Articles | Volume 18, issue 7
https://doi.org/10.5194/cp-18-1655-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1655-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal aridity in the Indo-Pacific Warm Pool during the Late Glacial driven by El Niño-like conditions
Petter L. Hällberg
CORRESPONDING AUTHOR
Department of Geological Sciences and Bolin Centre for Climate
Research, Stockholm University, Stockholm, 106 91, Sweden
Frederik Schenk
Department of Geological Sciences and Bolin Centre for Climate
Research, Stockholm University, Stockholm, 106 91, Sweden
Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, 601
76, Sweden
Kweku A. Yamoah
BioArc, Department of Archaeology, University of York, York, YO10 5DD,
UK
Xueyuen Kuang
School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
Rienk H. Smittenberg
Department of Geological Sciences and Bolin Centre for Climate
Research, Stockholm University, Stockholm, 106 91, Sweden
Related authors
No articles found.
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Ana Lúcia Lindroth Dauner, Frederik Schenk, Katherine Elizabeth Power, and Maija Heikkilä
The Cryosphere, 18, 1399–1418, https://doi.org/10.5194/tc-18-1399-2024, https://doi.org/10.5194/tc-18-1399-2024, 2024
Short summary
Short summary
In this study, we analysed 14 sea-ice proxy records and compared them with the results from two different climate simulations from the Atlantic sector of the Arctic Ocean over the Common Era (last 2000 years). Both proxy and model approaches demonstrated a long-term sea-ice increase. The good correspondence suggests that the state-of-the-art sea-ice proxies are able to capture large-scale climate drivers. Short-term variability, however, was less coherent due to local-to-regional scale forcings.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Svante Björck, Jesper Sjolte, Karl Ljung, Florian Adolphi, Roger Flower, Rienk H. Smittenberg, Malin E. Kylander, Thomas F. Stocker, Sofia Holmgren, Hui Jiang, Raimund Muscheler, Yamoah K. K. Afrifa, Jayne E. Rattray, and Nathalie Van der Putten
Clim. Past, 15, 1939–1958, https://doi.org/10.5194/cp-15-1939-2019, https://doi.org/10.5194/cp-15-1939-2019, 2019
Short summary
Short summary
Southern Hemisphere westerlies play a key role in regulating global climate. A lake sediment record on a mid-South Atlantic island shows changes in the westerlies and hydroclimate 36.4–18.6 ka. Before 31 ka the westerlies shifted in concert with the bipolar seesaw mechanism in a fairly warm climate, followed by southerly westerlies and falling temperatures. After 27.5 ka temperatures dropped 3 °C with drier conditions and with shifting westerlies possibly triggering the variable LGM CO2 levels.
Laurie M. Charrieau, Karl Ljung, Frederik Schenk, Ute Daewel, Emma Kritzberg, and Helena L. Filipsson
Biogeosciences, 16, 3835–3852, https://doi.org/10.5194/bg-16-3835-2019, https://doi.org/10.5194/bg-16-3835-2019, 2019
Short summary
Short summary
We reconstructed environmental changes in the Öresund during the last 200 years, using foraminifera (microfossils), sediment, and climate data. Five zones were identified, reflecting oxygen, salinity, food content, and pollution levels for each period. The largest changes occurred ~ 1950, towards stronger currents. The foraminifera responded quickly (< 10 years) to the changes. Moreover, they did not rebound when the system returned to the previous pattern, but displayed a new equilibrium state.
Monika J. Barcikowska, Scott J. Weaver, Frauke Feser, Simone Russo, Frederik Schenk, Dáithí A. Stone, Michael F. Wehner, and Matthias Zahn
Earth Syst. Dynam., 9, 679–699, https://doi.org/10.5194/esd-9-679-2018, https://doi.org/10.5194/esd-9-679-2018, 2018
Kweku Afrifa Yamoah, Nolwenn Callac, Ernest Chi Fru, Barbara Wohlfarth, Alan Wiech, Akkaneewut Chabangborn, and Rienk H. Smittenberg
Biogeosciences, 13, 3971–3980, https://doi.org/10.5194/bg-13-3971-2016, https://doi.org/10.5194/bg-13-3971-2016, 2016
Short summary
Short summary
Predicting the effects of changing climate on microbial community shifts on longer timescales can be challenging. This study exploits the power of combining organic geochemistry, molecular microbial ecology, and geochemistry to unravel trends in microbial community induced by climatic variability. Our results show that climate-induced variability on decadal timescales can trigger changes in both lake trophic status and phytoplankton communities.
Related subject area
Subject: Climate Modelling | Archive: Terrestrial Archives | Timescale: Pleistocene
Tracing seasonal signals in dry/wet status for regions with simultaneous rain and heat from Eastern and Central Asia since the Last Glacial Maximum
crestr: an R package to perform probabilistic climate reconstructions from palaeoecological datasets
A new perspective on permafrost boundaries in France during the Last Glacial Maximum
The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations
Pollen-based temperature and precipitation changes in the Ohrid Basin (western Balkans) between 160 and 70 ka
Greenland Ice Sheet influence on Last Interglacial climate: global sensitivity studies performed with an atmosphere–ocean general circulation model
Coupled Northern Hemisphere permafrost–ice-sheet evolution over the last glacial cycle
Simin Peng, Yu Li, Zhansen Zhang, Mingjun Gao, Xiaowen Chen, Junjie Duan, and Yaxin Xue
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-71, https://doi.org/10.5194/cp-2023-71, 2023
Preprint under review for CP
Short summary
Short summary
The synchronization of rain and heat is an important hypothesis, which contains the summer precipitation regime and the winter precipitation regime. In this paper, EA and part of CA with the summer precipitation regime are selected to study dry/wet status in multi-time scales since the LGM. This study found that although climate difference in EA and CA universally exists, climate linkages in EA and part of CA with the summer precipitation regime can be uncovered.
Manuel Chevalier
Clim. Past, 18, 821–844, https://doi.org/10.5194/cp-18-821-2022, https://doi.org/10.5194/cp-18-821-2022, 2022
Short summary
Short summary
This paper introduces a new R package to perform quantitative climate reconstructions from palaeoecological datasets. The package includes calibration data for several commonly used terrestrial (e.g. pollen) and marine (e.g. foraminifers) climate proxies to enable its use in various environments globally. In addition, the built-in graphical diagnostic tools simplify the evaluation and interpretations of the results. No coding skills are required to use crestr.
Kim H. Stadelmaier, Patrick Ludwig, Pascal Bertran, Pierre Antoine, Xiaoxu Shi, Gerrit Lohmann, and Joaquim G. Pinto
Clim. Past, 17, 2559–2576, https://doi.org/10.5194/cp-17-2559-2021, https://doi.org/10.5194/cp-17-2559-2021, 2021
Short summary
Short summary
We use regional climate simulations for the Last Glacial Maximum to reconstruct permafrost and to identify areas of thermal contraction cracking of the ground in western Europe. We find ground cracking, a precondition for the development of permafrost proxies, south of the probable permafrost border, implying that permafrost was not the limiting factor for proxy development. A good agreement with permafrost and climate proxy data is achieved when easterly winds are modelled more frequently.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Gaia Sinopoli, Odile Peyron, Alessia Masi, Jens Holtvoeth, Alexander Francke, Bernd Wagner, and Laura Sadori
Clim. Past, 15, 53–71, https://doi.org/10.5194/cp-15-53-2019, https://doi.org/10.5194/cp-15-53-2019, 2019
Short summary
Short summary
Climate changes occur today as they occurred in the past. This study deals with climate changes reconstructed at Lake Ohrid (Albania and FYROM) between 160 000 and 70 000 years ago. Climate reconstruction, based on a high-resolution pollen study, provides quantitative estimates of past temperature and precipitation. Our data show an alternation of cold/dry and warm/wet periods. The last interglacial appears to be characterized by temperatures higher than nowadays.
Madlene Pfeiffer and Gerrit Lohmann
Clim. Past, 12, 1313–1338, https://doi.org/10.5194/cp-12-1313-2016, https://doi.org/10.5194/cp-12-1313-2016, 2016
Short summary
Short summary
The Last Interglacial was warmer, with a reduced Greenland Ice Sheet (GIS), compared to the late Holocene. We analyse – through climate model simulations – the impact of a reduced GIS on the global surface air temperature and find a relatively strong warming especially in the Northern Hemisphere. These results are then compared to temperature reconstructions, indicating good agreement with respect to the pattern. However, the simulated temperatures underestimate the proxy-based temperatures.
M. Willeit and A. Ganopolski
Clim. Past, 11, 1165–1180, https://doi.org/10.5194/cp-11-1165-2015, https://doi.org/10.5194/cp-11-1165-2015, 2015
Short summary
Short summary
In this paper we explore the permafrost–ice-sheet interaction using the fully coupled climate–ice-sheet model CLIMBER-2 with the addition of a newly developed permafrost module. We find that permafrost has a moderate but significant effect on ice sheet dynamics during the last glacial cycle. In particular at the Last Glacial Maximum the inclusion of permafrost leads to a 15m sea level equivalent increase in Northern Hemisphere ice volume when permafrost is included.
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-minute global relief model:
procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC-24, 25, 1–19, 2009.
Atwood, A. R., Donohoe, A., Battisti, D. S., Liu, X., and Pausata, F. S. R.:
Robust Longitudinally Variable Responses of the ITCZ to a Myriad of Climate
Forcings, Geophys. Res. Lett., 47, e2020GL088833, https://doi.org/10.1029/2020GL088833,
2020.
Ayliffe, L. K., Gagan, M. K., Zhao, J., Drysdale, R. N., Hellstrom, J. C.,
Hantoro, W. S., Griffiths, M. L., Scott-Gagan, H., Pierre, E. S., Cowley, J.
A., and Suwargadi, B. W.: Rapid interhemispheric climate links via the
Australasian monsoon during the last deglaciation, Nat. Commun., 4, 2908,
https://doi.org/10.1038/ncomms3908, 2013.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A.,
and Wood, E. F.: Present and future Köppen-Geiger climate classification
maps at 1-km resolution, Sci Data, 5, 180214,
https://doi.org/10.1038/sdata.2018.214, 2018.
Bird, M. I., Taylor, D., and Hunt, C.: Palaeoenvironments of insular
Southeast Asia during the Last Glacial Period: a savanna corridor in
Sundaland?, Quaternary Sci. Rev., 24, 2228–2242,
https://doi.org/10.1016/j.quascirev.2005.04.004, 2005.
Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P., and Yan, M.: Seasonal origin
of the thermal maxima at the Holocene and the last interglacial, Nature, 589,
548–553, https://doi.org/10.1038/s41586-020-03155-x, 2021.
Brady, E. C., Otto-Bliesner, B. L., Kay, J. E., and Rosenbloom, N.:
Sensitivity to Glacial Forcing in the CCSM4, J. Climate, 26, 1901–1925,
https://doi.org/10.1175/JCLI-D-11-00416.1, 2013.
Brown, J. R., Brierley, C. M., An, S.-I., Guarino, M.-V., Stevenson, S., Williams, C. J. R., Zhang, Q., Zhao, A., Abe-Ouchi, A., Braconnot, P., Brady, E. C., Chandan, D., D'Agostino, R., Guo, C., LeGrande, A. N., Lohmann, G., Morozova, P. A., Ohgaito, R., O'ishi, R., Otto-Bliesner, B. L., Peltier, W. R., Shi, X., Sime, L., Volodin, E. M., Zhang, Z., and Zheng, W.: Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models, Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, 2020.
Buckingham, F. L., Carolin, S. A., Partin, J. W., Adkins, J. F., Cobb, K.
M., Day, C. C., Ding, Q., He, C., Liu, Z., Otto-Bliesner, B., Roberts, W. H.
G., Lejau, S., and Malang, J.: Termination 1 Millennial-Scale Rainfall
Events Over the Sunda Shelf, Geophys. Res. Lett., 49, e2021GL096937,
https://doi.org/10.1029/2021GL096937, 2022.
Bush, A. B. G. and Fairbanks, R. G.: Exposing the Sunda shelf:
Tropical responses to eustatic sea level change, J. Geophys. Res., 108,
4446, https://doi.org/10.1029/2002JD003027, 2003.
Byrne, M. P. and Schneider, T.: Atmospheric Dynamics Feedback: Concept,
Simulations, and Climate Implications, Current Climate Change Reports, 31, 3249–3264,
https://doi.org/10.1175/JCLI-D-17-0470.1, 2018.
Cannon, C. H., Morley, R. J., and Bush, A. B. G.: The current refugial
rainforests of Sundaland are unrepresentative of their biogeographic past
and highly vulnerable to disturbance, P. Natl. Acad.
Sci. USA, 106, 11188–11193, https://doi.org/10.1073/pnas.0809865106, 2009.
Carolin, S. A., Cobb, K. M., Adkins, J. F., Clark, B., Conroy, J. L., Lejau,
S., Malang, J., and Tuen, A. A.: Varied Response of Western Pacific
Hydrology to Climate Forcings over the Last Glacial Period, Science, 340,
1564–1566, https://doi.org/10.1126/science.1233797, 2013.
Carolin, S. A., Cobb, K. M., Lynch-Stieglitz, J., Moerman, J. W., Partin, J.
W., Lejau, S., Malang, J., Clark, B., Tuen, A. A., and Adkins, J. F.:
Northern Borneo stalagmite records reveal West Pacific hydroclimate across
MIS 5 and 6, Earth Planet. Sc. Lett., 439, 182–193,
https://doi.org/10.1016/j.epsl.2016.01.028, 2016.
Carré, M., Braconnot, P., Elliot, M., d'Agostino, R., Schurer, A., Shi,
X., Marti, O., Lohmann, G., Jungclaus, J., Cheddadi, R., Abdelkader di
Carlo, I., Cardich, J., Ochoa, D., Salas Gismondi, R., Pérez, A.,
Romero, P. E., Turcq, B., Corrège, T., and Harrison, S. P.:
High-resolution marine data and transient simulations support orbital
forcing of ENSO amplitude since the mid-Holocene, Quaternary Sci.
Rev., 268, 107125, https://doi.org/10.1016/j.quascirev.2021.107125, 2021.
Chabangborn, A. and Wohlfarth, B.: Climate over mainland Southeast Asia
10.5–5 ka: CLIMATE OVER MAINLAND SE ASIA 10.5–5 ka, J. Quaternary Sci., 29,
445–454, https://doi.org/10.1002/jqs.2715, 2014.
Chabangborn, A., Yamoah, K. K. A., Phantuwongraj, S., and Choowong, M.:
Climate in Sundaland and Asian monsoon variability during the last
deglaciation, Quaternary Int., 479, 141–147,
https://doi.org/10.1016/j.quaint.2017.04.017, 2018.
Chen, S., Hoffmann, S. S., Lund, D. C., Cobb, K. M., Emile-Geay, J., and
Adkins, J. F.: A high-resolution speleothem record of western equatorial
Pacific rainfall: Implications for Holocene ENSO evolution, Earth Planet. Sc. Lett., 442, 61–71,
https://doi.org/10.1016/j.epsl.2016.02.050, 2016.
Clement, A. C., Seager, R., and Cane, M. A.: Orbital controls on the El
Niño/Southern Oscillation and the tropical climate, Paleoceanography,
14, 441–456, https://doi.org/10.1029/1999PA900013, 1999.
Dang, H., Jian, Z., Wang, Y., Mohtadi, M., Rosenthal, Y., Ye, L., Bassinot,
F., and Kuhnt, W.: Pacific warm pool subsurface heat sequestration modulated
Walker circulation and ENSO activity during the Holocene, Sci. Adv., 6,
eabc0402, https://doi.org/10.1126/sciadv.abc0402, 2020.
De Deckker, P.: The Indo-Pacific Warm Pool: critical to world oceanography
and world climate, Geosci. Lett., 3, 20,
https://doi.org/10.1186/s40562-016-0054-3, 2016.
De Deckker, P., Tapper, N. J., and van der Kaars, S.: The status of the
Indo-Pacific Warm Pool and adjacent land at the Last Glacial Maximum, Global
Planet. Change, 35, 25–35,
https://doi.org/10.1016/S0921-8181(02)00089-9, 2003.
Deplazes, G., Lückge, A., Peterson, L. C., Timmermann, A., Hamann, Y.,
Hughen, K. A., Röhl, U., Laj, C., Cane, M. A., Sigman, D. M., and Haug,
G. H.: Links between tropical rainfall and North Atlantic climate during the
last glacial period, Nat. Geosci., 6, 213–217, https://doi.org/10.1038/ngeo1712, 2013.
DiNezio, P. N., Timmermann, A., Tierney, J. E., Jin, F., Otto-Bliesner, B.,
Rosenbloom, N., Mapes, B., Neale, R., Ivanovic, R. F., and Montenegro, A.:
The climate response of the Indo-Pacific warm pool to glacial sea level,
Paleoceanography, 31, 866–894, https://doi.org/10.1002/2015PA002890, 2016.
Dommain, R., Couwenberg, J., Glaser, P. H., Joosten, H., and Suryadiputra,
I. N. N.: Carbon storage and release in Indonesian peatlands since the last
deglaciation, Quaternary Sci. Rev., 97, 1–32,
https://doi.org/10.1016/j.quascirev.2014.05.002, 2014.
Dubois, N., Oppo, D. W., Galy, V. V., Mohtadi, M., van der Kaars, S.,
Tierney, J. E., Rosenthal, Y., Eglinton, T. I., Lückge, A., and Linsley,
B. K.: Indonesian vegetation response to changes in rainfall seasonality
over the past 25,000 years, Nat. Geosci., 7, 513–517,
https://doi.org/10.1038/ngeo2182, 2014.
Emile-Geay, J., Cobb, K. M., Carré, M., Braconnot, P., Leloup, J., Zhou,
Y., Harrison, S. P., Corrège, T., McGregor, H. V., Collins, M.,
Driscoll, R., Elliot, M., Schneider, B., and Tudhope, A.: Links between
tropical Pacific seasonal, interannual and orbital variability during the
Holocene, Nat. Geosci., 9, 168–173, https://doi.org/10.1038/ngeo2608,
2016.
Ford, H. L., Ravelo, A. C., and Polissar, P. J.: Reduced El
Niño–Southern Oscillation during the Last Glacial Maximum, Science, 347,
255–258, https://doi.org/10.1126/science.1258437, 2015.
Fraser, N., Kuhnt, W., Holbourn, A., Bolliet, T., Andersen, N., Blanz, T.,
and Beaufort, L.: Precipitation variability within the West Pacific Warm
Pool over the past 120 ka: Evidence from the Davao Gulf, southern
Philippines: WPWP precipitation variability, Paleoceanography, 29,
1094–1110, https://doi.org/10.1002/2013PA002599, 2014.
Griffiths, M. L., Drysdale, R. N., Gagan, M. K., Zhao, J.-X., Ayliffe, L.
K., Hellstrom, J. C., Hantoro, W. S., Frisia, S., Feng, Y.-X., Cartwright,
I., Pierre, E. S., Fischer, M. J., and Suwargadi, B. W.: Increasing
Australian–Indonesian monsoon rainfall linked to early Holocene sea-level
rise, Nat. Geosci., 2, 636–639, https://doi.org/10.1038/ngeo605, 2009.
Grothe, P. R., Cobb, K. M., Liguori, G., Di Lorenzo, E., Capotondi, A., Lu,
Y., Cheng, H., Edwards, R. L., Southon, J. R., Santos, G. M., Deocampo, D.
M., Lynch-Stieglitz, J., Chen, T., Sayani, H. R., Thompson, D. M., Conroy,
J. L., Moore, A. L., Townsend, K., Hagos, M., O'Connor, G., and Toth, L. T.:
Enhanced El Niño–Southern Oscillation Variability in Recent Decades,
Geophys. Res. Lett., 47, e2019GL083906, https://doi.org/10.1029/2019GL083906, 2020.
Hanebuth, T.: Rapid Flooding of the Sunda Shelf: A Late-Glacial Sea-Level
Record, Science, 288, 1033–1035, https://doi.org/10.1126/science.288.5468.1033,
2000.
Hanebuth, T. J. J., Voris, H. K., Yokoyama, Y., Saito, Y., and Okuno, J.:
Formation and fate of sedimentary depocentres on Southeast Asia's Sunda
Shelf over the past sea-level cycle and biogeographic implications,
Earth-Sci. Rev., 104, 92–110,
https://doi.org/10.1016/j.earscirev.2010.09.006, 2011.
He, F.: Simulating transient climate evolution of the last deglaciation with
CCSM3, PhD thesis, 171 pp., University of Wisconsin-Madison, 2011.
He, F., Shakun, J. D., Clark, P. U., Carlson, A. E., Liu, Z., Otto-Bliesner,
B. L., and Kutzbach, J. E.: Northern Hemisphere forcing of Southern
Hemisphere climate during the last deglaciation, Nature, 494, 81–85,
https://doi.org/10.1038/nature11822, 2013.
Heaney, L. R.: A synopsis of climatic and vegetational change in Southeast
Asia, Clim. Change, 19, 53–61, https://doi.org/10.1007/BF00142213, 1991.
Hendrizan, M., Kuhnt, W., and Holbourn, A.: Variability of Indonesian
Throughflow and Borneo Runoff During the Last 14 kyr: ITF and Borneo Runoff
Over 14 kyr, Paleoceanography, 32, 1054–1069,
https://doi.org/10.1002/2016PA003030, 2017.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hollstein, M., Mohtadi, M., Rosenthal, Y., Prange, M., Oppo, D. W.,
Martínez Méndez, G., Tachikawa, K., Moffa Sanchez, P., Steinke, S.,
and Hebbeln, D.: Variations in Western Pacific Warm Pool surface and
thermocline conditions over the past 110,000 years: Forcing mechanisms and
implications for the glacial Walker circulation, Quaternary Sci. Rev.,
201, 429–445, https://doi.org/10.1016/j.quascirev.2018.10.030, 2018.
Hu, J., Peng, P., Jia, G., Fang, D., Zhang, G., Fu, J., and Wang, P.:
Biological markers and their carbon isotopes as an approach to the
paleoenvironmental reconstruction of Nansha area, South China Sea, during
the last 30 ka, Org. Geochem., 33, 1197–1204,
https://doi.org/10.1016/S0146-6380(02)00082-7, 2002.
Hu, J., Peng, P., Fang, D., Jia, G., Jian, Z., and Wang, P.: No aridity in
Sunda Land during the Last Glaciation: Evidence from molecular-isotopic
stratigraphy of long-chain n-alkanes, Palaeogeogr. Palaeocl., 201, 269–281, https://doi.org/10.1016/S0031-0182(03)00613-8,
2003.
Huang, E., Tian, J., and Steinke, S.: Millennial-scale dynamics of the
winter cold tongue in the southern South China Sea over the past 26 ka and
the East Asian winter monsoon, Quaternary Res., 75, 196–204,
https://doi.org/10.1016/j.yqres.2010.08.014, 2011.
Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., and Rosinski, J.: A New
Sea Surface Temperature and Sea Ice Boundary Dataset for the Community
Atmosphere Model, J. Climate, 21, 5145–5153, https://doi.org/10.1175/2008JCLI2292.1,
2008.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, in press, https://doi.org/10.1017/9781009157896, 2021.
Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J., Burke, A., Drummond, R., Peltier, W. R., and Tarasov, L.: Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, 2016.
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J.: The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations, Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, 2021.
Kang, S. M., Xie, S.-P., Shin, Y., Kim, H., Hwang, Y.-T., Stuecker, M. F.,
Xiang, B., and Hawcroft, M.: Walker circulation response to extratropical
radiative forcing, Sci. Adv., 6, eabd3021,
https://doi.org/10.1126/sciadv.abd3021, 2020.
Konecky, B., Russell, J., and Bijaksana, S.: Glacial aridity in central
Indonesia coeval with intensified monsoon circulation, Earth Planet. Sc. Lett., 437, 15–24, https://doi.org/10.1016/j.epsl.2015.12.037,
2016.
Koutavas, A. and Joanides, S.: El Niño–Southern Oscillation extrema in the Holocene and Last Glacial Maximum,
Paleoceanography, 27, PA4208, https://doi.org/10.1029/2012PA002378, 2012.
Krause, C. E., Gagan, M. K., Dunbar, G. B., Hantoro, W. S., Hellstrom, J.
C., Cheng, H., Edwards, R. L., Suwargadi, B. W., Abram, N. J., and Rifai,
H.: Spatio-temporal evolution of Australasian monsoon hydroclimate over the
last 40,000 years, Earth Planet. Sc. Lett., 513, 103–112,
https://doi.org/10.1016/j.epsl.2019.01.045, 2019.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, A&A, 428, 261–285,
https://doi.org/10.1051/0004-6361:20041335, 2004.
Leduc, G., Vidal, L., Cartapanis, O., and Bard, E.: Modes of eastern
equatorial Pacific thermocline variability: Implications for ENSO dynamics
over the last glacial period, Paleoceanography, 24, PA3202, https://doi.org/10.1029/2008PA001701,
2009.
Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A., and Bond, W. J.:
Deciphering the distribution of the savanna biome, New Phytologist, 191,
197–209, https://doi.org/10.1111/j.1469-8137.2011.03689.x, 2011.
Liu, S., Shi, X., Wong, K.-T., Chen, M.-T., Ye, W., Zhang, H., Cao, P., Li,
J., Li, X., Khokiattiwong, S., and Kornkanitnan, N.: Synchronous millennial
surface-stratified events with AMOC and tropical dynamic changes in the
northeastern Indian Ocean over the past 42 ka, Quaternary Sci. Rev.,
284, 107495, https://doi.org/10.1016/j.quascirev.2022.107495, 2022.
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P.
U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient Simulation of Last
Deglaciation with a New Mechanism for Bølling-Allerød Warming, Science, 325, 309–314,
2009.
Liu, Z., Lu, Z., Wen, X., Otto-Bliesner, B. L., Timmermann, A., and Cobb, K.
M.: Evolution and forcing mechanisms of El Niño over the past 21,000
years, Nature, 515, 550–553, https://doi.org/10.1038/nature13963, 2014a.
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L.,
Timmermann, A., Smith, R. S., Lohmann, G., Zheng, W., and Elison Timm, O.:
The Holocene temperature conundrum, P. Natl. Acad.
Sci. USA, 111, E3501–E3505, https://doi.org/10.1073/pnas.1407229111, 2014b.
Louys, J. and Roberts, P.: Environmental drivers of megafauna and hominin
extinction in Southeast Asia, Nature, 586, 402–406,
https://doi.org/10.1038/s41586-020-2810-y, 2020.
Malhi, Y. and Wright, J.: Spatial patterns and recent trends in the climate
of tropical rainforest regions, Philos. T. R. Soc. Lond. B, 359, 311–329,
https://doi.org/10.1098/rstb.2003.1433, 2004.
McGee, D., Donohoe, A., Marshall, J., and Ferreira, D.: Changes in ITCZ
location and cross-equatorial heat transport at the Last Glacial Maximum,
Heinrich Stadial 1, and the mid-Holocene, Earth Planet. Sc. Lett., 390, 69–79, https://doi.org/10.1016/j.epsl.2013.12.043, 2014.
Meehl, G. A., Shields, C., Arblaster, J. M., Annamalai, H., and Neale, R.:
Intraseasonal, Seasonal, and Interannual Characteristics of Regional Monsoon
Simulations in CESM2, J. Adv. Model. Earth
Sy., 12, e2019MS001962,
https://doi.org/10.1029/2019MS001962, 2020.
Mohtadi, M., Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang,
X., Steinke, S., and Lückge, A.: North Atlantic forcing of tropical
Indian Ocean climate, Nature, 509, 76–80,
https://doi.org/10.1038/nature13196, 2014.
NGRIP members: High-resolution record of Northern Hemisphere climate
extending into the last interglacial period, Nature, 431, 147–151,
https://doi.org/10.1038/nature02805, 2004.
Niedermeyer, E. M., Sessions, A. L., Feakins, S. J., and Mohtadi, M.:
Hydroclimate of the western Indo-Pacific Warm Pool during the past 24,000
years, P. Natl. Acad. Sci. USA, 111, 9402–9406,
https://doi.org/10.1073/pnas.1323585111, 2014.
Orihuela-Pinto, B., England, M. H., and Taschetto, A. S.: Interbasin and
interhemispheric impacts of a collapsed Atlantic Overturning Circulation,
Nat. Clim. Chang., 12, 1–8, https://doi.org/10.1038/s41558-022-01380-y, 2022.
Otto-Bliesner, B. L. and Brady, E. C.: The sensitivity of the climate
response to the magnitude and location of freshwater forcing: last glacial
maximum experiments, Quaternary Sci. Rev., 29, 56–73,
https://doi.org/10.1016/j.quascirev.2009.07.004, 2010.
Partin, J. W., Cobb, K. M., Adkins, J. F., Clark, B., and Fernandez, D. P.:
Millennial-scale trends in west Pacific warm pool hydrology since the Last
Glacial Maximum, Nature, 449, 452–455, https://doi.org/10.1038/nature06164,
2007.
Partin, J. W., Quinn, T. M., Shen, C.-C., Okumura, Y., Cardenas, M. B.,
Siringan, F. P., Banner, J. L., Lin, K., Hu, H.-M., and Taylor, F. W.:
Gradual onset and recovery of the Younger Dryas abrupt climate event in the
tropics, Nat. Commun., 6, 8061, https://doi.org/10.1038/ncomms9061, 2015.
Raes, N., Cannon, C. H., Hijmans, R. J., Piessens, T., Saw, L. G., van
Welzen, P. C., and Slik, J. W. F.: Historical distribution of Sundaland's
Dipterocarp rainforests at Quaternary glacial maxima, P. Natl. Acad. Sci.
USA, 111, 16790–16795, https://doi.org/10.1073/pnas.1403053111, 2014.
Roxy, M. K., Dasgupta, P., McPhaden, M. J., Suematsu, T., Zhang, C., and
Kim, D.: Twofold expansion of the Indo-Pacific warm pool warps the MJO life
cycle, Nature, 575, 647–651, https://doi.org/10.1038/s41586-019-1764-4,
2019.
Russell, J. M., Vogel, H., Konecky, B. L., Bijaksana, S., Huang, Y., Melles,
M., Wattrus, N., Costa, K., and King, J. W.: Glacial forcing of central
Indonesian hydroclimate since 60,000 y B.P., P. Natl.
Acad. Sci. USA, 111, 5100–5105,
https://doi.org/10.1073/pnas.1402373111, 2014.
Sadekov, A. Y., Ganeshram, R., Pichevin, L., Berdin, R., McClymont, E.,
Elderfield, H., and Tudhope, A. W.: Palaeoclimate reconstructions reveal a
strong link between El Niño-Southern Oscillation and Tropical Pacific
mean state, Nat. Commun., 4, 2692, https://doi.org/10.1038/ncomms3692, 2013.
Santoso, A., Cai, W., England, M. H., and Phipps, S. J.: The Role of the
Indonesian Throughflow on ENSO Dynamics in a Coupled Climate Model, J. Climate, 24,
585–601, https://doi.org/10.1175/2010JCLI3745.1, 2011.
Schenk, F., Muschitiello, F., Tarasov, L., Heikkilä, M.,
Björck, S., Brandefeld, J., Johansson, A. V., Näslund,
J.-O., and Wohlfarth, B.: Warm summers during the Younger Dryas cold
reversal, Nat. Commun., 9, 1634, https://doi.org/10.1038/s41467-018-04071-5, 2018.
Schröder, J. F., Kuhnt, W., Holbourn, A., Beil, S., Zhang, P.,
Hendrizan, M., and Xu, J.: Deglacial Warming and Hydroclimate Variability in
the Central Indonesian Archipelago, Paleoceanogr. Paleocl.,
33, 974–993, https://doi.org/10.1029/2018PA003323, 2018.
Song, Q., Vecchi, G. A., and Rosati, A. J.: The Role of the Indonesian
Throughflow in the Indo–Pacific Climate Variability in the GFDL Coupled
Climate Model, J. Climate, 20, 2434–2451, https://doi.org/10.1175/JCLI4133.1, 2007.
Stuecker, M. F., Timmermann, A., Jin, F., Chikamoto, Y., Zhang, W.,
Wittenberg, A. T., Widiasih, E., and Zhao, S.: Revisiting ENSO/Indian Ocean
Dipole phase relationships, Geophys. Res. Lett., 44, 2481–2492,
https://doi.org/10.1002/2016GL072308, 2017.
Thirumalai, K., DiNezio, P. N., Tierney, J. E., Puy, M., and Mohtadi, M.: An
El Niño Mode in the Glacial Indian Ocean?, Paleoceanogr.
Paleocl., 34, 1316–1327, https://doi.org/10.1029/2019PA003669,
2019.
Timmermann, A., Menviel, L., Okumura, Y., Schilla, A., Merkel, U., Timm, O.,
Hu, A., Otto-Bliesner, B., and Schulz, M.: Towards a quantitative
understanding of millennial-scale Antarctic warming events, Quaternary
Sci, Rev,, 29, 74–85,
https://doi.org/10.1016/j.quascirev.2009.06.021, 2010.
Voris, H. K. and Sathiamurthy, E.: Maps of Holocene Sea level transgression
and submerged lakes on the Sunda Shelf, Natural Histrory Journal
Chulalongkorn University, 2, 1–43, 2006.
Wang, C.: Three-ocean interactions and climate variability: a review and
perspective, Clim. Dynam., 53, 5119–5136,
https://doi.org/10.1007/s00382-019-04930-x, 2019.
Wang, X., Sun, X., Wang, P., and Stattegger, K.: A high-resolution history
of vegetation and climate history on Sunda Shelf since the last glaciation,
Sci. China Ser. D, 50, 75–80, https://doi.org/10.1007/s11430-007-2067-4,
2007.
Wen, X., Liu, Z., Wang, S., Cheng, J., and Zhu, J.: Correlation and
anti-correlation of the East Asian summer and winter monsoons during the
last 21,000 years, Nat. Commun., 7, 11999,
https://doi.org/10.1038/ncomms11999, 2016.
Wengel, C., Lee, S.-S., Stuecker, M. F., Timmermann, A., Chu, J.-E., and
Schloesser, F.: Future high-resolution El Niño/Southern Oscillation
dynamics, Nat. Clim. Chang., 11, 758–765,
https://doi.org/10.1038/s41558-021-01132-4, 2021.
Windler, G., Tierney, J. E., DiNezio, P. N., Gibson, K., and Thunell, R.:
Shelf exposure influence on Indo-Pacific Warm Pool climate for the last
450,000 years, Earth Planet. Sc. Lett., 516, 66–76,
https://doi.org/10.1016/j.epsl.2019.03.038, 2019.
Wurster, C. M., Bird, M. I., Bull, I. D., Creed, F., Bryant, C., Dungait, J.
A. J., and Paz, V.: Forest contraction in north equatorial Southeast Asia
during the Last Glacial Period, P. Natl. Acad.
Sci. USA, 107, 15508–15511, https://doi.org/10.1073/pnas.1005507107, 2010.
Wurster, C. M., Rifai, H., Zhou, B., Haig, J., and Bird, M. I.: Savanna in
equatorial Borneo during the late Pleistocene, Sci. Rep.-UK, 9, 6392,
https://doi.org/10.1038/s41598-019-42670-4, 2019.
Wurtzel, J. B., Abram, N. J., Lewis, S. C., Bajo, P., Hellstrom, J. C.,
Troitzsch, U., and Heslop, D.: Tropical Indo-Pacific hydroclimate response
to North Atlantic forcing during the last deglaciation as recorded by a
speleothem from Sumatra, Indonesia, Earth Planet. Sc. Lett.,
492, 264–278, https://doi.org/10.1016/j.epsl.2018.04.001, 2018.
Yamoah, K. A., Chabangborn, A., Chawchai, S., Fritz, S., Löwemark, L.,
Kaboth-Bahr, S., Reimer, P. J., Smittenberg, R. H., and Wohlfarth, B.: A
muted El Niño-like condition during late MIS 3, Quaternary Sci.
Rev., 254, 106782, https://doi.org/10.1016/j.quascirev.2020.106782, 2021.
Yang, Z., Li, T., Lei, Y., Chang, F., and Nan, Q.: Vegetation
evolution-based hydrological climate history since LGM in southern South
China Sea, Marine Micropaleontol., 156, 101837,
https://doi.org/10.1016/j.marmicro.2020.101837, 2020.
Yuan, X., Kaplan, M. R., and Cane, M. A.: The Interconnected Global Climate
System – A Review of Tropical–Polar Teleconnections, J. Climate, 31,
5765–5792, https://doi.org/10.1175/JCLI-D-16-0637.1, 2018.
Zhang, G. J., Song, X., and Wang, Y.: The double ITCZ syndrome in GCMs: A
coupled feedback problem among convection, clouds, atmospheric and ocean
circulations, Atmos. Res., 229, 255–268,
https://doi.org/10.1016/j.atmosres.2019.06.023, 2019.
Zhu, J., Liu, Z., Brady, E., Otto-Bliesner, B., Zhang, J., Noone, D., Tomas,
R., Nusbaumer, J., Wong, T., Jahn, A., and Tabor, C.: Reduced ENSO
variability at the LGM revealed by an isotope-enabled Earth system model, Geophys. Res. Lett.,
44, 6984–6992, https://doi.org/10.1002/2017GL073406, 2017.
Short summary
Using climate model simulations, we find that SE Asian tropical climate was strongly seasonal under Late Glacial conditions. During Northern Hemisphere winters, it was highly arid in this region that is today humid year-round. The seasonal aridity was driven by orbital forcing and stronger East Asian winter monsoon. A breakdown of deep convection caused a reorganized Walker Circulation and a mean state resembling El Niño conditions.
Using climate model simulations, we find that SE Asian tropical climate was strongly seasonal...