and Henderson, G. M.:
Improved determination of marine sedimentation rates using
230Thxs, Geochem. Geophy. Geosy., 13, 1,
https://doi.org/10.1029/2012GC004295, 2012.
Boutorh, J., Moriceau, B., Gallinari, M., Ragueneau, O., and Bucciarelli,
E.: Effect of trace metal-limited growth on the postmortem dissolution of
the marine diatom Pseudo-nitzschia delicatissima, Global Biogeochem. Cy.,
30, 57–69, https://doi.org/10.1002/2015GB005088, 2016.
Bouttes, N., Paillard, D., and Roche, D. M.: Impact of brine-induced stratification on the glacial carbon cycle, Clim. Past, 6, 575–589, https://doi.org/10.5194/cp-6-575-2010, 2010.
Bradtmiller, L. I., Anderson, R. F., Fleisher, M. Q., and Burckle, L. H.:
Opal burial in the equatorial Atlantic Ocean over the last 30 ka:
Implications for glacial-interglacial changes in the ocean silicon cycle,
Paleoceanography, 22, PA4216, https://doi.org/10.1029/2007PA001443, 2007.
Brzezinski, M. A., Pride, C. J., Franck, V. M., Sigman, D. M., Matsumoto,
K., Gruber, N., Rau, G. H., and Coale, K. H.: A switch from Si(OH)4 to NO depletion in the glacial Southern Ocean, Geophys. Res. Lett.,
29, 1564, https://doi.org/10.1029/2001GL014349, 2002.
Burke, A. and Robinson, L. F.: The Southern Ocean's Role in Carbon Exchange
During the Last Deglaciation, Science, 335, 557–561,
https://doi.org/10.1126/science.1208163, 2012.
Butzin, M., Prange, M., and Lohmann, G.: Radiocarbon simulations for the
glacial ocean: The effects of wind stress, Southern Ocean sea ice and
Heinrich events, Earth Planet. Sci. Lett., 235, 45–61,
https://doi.org/10.1016/j.epsl.2005.03.003, 2005.
Calvert, S. E. and Pedersen, T. F.: Geochemistry of Recent oxic and anoxic
marine sediments: Implications for the geological record, Mar. Geol., 113,
67–88, https://doi.org/10.1016/0025-3227(93)90150-T, 1993.
Calvert, S. E. and Pedersen, T. F.: Sedimentary geochemistry of manganese:
Implications for the environment of formation of manganiferous black shales,
Econ. Geol., 91, 36–47, https://doi.org/10.2113/gsecongeo.91.1.36, 1996.
Chase, Z., Anderson, R. F., and Fleisher, M. Q.: Evidence from authigenic
uranium for increased productivity of the glacial Subantarctic Ocean,
Paleoceanography, 16, 5, 468–478, https://doi.org/10.1029/2000PA000542, 2001.
Chase, Z., Anderson, R. F., Fleisher, M. Q., and Kubik, P. W.: Accumulation
of biogenic and lithogenic material in the Pacific sector of the Southern
Ocean during the past 40,000 years, Deep. Res. Part II Top. Stud. Oceanogr,
50, 799–832, https://doi.org/10.1016/S0967-0645(02)00595-7, 2003.
Choi, M. S., Francois, R., Sims, K., Bacon, M. P., Brown-Leger, S., Fleer,
A. P., Ball, L., Schneider, D., and Pichat, S.: Rapid determination of
230Th and 231Pa in seawater by desolvated micro-nebulization
Inductively Coupled Plasma magnetic sector mass spectrometry, Mar. Chem.,
76, 99–112, https://doi.org/10.1016/S0304-4203(01)00050-0, 2001.
Colley, S., Thomson, J., and Toole, J.: Uranium relocations and derivation
of quasi-isochrons for a turbidite/pelagic sequence in the Northeast
Atlantic, Geochim. Cosmochim. Acta, 53, 1223–1234,
https://doi.org/10.1016/0016-7037(89)90058-6, 1989.
Cortese, G., Gersonde, R., Hillenbrand, C. D., and Kuhn, G.: Opal
sedimentation shifts in the World Ocean over the last 15 Myr, Earth Planet.
Sci. Lett., 224, 509–527, https://doi.org/10.1016/j.epsl.2004.05.035, 2004.
Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng,
F., Dutay, J. C., Geibert, W., Heinze, C., Henderson, G., Hillaire-Marcel,
C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L.,
Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J.
F., Mekik, F., Middleton, J. L., Missiaen, L., Not, C., Pichat, S.,
Robinson, L. F., Rowland, G. H., Roy-Barman, M., Tagliabue, A., Torfstein,
A., Winckler, G., and Zhou, Y.: 230Th normalization: New insights on an
essential tool for quantifying sedimentary fluxes in the modern and
Quaternary ocean, Paleoceanogr. Paleoclimatol., 35, e2019PA003820,
https://doi.org/10.1029/2019PA003820, 2020.
Crosta, X., Shukla, S. K., Ther, O., Ikehara, M., Yamane, M., and Yokoyama,
Y.: Last Abundant Appearance Datum of Hemidiscus karstenii driven by climate
change, Mar. Micropaleontol., 157, 101861, https://doi.org/10.1016/j.marmicro.2020.101861, 2020.
Dezileau, L., Bareille, G., and Reyss, J.-L.: Enrichissement en uranium
authigène dans les sédiments glaciaires de l'océan Austral, C.
R. Geoscience, 334, 1039–1046, https://doi.org/10.1016/S1631-0713(02)01826-6, 2002.
Dezileau, L., Reyss, J.-L., and Lemoine, F.: Late Quaternary changes in
biogenic opal fluxes in the Southern Indian Ocean, Mar. Geol., 202,
143–158, https://doi.org/10.1016/S0025-3227(03)00283-4, 2003.
Dumont, M., Pichevin, L., Geibert, W., Crosta, X., Michel, E., Moreton, S.,
Dobby, K., and Ganeshram, R.: The nature of deep overturning and
reconfigurations of the silicon cycle across the last deglaciation, Nat.
Commun., 11, 1534, https://doi.org/10.1038/s41467-020-15101-6, 2020.
Durgadoo, J. V., Lutjeharms, J. R. E., Biastoch, A., and Ansorge, I. J.: The
Conrad Rise as an obstruction to the Antarctic Circumpolar Current, Geophys.
Res. Lett., 35, L20606, https://doi.org/10.1029/2008GL035382, 2008.
Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A., Stewart, A. L., and
Thompson, A. F.: Antarctic sea ice control on ocean circulation in present
and glacial climates, P. Natl. Acad. Sci. USA, 111, 24, 8753–8758,
https://doi.org/10.1073/pnas.1323922111, 2014.
Francois, R., Altabet, M. A., Yu, E.-F., Sigman, D. M., Bacon, M. P., Frank,
M., Bohrmann, G., Bareille, G., and Labeyrie, L. D.: Contribution of
Southern Ocean surface-water stratification to low atmospheric CO2
concentrations during the last glacial period, Nature, 389, 929–935,
https://doi.org/10.1038/40073, 1997.
Francois, R., Frank, M., Rutgers van der Loeff, M. M., and Bacon, M. P.:
230Th normalization: An essential tool for interpreting sedimentary
fluxes during the late Quaternary, Paleoceanography, 19, PA1018,
https://doi.org/10.1029/2003pa000939, 2004.
Frank, M., Gersonde, R., Rutgers van der Loeff, M. M., Bohrmann, G.,
Nürnberg, C. C., Kubik, P. W., Suter, M., and Mangini, A.: Similar
glacial and interglacial export bioproductivity in the Atlantic sector of
the Southern Ocean: Multiproxy evidence and implications for glacial
atmospheric CO2, Paleoceanography, 15, 642–658,
https://doi.org/10.1029/2000PA000497, 2000.
Galbraith, E. D. and Jaccard, S. L.: Deglacial weakening of the oceanic soft
tissue pump: Global constraints from sedimentary nitrogen isotopes and
oxygenation proxies, Quaternary Sci. Rev., 109, 38–48,
https://doi.org/10.1016/j.quascirev.2014.11.012, 2015.
Galbraith, E. D. and Skinner, L. C.: The Biological Pump During the Last
Glacial Maximum, Annu. Rev. Mar. Sci., 12, 559–586,
https://doi.org/10.1146/annurev-marine-010419-010906, 2020.
Galbraith, E. D., Young Kwon, E., Bianchi, D., Hain, M. P., and Sarmiento,
J. L.: The impact of atmospheric pCO2 on carbon isotope ratios of the
atmosphere and ocean, Global Biogeochem. Cy., 29, 307–324,
https://doi.org/10.1002/2014GB004929, 2015.
Geibert, W., Stimac, I., Rutgers van der Loeff, M. M., and Kuhn, G.: Dating
Deep-Sea Sediments With 230Th Excess Using a Constant Rate of Supply
Model, Paleoceanogr. Paleoclimatology, 34, 1895–1912,
https://doi.org/10.1029/2019PA003663, 2019.
Gottschalk, J., Skinner, L. C., Lippold, J., Vogel, H., Frank, N., Jaccard,
S. L., and Waelbroeck, C.: Biological and physical controls in the Southern
Ocean on past millennial-scale atmospheric CO2 changes, Nat. Commun.,
7, 11539, https://doi.org/10.1038/ncomms11539, 2016.
Gottschalk, J., Skinner, L. C., Jaccard, S. L., Menviel, L., Nehrbass-Ahles,
C., and Waelbroeck, C.: Southern Ocean link between changes in atmospheric
CO2 levels and northern-hemisphere climate anomalies during the last
two glacial periods, Quaternary Sci. Rev., 230, 106067,
https://doi.org/10.1016/j.quascirev.2019.106067, 2020a.
Gottschalk, J., Michel, E., Thöle, L. M., Anja S. Studer, A. S.,
Hasenfratz, A. P., Schmid, N., Butzin, M., Mazaud, A.,
Martínez-García, A., Szidat, S., and Jaccard, S. L.: Glacial
heterogeneity in Southern Ocean carbon storage abated by fast South Indian
deglacial carbon release, Nat. Commun., 11, 6192,
https://doi.org/10.1038/s41467-020-20034-1, 2020b.
Hain, M. P., Sigman, D. M., and Haug, G. H.: Carbon dioxide effects of
Antarctic stratification, North Atlantic Intermediate Water formation, and
subantarctic nutrient drawdown during the last ice age: Diagnosis and
synthesis in a geochemical box model, Global Biogeochem. Cy., 24, GB4023, https://doi.org/10.1029/2010GB003790, 2010.
Hasenfratz, A. P., Jaccard, S. L., Martínez-García, A., Sigman, D.
M., Hodell, D. A., Vance, D., Bernasconi, S. M., Kleiven, H. F., Haumann, F.
A., and Haug, G. H.: The residence time of Southern Ocean surface waters and
the 100 000-year ice age cycle, Science, 363, 1080–1084,
https://doi.org/10.1126/science.aat7067, 2019.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin,
W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B.,
Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner,
L. C.: Marine20 – The Marine Radio-carbon Age Calibration Curve (0–55 000 cal BP), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68, 2020.
Henderson, G. M. and Anderson, R. F.: The U-series toolbox for
paleoceanography, Rev. Mineral. Geochem., 52, 493–531,
https://doi.org/10.2113/0520493, 2003.
Hoogakker, B. A. A., Elderfield, H., Schmiedl, G., McCave, I. N., and
Rickaby, R. E. M.: Glacial–interglacial changes in bottom-water oxygen
content on the Portuguese margin, Nat. Geosci., 8, 2–5,
https://doi.org/10.1038/ngeo2317, 2015.
Horn, M. G., Robinson, R. S., Rynearson, T. A., and Sigman, D. M.: Nitrogen
isotopic relationship between diatom-bound and bulk organic matter of
cultured polar diatoms, Paleoceanography, 26, PA3208,
https://doi.org/10.1029/2010PA002080, 2011.
Jaccard, S. L., Hayes, C. T., Hodell, D. A., Anderson, R. F., Sigman, D. M.,
and Haug, G. H.: Two modes of change in SO Productivity, Science, 339,
1419–1423, https://doi.org/10.1126/science.1227545, 2013.
Jaccard, S. L., Galbraith, E. D., Martínez-García, A., and
Anderson, R. F.: Covariation of deep Southern Ocean oxygenation and
atmospheric CO2 through the last ice age, Nature, 530, 207–210,
https://doi.org/10.1038/nature16514, 2016.
Jacobel, A. W., McManus, J. F., Anderson, R. F., and Winckler, G.: Repeated
storage of respired carbon in the equatorial Pacific Ocean over the last
three glacial cycles, Nat. Commun., 8, 1727, https://doi.org/10.1038/s41467-017-01938-x, 2017.
Jimenez-Espejo, F. J., Presti, M., Kuhn, G., McKay, R., Crosta, X., Escutia,
C., Lucchi, R. G., Tolotti, R., Yoshimura, T., Ortega Huertas, M.,
Macrì, P., Caburlotto, A., and De Santis, L.: Late Pleistocene
oceanographic and depositional variations along the Wilkes Land margin (East
Antarctica) reconstructed with geochemical proxies in deep-sea sediments,
Glob. Planet. Change, 184, 103045, https://doi.org/10.1016/j.gloplacha.2019.103045,
2020.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J.,
Fischer, H., Gallet, J.C., Johnsen, S., Leuenberger, M., Loulergue, L.,
Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A.,
Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen,
J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E.
W.: Orbital and millennial antarctic climate variability over the past
800 000 years, Science, 317, 5839, 793–796, https://doi.org/10.1126/science.1141038,
2007.
Kaiser, E. A., Billups, K., and Bradtmiller, L.: A one million year record
of biogenic silica in the Indian Ocean Sector of the Southern Ocean:
Regional versus global forcing of primary productivity, Paleoceanogr.
Paleoclimatology, 36, e2020PA004033, https://doi.org/10.1029/2020PA004033, 2021.
Klinkhammer, G. P. and Palmer, M. R.: Uranium in the oceans: Where it goes
and why, Geochim. Cosmochim. Acta, 55, 1799–1806,
https://doi.org/10.1016/0016-7037(91)90024-Y, 1991.
Kohfeld, K. E. and Chase, Z.: Temporal evolution of mechanisms controlling
ocean carbon uptake during the last glacial cycle, Earth Planet. Sci. Lett.,
472, 206–215, https://doi.org/10.1016/j.epsl.2017.05.015, 2017.
Kohfeld, K. E., Le Quéré, C., Harrison, S. P., and Anderson, R. F.:
Role of marine biology in glacial-interglacial CO2 cycles, Science,
308, 74–78, https://doi.org/10.1126/science.1105375, 2005.
Korff, L., von Dobeneck, T., Frederichs, T., Kasten, S., Kuhn, G., Gersonde,
R., and Diekmann, B.: Cyclic magnetite dissolution in Pleistocene sediments
of the abyssal northwest Pacific Ocean: Evidence for glacial oxygen
depletion and carbon trapping, Paleoceanography, 31, 600–624,
https://doi.org/10.1002/2015PA002882, 2016.
Kuhn, G.: Documentation of sediment core PS2609-1, Alfred Wegener Institute
– Polarstern core repository, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.115378, 2003a.
Kuhn, G.: Documentation of sediment core PS2606-6, Alfred Wegener Institute
– Polarstern core repository, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.115376, 2003b.
Kuhn, G.: Documentation of sediment core PS2603-3, Alfred Wegener Institute
– Polarstern core repository, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.115375, 2003c.
Kumar, N., Anderson, R. F., Mortlock, R. A., Froelich, P. N., Kubik, P.,
Dittrich-Hannen, B., and Suter, M.: Increased biological production and
export in the glacial Southern Ocean, Nature, 378, 675–680,
https://doi.org/10.1038/378675a0, 1995.
Lambert, F., Bigler, M., Steffensen, J. P., Hutterli, M., and Fischer, H.: Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica, Clim. Past, 8, 609–623, https://doi.org/10.5194/cp-8-609-2012, 2012.
Lamy, F., Gersonde, R., Winckler, G., Esper, O., Jaeschke, A., Kuhn, G.,
Ullermann, J., Martínez-García, A., Lambert, F., and Kilian, R.:
Increased dust deposition in the Pacific Southern Ocean during glacial
periods, Science, 343, 403–407, https://doi.org/10.1126/science.1245424, 2014.
Langmuir, D.: Uranium solution-mineral equilibria at low temperatures with
applications to sedimentary ore deposits, Geochim. Cosmochim. Acta, 42,
547–569, https://doi.org/10.1016/0016-7037(78)90001-7, 1978.
Lippold, J., Grützner, J., Winter, D., Lahaye, Y., Mangini, A., and
Christi, M.: Does sedimentary 231Pa 230Th from the Bermuda Rise monitor past Atlantic Meridional Overturning Circulation?, Geophys. Res.
Lett., 36, L12601, https://doi.org/10.1029/2009GL038068, 2009.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography,
20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lynch-Stieglitz, J., Ito, T., and Michel, E.: Antarctic density
stratification and the strength of the circumpolar current during the Last
Glacial Maximum, Paleoceanography, 31, 539–552, https://doi.org/10.1002/2015PA002915,
2016.
Mangini, A., Jung, M., and Laukenmann, S.: What do we learn from peaks of
uranium and of manganese in deep sea sediments?, Mar. Geol., 177, 63–78,
https://doi.org/10.1016/S0025-3227(01)00124-4, 2001.
Manoj, M. C. and Thamban, M.: Shifting frontal regimes and its influence on
bioproductivity variations during the Late Quaternary in the Indian sector
of Southern Ocean, Deep. Res. Part II, 118, 261–274,
https://doi.org/10.1016/j.dsr2.2015.03.011, 2015.
Manoj, M. C., Thamban, M., Basavaiah, N., and Mohan, R.: Evidence for
climatic and oceanographic controls on terrigenous sediment supply to the
Indian Ocean sector of the Southern Ocean over the past 63 000 years,
Geo.-Mar. Lett., 32, 251–265, https://doi.org/10.1007/s00367-011-0267-6, 2012.
Manoj, M. C., Thamban, M., Sahana, A., Mohan, R., and Mahender, K.:
Provenance and temporal variability of ice rafted debris in the Indian
sector of the Southern Ocean during the last 22,000 years, J. Earth Syst.
Sci., 122, 491–501, https://doi.org/10.1007/s12040-013-0271-5, 2013.
Marshall, J. and Speer, K.: Closure of the meridional overturning
circulation through Southern Ocean upwelling, Nat. Geosci., 5, 171–180,
https://doi.org/10.1038/ngeo1391, 2012.
Martínez-García, A., Sigman, D. M., Ren, H., Anderson, R. F.,
Straub, M., Hodell, D. A., Jaccard, S. L., Eglinton, T. I., and Haug, G. H.:
Iron fertilization of the subantarctic ocean during the last ice age,
Science, 343, 1347–1350, https://doi.org/10.1126/science.1246848, 2014.
Matsumoto, K., Sarmiento, J. L., and Brzezinski, M. A.: Silicic acid leakage
from the Southern Ocean: A possible explanation for glacial atmospheric
pCO2, Global Biogeochem. Cy., 16, 1031, https://doi.org/10.1029/2001GB001442,
2002.
Meyerink, S. W., Ellwood, M. J., Maher, W. A., Dean Price, G., and Strzepek,
R. F.: Effects of iron limitation on silicon uptake kinetics and elemental
stoichiometry in two Southern Ocean diatoms, Eucampia antarctica and
Proboscia inermis, and the temperate diatom Thalassiosira pseudonana,
Limnol. Oceanogr., 62, 2445–2462, https://doi.org/10.1002/lno.10578, 2017.
Morford, J. L. and Emerson, S.: The geochemistry of redox sensitive trace
metals in sediments, Geochim. Cosmochim. Acta, 63, 1735–1750,
https://doi.org/10.1016/S0016-7037(99)00126-X, 1999.
Müller, P. J. and Schneider, R.: An automated leaching method for the
determination of opal in sediments and particulate matter, Deep. Res. Part
I, 40, 425–444, https://doi.org/10.1016/0967-0637(93)90140-X, 1993.
Nair, A., Mohan, R., Crosta, X., Manoj, M. C., Thamban, M., and Marieu, V.:
Southern Ocean sea ice and frontal changes during the Late Quaternary and
their linkages to Asian summer monsoon, Quaternary Sci. Rev., 213, 93–104,
https://doi.org/10.1016/j.quascirev.2019.04.007, 2019.
Nameroff, T. J., Balistrieri, L. S., and Murray, J. W.: Suboxic trace metal
geochemistry in the eastern tropical North Pacific, Geochim. Cosmochim.
Acta, 66, 1139–1158, https://doi.org/10.1016/S0016-7037(01)00843-2, 2002.
Nelson, D. M., Anderson, R. F., Barber, R. T., Brzezinski, M. A., Buesseler,
K. O., Chase, Z., Collier, R. W., Dickson, M. L., François, R., Hiscock,
M. R., Honjo, S., Marra, J., Martin, W. R., Sambrotto, R. N., Sayles, F. L.,
and Sigmon, D. E.: Vertical budgets for organic carbon and biogenic silica
in the Pacific sector of the Southern Ocean, 1996–1998, Deep. Res. Part II, 49, 1645–1674, https://doi.org/10.1016/S0967-0645(02)00005-X, 2002.
Oiwane, H., Ikehara, M., Suganuma, Y., Miura, H., Nakamura, Y., Sato, T.,
Nogi, Y., Yamane, M., and Yokoyama, Y.: Sediment waves on the Conrad Rise,
Southern Indian Ocean: Implications for the migration history of the
Antarctic Circumpolar Current, Mar. Geol., 348, 27–36,
https://doi.org/10.1016/j.margeo.2013.10.008, 2014.
Oliver, K. I. C., Hoogakker, B. A. A., Crowhurst, S., Henderson, G. M., Rickaby, R. E. M., Edwards, N. R., and Elderfield, H.: A synthesis of marine sediment core δ13C data over the last 150 000 years, Clim. Past, 6, 645–673, https://doi.org/10.5194/cp-6-645-2010, 2010.
Orsi, H., Whitworth, T., and Nowlin Jr., W. D.: On the meridional extent and
fronts of the Antarctic Circumpolar Current, Deep. Res. Part I, 42,
641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
Pichat, S., Sims, K. W. W., François, R., McManus, J. F., Leger, S. B.,
and Albarède, F.: Lower export production during glacial periods in the
equatorial Pacific derived from (231Pa 230Th)xs,0
measurements in deep-sea sediments, Paleoceanography, 19, PA4023,
https://doi.org/10.1029/2003PA000994, 2004.
Pichevin, L. E., Ganeshram, R. S., Geibert, W., Thunell, R., and Hinton, R.:
Silica burial enhanced by iron limitation in oceanic upwelling margins, Nat.
Geosci., 7, 541–546, https://doi.org/10.1038/ngeo2181, 2014.
Pondaven, P., Ragueneau, O., Tréguer, P., Hauvespre, A., Dezileau, L.,
and Reyss, J. L.: Resolving the `opal paradox' in the Southern Ocean, Nature,
405, 168–172, https://doi.org/10.1038/35012046, 2000.
Rae, J. W. B., Burke, A., Robinson, L., Adkins, J. F., Chen, T., Cole, C.,
Greenop, R., Li, T., Littley, E. F. M., Nita, D. C., Steward, J. A., and
Taylor, B. J.: CO2 storage and release in the deep Southern Ocean on
millennial to centennial timescales, Nature, 562, 569–573,
https://doi.org/10.1038/s41586-018-0614-0, 2018.
Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R. F., Brzezinski,
M. A., DeMaster, D. J., Dugdale, R. C., Dymond, J., Fischer, G.,
François, R., Heinze, C., Maier-Reimer, E., Martin-Jézéquel, V.,
Nelson, D. M., and Quéguiner, B.: A review of the Si cycle in the modern
ocean: Recent progress and missing gaps in the application of biogenic opal
as a paleoproductivity proxy, Glob. Planet. Change, 26, 317–365,
https://doi.org/10.1016/S0921-8181(00)00052-7, 2000.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes,
P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton,
T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K., A., Kaiser, K. F., Kromer,
B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50 000 Years cal
BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Ronge, T. A., Prange, M., Mollenhauer, G., Ellinghausen, M., Kuhn, G., and
Tiedemann, R.: Radiocarbon Evidence for the Contribution of the Southern
Indian Ocean to the Evolution of Atmospheric CO2 Over the Last 32 000 Years, Paleoceanogr. Paleoclimatol., 35, e2019PA003733, https://doi.org/10.1029/2019PA003733, 2020.
Sakamoto, T., Kuroki, K., Sugawara, T., Aoike, K., Iijima, K., and Sugisaki, S.: Non-Destructive X-Ray Fluorescence (XRF) Core-Imaging Scanner, TATSCAN-F2, Sci. Dril., 2, 37–39, https://doi.org/10.5194/sd-2-37-2006, 2006.
Sarnthein, M., Schneider, B., and Grootes, P. M.: Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean, Clim. Past, 9, 2595–2614, https://doi.org/10.5194/cp-9-2595-2013, 2013.
Sayles, F. L., Martin, W. R., Chase, Z., and Anderson, R. F.: Benthic
remineralization and burial of biogenic SiO2, CaCO3, organic
carbon, and detrital material in the Southern Ocean along a transect at
170∘ West, Deep. Res. Part II, 48, 19–20,
4323–4383, https://doi.org/10.1016/S0967-0645(01)00091-1, 2001.
Schlitzer, R.: Ocean Data View, Ocean Data View, http://odv.awi.de (last access: 13 March 2019), 2018.
Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in
atmospheric carbon dioxide, Nature, 407, 859–869, https://doi.org/10.1038/35038000,
2000.
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial
cycles in atmospheric CO2 concentration, Nature, 466, 47–55,
https://doi.org/10.1038/nature09149, 2010.
Sigman, D. M., Fripiat, F., Studer, A. S., Kemeny, P. C.,
Martínez-García, A., Hain, M. P., Ai, X., Wang, X., Ren, H., and
Haug, G. H.: The Southern Ocean during the ice ages: A review of the
Antarctic surface isolation hypothesis, with comparison to the North
Pacific, Quaternay Sci. Rev., 254, 106732, https://doi.org/10.1016/j.quascirev.2020.106732, 2021.
Skinner, L. C.: Glacial-interglacial atmospheric CO2 change: a possible “standing volume” effect on deep-ocean carbon sequestration, Clim. Past, 5, 537–550, https://doi.org/10.5194/cp-5-537-2009, 2009.
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E., and Barker, S.:
Ventilation of the Deep Southern Ocean and Deglacial CO2 Rise, Science, 328, 1147–1151, https://doi.org/10.1126/science.1183627, 2010.
Skinner, L. C., Primeau, F., Freeman, E., de la Fuente, M., Goodwin, P. A.,
Gottschalk, J., Huang, E., McCave, I. N., Noble, T. L., and Scrivner, A. E.:
Radiocarbon constraints on the glacial ocean circulation and its impact on
atmospheric CO2, Nat. Commun., 8, 16010, https://doi.org/10.1038/ncomms16010, 2017.
Sruthi, K. V., Thamban, M., Manoj, M. C., and Laluraj, C. M.: Association of
trace elements with various geochemical phases in the Indian sector of
Southern Ocean during past 22 000 years and its palaeoceanographic
implications, Curr. Sci., 103, 803–809, 2012.
Stein, K., Timmermann, A., Young Kwon, E., and Friedrich, T.: Timing and
magnitude of Southern Ocean sea ice/carbon cycle feedbacks, P. Natl. Acad.
Sci. USA, 117, 9, https://doi.org/10.1073/pnas.1908670117, 2020.
Studer, A. S., Sigman, D. M., Martínez-García, A., Benz, V.,
Winckler, G., Kuhn, G., Esper, O., Lamy, F., Jaccard, S. L., Wacker, L.,
Oleynik, S., Gersonde, R., and Haug, G. H.: Antarctic Zone nutrient
conditions during the last two glacial cycles, Paleoceanography, 30,
845–862, https://doi.org/10.1002/2014PA002745, 2015.
Stuiver, M. and Reimer, P. J.: Extended 14C database and revised CALIB
radiocarbon calibration program, Radiocarbon, 35, 215–230,
https://doi.org/10.1017/S0033822200013904, 1993.
Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, K.
A., Kromer, B., McCormac, G., van der Plicht, J., and Spurk, M.: INTCAL98
radiocarbon age calibration, 24 000–0 cal BP, Radiocarbon, 40,
1041–1083, https://doi.org/10.1017/S0033822200019123, 1998.
Tagliabue, A., Sallée, J.-B., Bowie, A. R., Lévy, M., Swart, S., and
Boyd, P. W.: Surface-water iron supplies in the Southern Ocean sustained by
deep winter mixing, Nat. Geosci., 7, 314–320, https://doi.org/10.1038/ngeo2101, 2014.
Talley, L. D.: Closure of the global overturning circulation through the
Indian, Pacific, and Southern Oceans: Schematics and transports,
Oceanography, 26, 80–97, https://doi.org/10.5670/oceanog.2013.07, 2013.
Thöle, L. M., Amsler, H. E., Moretti, S., Auderset, A., Gilgannon, J.,
Lippold, J., Vogel, H., Crosta, X., Mazaud, A., Michel, E.,
Martínez-García, A., and Jaccard, S. L.: Glacial-interglacial dust
and export production records from the Southern Indian Ocean, Earth Planet.
Sci. Lett., 525, 115716, https://doi.org/10.1016/j.epsl.2019.115716, 2019.
Thomson, J., Wallace, H. E., Colley, S., and Toole, J.: Authigenic uranium
in Atlantic sediments of the last glacial stage – a diagenetic phenomenon,
Earth Planet. Sci. Lett., 98, 222–232, https://doi.org/10.1016/0012-821x(90)90061-2,
1990.
Toggweiler, J. R.: Variation of atmospheric CO2 by ventilation of the
ocean's deepest water, Paleoceanography, 14, 571–588,
https://doi.org/10.1029/1999PA900033, 1999.
Toggweiler, J. R., Russell, J. L., and Carson, S. R.: Midlatitude
westerlies, atmospheric CO2, and climate change during the ice ages,
Paleoceanography, 21, PA2005, https://doi.org/10.1029/2005PA001154, 2006.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals
as paleoredox and paleoproductivity proxies: An update, Chem. Geol., 232,
12–32, https://doi.org/10.1016/j.chemgeo.2006.02.012, 2006.
Vogel, H., Meyer-Jacob, C., Thöle, L. M., Lippold, J. A., and Jaccard, S.
L.: Quantification of biogenic silica by means of Fourier transform infrared
spectroscopy (FTIRS) in marine sediments, Limnol. Oceanogr. Methods, 14,
828–838, https://doi.org/10.1002/lom3.10129, 2016.
Watson, A. J. and Naveira Garabato, A. C.: The role of Southern Ocean mixing
and upwelling in glacial-interglacial atmospheric CO2 change, Tellus B, 58, 73–87, https://doi.org/10.1111/j.1600-0889.2005.00167.x, 2006.
Watson, A. J., Vallis, G. K., and Nikurashin, M.: Southern Ocean buoyancy
forcing of ocean ventilation and glacial atmospheric CO2, Nat. Geosci., 8, 861–864, https://doi.org/10.1038/ngeo2538, 2015.
Weber, M. E., Kuhn, G., Sprenk, D., Rolf, C., Ohlwein, C., and Ricken, W.:
Dust transport from Patagonia to Antarctica – A new stratigraphic approach
from the Scotia Sea and its implications for the last glacial cycle, Quaternary Sci. Rev., 36, 177–188, https://doi.org/10.1016/j.quascirev.2012.01.016, 2012.
Weber, M. E., Clark, P. U., Kuhn, G., Timmermann, A., Sprenk, D., Gladstone,
R., Zhang, X., Lohmann, G., Menviel, L., Chikamoto, M. O., Friedrich, T.,
and Ohlwein, C.: Millennial-scale variability in Antarctic ice-sheet
discharge during the last deglaciation, Nature, 510, 134–138,
https://doi.org/10.1038/nature13397, 2014.
Wilson, D. J., Piotrowski, A. M., Galy, A., and Banakar, V. K.:
Interhemispheric controls on deep ocean circulation and carbon chemistry
during the last two glacial cycles, Paleoceanography, 30, 621–641,
https://doi.org/10.1002/2014PA002707, 2015.
Wolff, E. W., Barbante, C., Becagli, S., Bigler, M., Boutron, C. F.,
Castellano, E., de Angelis, M., Federer, U., Fischer, H., Fundel, F.,
Hansson, M., Hutterli, M., Jonsell, U., Karlin, T., Kaufmann, P., Lambert,
F., Littot, G. C., Mulvaney, R., Röthlisberger, R., Ruth, U., Severi,
M., Siggaard-Andersen, M. L., Sime, L. C., Steffensen, J. P., Stocker, T.
F., Traversi, R., Twarloh, B., Udisti, R., Wagenbach, D., and Wegner, A.:
Changes in environment over the last 800 000 years from chemical analysis of
the EPICA Dome C ice core, Quaternary Sci. Rev., 29, 285–295,
https://doi.org/10.1016/j.quascirev.2009.06.013, 2010.
Wu, S., Lembke-Jene, L., Lamy, F., Arz, H. W., Nowaczyk, N., Xiao, W.,
Zhang, X., Hass, H. C., Titschack, J., Zheng, X., Liu, J., Dumm, L.,
Diekmann, B., Nürnberg, D., Tiedemann, R., and Kuhn, G: Orbital- and
millennial-scale Antarctic Circumpolar Current variability in Drake Passage
over the past 140 000 years, Nat. Commun., 12, 3948,
https://doi.org/10.1038/s41467-021-24264-9, 2021.
Xiao, W., Esper, O., and Gersonde, R.: Last Glacial – Holocene climate
variability in the Atlantic sector of the Southern Ocean, Quaternary Sci. Rev., 135, 115–137, https://doi.org/10.1016/j.quascirev.2016.01.023, 2016.
Yu, J., Menviel, L., Jin, Z. D., Thornalley, D. J. R., Barker, S., Marino,
G., Rohling, E. J., Cai, Y., Zhang, F., Wang, X., Dai, Y., Chen, P., and
Broecker, W. S.: Sequestration of carbon in the deep Atlantic during the
last glaciation, Nat. Geosci., 9, 319–324, https://doi.org/10.1038/ngeo2657, 2016.
Zielinski, U. and Gersonde, R.: Plio-Pleistocene diatom biostratigraphy from
ODP Leg 177, Atlantic sector of the Southern Ocean, Mar. Micropaleontol.,
45, 225–268, https://doi.org/10.1016/S0377-8398(02)00031-2, 2002.
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved...