Articles | Volume 18, issue 7
https://doi.org/10.5194/cp-18-1655-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1655-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal aridity in the Indo-Pacific Warm Pool during the Late Glacial driven by El Niño-like conditions
Petter L. Hällberg
CORRESPONDING AUTHOR
Department of Geological Sciences and Bolin Centre for Climate
Research, Stockholm University, Stockholm, 106 91, Sweden
Frederik Schenk
Department of Geological Sciences and Bolin Centre for Climate
Research, Stockholm University, Stockholm, 106 91, Sweden
Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, 601
76, Sweden
Kweku A. Yamoah
BioArc, Department of Archaeology, University of York, York, YO10 5DD,
UK
Xueyuen Kuang
School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
Rienk H. Smittenberg
Department of Geological Sciences and Bolin Centre for Climate
Research, Stockholm University, Stockholm, 106 91, Sweden
Related authors
No articles found.
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Ana Lúcia Lindroth Dauner, Frederik Schenk, Katherine Elizabeth Power, and Maija Heikkilä
The Cryosphere, 18, 1399–1418, https://doi.org/10.5194/tc-18-1399-2024, https://doi.org/10.5194/tc-18-1399-2024, 2024
Short summary
Short summary
In this study, we analysed 14 sea-ice proxy records and compared them with the results from two different climate simulations from the Atlantic sector of the Arctic Ocean over the Common Era (last 2000 years). Both proxy and model approaches demonstrated a long-term sea-ice increase. The good correspondence suggests that the state-of-the-art sea-ice proxies are able to capture large-scale climate drivers. Short-term variability, however, was less coherent due to local-to-regional scale forcings.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-minute global relief model:
procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC-24, 25, 1–19, 2009.
Atwood, A. R., Donohoe, A., Battisti, D. S., Liu, X., and Pausata, F. S. R.:
Robust Longitudinally Variable Responses of the ITCZ to a Myriad of Climate
Forcings, Geophys. Res. Lett., 47, e2020GL088833, https://doi.org/10.1029/2020GL088833,
2020.
Ayliffe, L. K., Gagan, M. K., Zhao, J., Drysdale, R. N., Hellstrom, J. C.,
Hantoro, W. S., Griffiths, M. L., Scott-Gagan, H., Pierre, E. S., Cowley, J.
A., and Suwargadi, B. W.: Rapid interhemispheric climate links via the
Australasian monsoon during the last deglaciation, Nat. Commun., 4, 2908,
https://doi.org/10.1038/ncomms3908, 2013.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A.,
and Wood, E. F.: Present and future Köppen-Geiger climate classification
maps at 1-km resolution, Sci Data, 5, 180214,
https://doi.org/10.1038/sdata.2018.214, 2018.
Bird, M. I., Taylor, D., and Hunt, C.: Palaeoenvironments of insular
Southeast Asia during the Last Glacial Period: a savanna corridor in
Sundaland?, Quaternary Sci. Rev., 24, 2228–2242,
https://doi.org/10.1016/j.quascirev.2005.04.004, 2005.
Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P., and Yan, M.: Seasonal origin
of the thermal maxima at the Holocene and the last interglacial, Nature, 589,
548–553, https://doi.org/10.1038/s41586-020-03155-x, 2021.
Brady, E. C., Otto-Bliesner, B. L., Kay, J. E., and Rosenbloom, N.:
Sensitivity to Glacial Forcing in the CCSM4, J. Climate, 26, 1901–1925,
https://doi.org/10.1175/JCLI-D-11-00416.1, 2013.
Brown, J. R., Brierley, C. M., An, S.-I., Guarino, M.-V., Stevenson, S., Williams, C. J. R., Zhang, Q., Zhao, A., Abe-Ouchi, A., Braconnot, P., Brady, E. C., Chandan, D., D'Agostino, R., Guo, C., LeGrande, A. N., Lohmann, G., Morozova, P. A., Ohgaito, R., O'ishi, R., Otto-Bliesner, B. L., Peltier, W. R., Shi, X., Sime, L., Volodin, E. M., Zhang, Z., and Zheng, W.: Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models, Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, 2020.
Buckingham, F. L., Carolin, S. A., Partin, J. W., Adkins, J. F., Cobb, K.
M., Day, C. C., Ding, Q., He, C., Liu, Z., Otto-Bliesner, B., Roberts, W. H.
G., Lejau, S., and Malang, J.: Termination 1 Millennial-Scale Rainfall
Events Over the Sunda Shelf, Geophys. Res. Lett., 49, e2021GL096937,
https://doi.org/10.1029/2021GL096937, 2022.
Bush, A. B. G. and Fairbanks, R. G.: Exposing the Sunda shelf:
Tropical responses to eustatic sea level change, J. Geophys. Res., 108,
4446, https://doi.org/10.1029/2002JD003027, 2003.
Byrne, M. P. and Schneider, T.: Atmospheric Dynamics Feedback: Concept,
Simulations, and Climate Implications, Current Climate Change Reports, 31, 3249–3264,
https://doi.org/10.1175/JCLI-D-17-0470.1, 2018.
Cannon, C. H., Morley, R. J., and Bush, A. B. G.: The current refugial
rainforests of Sundaland are unrepresentative of their biogeographic past
and highly vulnerable to disturbance, P. Natl. Acad.
Sci. USA, 106, 11188–11193, https://doi.org/10.1073/pnas.0809865106, 2009.
Carolin, S. A., Cobb, K. M., Adkins, J. F., Clark, B., Conroy, J. L., Lejau,
S., Malang, J., and Tuen, A. A.: Varied Response of Western Pacific
Hydrology to Climate Forcings over the Last Glacial Period, Science, 340,
1564–1566, https://doi.org/10.1126/science.1233797, 2013.
Carolin, S. A., Cobb, K. M., Lynch-Stieglitz, J., Moerman, J. W., Partin, J.
W., Lejau, S., Malang, J., Clark, B., Tuen, A. A., and Adkins, J. F.:
Northern Borneo stalagmite records reveal West Pacific hydroclimate across
MIS 5 and 6, Earth Planet. Sc. Lett., 439, 182–193,
https://doi.org/10.1016/j.epsl.2016.01.028, 2016.
Carré, M., Braconnot, P., Elliot, M., d'Agostino, R., Schurer, A., Shi,
X., Marti, O., Lohmann, G., Jungclaus, J., Cheddadi, R., Abdelkader di
Carlo, I., Cardich, J., Ochoa, D., Salas Gismondi, R., Pérez, A.,
Romero, P. E., Turcq, B., Corrège, T., and Harrison, S. P.:
High-resolution marine data and transient simulations support orbital
forcing of ENSO amplitude since the mid-Holocene, Quaternary Sci.
Rev., 268, 107125, https://doi.org/10.1016/j.quascirev.2021.107125, 2021.
Chabangborn, A. and Wohlfarth, B.: Climate over mainland Southeast Asia
10.5–5 ka: CLIMATE OVER MAINLAND SE ASIA 10.5–5 ka, J. Quaternary Sci., 29,
445–454, https://doi.org/10.1002/jqs.2715, 2014.
Chabangborn, A., Yamoah, K. K. A., Phantuwongraj, S., and Choowong, M.:
Climate in Sundaland and Asian monsoon variability during the last
deglaciation, Quaternary Int., 479, 141–147,
https://doi.org/10.1016/j.quaint.2017.04.017, 2018.
Chen, S., Hoffmann, S. S., Lund, D. C., Cobb, K. M., Emile-Geay, J., and
Adkins, J. F.: A high-resolution speleothem record of western equatorial
Pacific rainfall: Implications for Holocene ENSO evolution, Earth Planet. Sc. Lett., 442, 61–71,
https://doi.org/10.1016/j.epsl.2016.02.050, 2016.
Clement, A. C., Seager, R., and Cane, M. A.: Orbital controls on the El
Niño/Southern Oscillation and the tropical climate, Paleoceanography,
14, 441–456, https://doi.org/10.1029/1999PA900013, 1999.
Dang, H., Jian, Z., Wang, Y., Mohtadi, M., Rosenthal, Y., Ye, L., Bassinot,
F., and Kuhnt, W.: Pacific warm pool subsurface heat sequestration modulated
Walker circulation and ENSO activity during the Holocene, Sci. Adv., 6,
eabc0402, https://doi.org/10.1126/sciadv.abc0402, 2020.
De Deckker, P.: The Indo-Pacific Warm Pool: critical to world oceanography
and world climate, Geosci. Lett., 3, 20,
https://doi.org/10.1186/s40562-016-0054-3, 2016.
De Deckker, P., Tapper, N. J., and van der Kaars, S.: The status of the
Indo-Pacific Warm Pool and adjacent land at the Last Glacial Maximum, Global
Planet. Change, 35, 25–35,
https://doi.org/10.1016/S0921-8181(02)00089-9, 2003.
Deplazes, G., Lückge, A., Peterson, L. C., Timmermann, A., Hamann, Y.,
Hughen, K. A., Röhl, U., Laj, C., Cane, M. A., Sigman, D. M., and Haug,
G. H.: Links between tropical rainfall and North Atlantic climate during the
last glacial period, Nat. Geosci., 6, 213–217, https://doi.org/10.1038/ngeo1712, 2013.
DiNezio, P. N., Timmermann, A., Tierney, J. E., Jin, F., Otto-Bliesner, B.,
Rosenbloom, N., Mapes, B., Neale, R., Ivanovic, R. F., and Montenegro, A.:
The climate response of the Indo-Pacific warm pool to glacial sea level,
Paleoceanography, 31, 866–894, https://doi.org/10.1002/2015PA002890, 2016.
Dommain, R., Couwenberg, J., Glaser, P. H., Joosten, H., and Suryadiputra,
I. N. N.: Carbon storage and release in Indonesian peatlands since the last
deglaciation, Quaternary Sci. Rev., 97, 1–32,
https://doi.org/10.1016/j.quascirev.2014.05.002, 2014.
Dubois, N., Oppo, D. W., Galy, V. V., Mohtadi, M., van der Kaars, S.,
Tierney, J. E., Rosenthal, Y., Eglinton, T. I., Lückge, A., and Linsley,
B. K.: Indonesian vegetation response to changes in rainfall seasonality
over the past 25,000 years, Nat. Geosci., 7, 513–517,
https://doi.org/10.1038/ngeo2182, 2014.
Emile-Geay, J., Cobb, K. M., Carré, M., Braconnot, P., Leloup, J., Zhou,
Y., Harrison, S. P., Corrège, T., McGregor, H. V., Collins, M.,
Driscoll, R., Elliot, M., Schneider, B., and Tudhope, A.: Links between
tropical Pacific seasonal, interannual and orbital variability during the
Holocene, Nat. Geosci., 9, 168–173, https://doi.org/10.1038/ngeo2608,
2016.
Ford, H. L., Ravelo, A. C., and Polissar, P. J.: Reduced El
Niño–Southern Oscillation during the Last Glacial Maximum, Science, 347,
255–258, https://doi.org/10.1126/science.1258437, 2015.
Fraser, N., Kuhnt, W., Holbourn, A., Bolliet, T., Andersen, N., Blanz, T.,
and Beaufort, L.: Precipitation variability within the West Pacific Warm
Pool over the past 120 ka: Evidence from the Davao Gulf, southern
Philippines: WPWP precipitation variability, Paleoceanography, 29,
1094–1110, https://doi.org/10.1002/2013PA002599, 2014.
Griffiths, M. L., Drysdale, R. N., Gagan, M. K., Zhao, J.-X., Ayliffe, L.
K., Hellstrom, J. C., Hantoro, W. S., Frisia, S., Feng, Y.-X., Cartwright,
I., Pierre, E. S., Fischer, M. J., and Suwargadi, B. W.: Increasing
Australian–Indonesian monsoon rainfall linked to early Holocene sea-level
rise, Nat. Geosci., 2, 636–639, https://doi.org/10.1038/ngeo605, 2009.
Grothe, P. R., Cobb, K. M., Liguori, G., Di Lorenzo, E., Capotondi, A., Lu,
Y., Cheng, H., Edwards, R. L., Southon, J. R., Santos, G. M., Deocampo, D.
M., Lynch-Stieglitz, J., Chen, T., Sayani, H. R., Thompson, D. M., Conroy,
J. L., Moore, A. L., Townsend, K., Hagos, M., O'Connor, G., and Toth, L. T.:
Enhanced El Niño–Southern Oscillation Variability in Recent Decades,
Geophys. Res. Lett., 47, e2019GL083906, https://doi.org/10.1029/2019GL083906, 2020.
Hanebuth, T.: Rapid Flooding of the Sunda Shelf: A Late-Glacial Sea-Level
Record, Science, 288, 1033–1035, https://doi.org/10.1126/science.288.5468.1033,
2000.
Hanebuth, T. J. J., Voris, H. K., Yokoyama, Y., Saito, Y., and Okuno, J.:
Formation and fate of sedimentary depocentres on Southeast Asia's Sunda
Shelf over the past sea-level cycle and biogeographic implications,
Earth-Sci. Rev., 104, 92–110,
https://doi.org/10.1016/j.earscirev.2010.09.006, 2011.
He, F.: Simulating transient climate evolution of the last deglaciation with
CCSM3, PhD thesis, 171 pp., University of Wisconsin-Madison, 2011.
He, F., Shakun, J. D., Clark, P. U., Carlson, A. E., Liu, Z., Otto-Bliesner,
B. L., and Kutzbach, J. E.: Northern Hemisphere forcing of Southern
Hemisphere climate during the last deglaciation, Nature, 494, 81–85,
https://doi.org/10.1038/nature11822, 2013.
Heaney, L. R.: A synopsis of climatic and vegetational change in Southeast
Asia, Clim. Change, 19, 53–61, https://doi.org/10.1007/BF00142213, 1991.
Hendrizan, M., Kuhnt, W., and Holbourn, A.: Variability of Indonesian
Throughflow and Borneo Runoff During the Last 14 kyr: ITF and Borneo Runoff
Over 14 kyr, Paleoceanography, 32, 1054–1069,
https://doi.org/10.1002/2016PA003030, 2017.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hollstein, M., Mohtadi, M., Rosenthal, Y., Prange, M., Oppo, D. W.,
Martínez Méndez, G., Tachikawa, K., Moffa Sanchez, P., Steinke, S.,
and Hebbeln, D.: Variations in Western Pacific Warm Pool surface and
thermocline conditions over the past 110,000 years: Forcing mechanisms and
implications for the glacial Walker circulation, Quaternary Sci. Rev.,
201, 429–445, https://doi.org/10.1016/j.quascirev.2018.10.030, 2018.
Hu, J., Peng, P., Jia, G., Fang, D., Zhang, G., Fu, J., and Wang, P.:
Biological markers and their carbon isotopes as an approach to the
paleoenvironmental reconstruction of Nansha area, South China Sea, during
the last 30 ka, Org. Geochem., 33, 1197–1204,
https://doi.org/10.1016/S0146-6380(02)00082-7, 2002.
Hu, J., Peng, P., Fang, D., Jia, G., Jian, Z., and Wang, P.: No aridity in
Sunda Land during the Last Glaciation: Evidence from molecular-isotopic
stratigraphy of long-chain n-alkanes, Palaeogeogr. Palaeocl., 201, 269–281, https://doi.org/10.1016/S0031-0182(03)00613-8,
2003.
Huang, E., Tian, J., and Steinke, S.: Millennial-scale dynamics of the
winter cold tongue in the southern South China Sea over the past 26 ka and
the East Asian winter monsoon, Quaternary Res., 75, 196–204,
https://doi.org/10.1016/j.yqres.2010.08.014, 2011.
Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., and Rosinski, J.: A New
Sea Surface Temperature and Sea Ice Boundary Dataset for the Community
Atmosphere Model, J. Climate, 21, 5145–5153, https://doi.org/10.1175/2008JCLI2292.1,
2008.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, in press, https://doi.org/10.1017/9781009157896, 2021.
Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J., Burke, A., Drummond, R., Peltier, W. R., and Tarasov, L.: Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, 2016.
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J.: The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations, Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, 2021.
Kang, S. M., Xie, S.-P., Shin, Y., Kim, H., Hwang, Y.-T., Stuecker, M. F.,
Xiang, B., and Hawcroft, M.: Walker circulation response to extratropical
radiative forcing, Sci. Adv., 6, eabd3021,
https://doi.org/10.1126/sciadv.abd3021, 2020.
Konecky, B., Russell, J., and Bijaksana, S.: Glacial aridity in central
Indonesia coeval with intensified monsoon circulation, Earth Planet. Sc. Lett., 437, 15–24, https://doi.org/10.1016/j.epsl.2015.12.037,
2016.
Koutavas, A. and Joanides, S.: El Niño–Southern Oscillation extrema in the Holocene and Last Glacial Maximum,
Paleoceanography, 27, PA4208, https://doi.org/10.1029/2012PA002378, 2012.
Krause, C. E., Gagan, M. K., Dunbar, G. B., Hantoro, W. S., Hellstrom, J.
C., Cheng, H., Edwards, R. L., Suwargadi, B. W., Abram, N. J., and Rifai,
H.: Spatio-temporal evolution of Australasian monsoon hydroclimate over the
last 40,000 years, Earth Planet. Sc. Lett., 513, 103–112,
https://doi.org/10.1016/j.epsl.2019.01.045, 2019.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, A&A, 428, 261–285,
https://doi.org/10.1051/0004-6361:20041335, 2004.
Leduc, G., Vidal, L., Cartapanis, O., and Bard, E.: Modes of eastern
equatorial Pacific thermocline variability: Implications for ENSO dynamics
over the last glacial period, Paleoceanography, 24, PA3202, https://doi.org/10.1029/2008PA001701,
2009.
Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A., and Bond, W. J.:
Deciphering the distribution of the savanna biome, New Phytologist, 191,
197–209, https://doi.org/10.1111/j.1469-8137.2011.03689.x, 2011.
Liu, S., Shi, X., Wong, K.-T., Chen, M.-T., Ye, W., Zhang, H., Cao, P., Li,
J., Li, X., Khokiattiwong, S., and Kornkanitnan, N.: Synchronous millennial
surface-stratified events with AMOC and tropical dynamic changes in the
northeastern Indian Ocean over the past 42 ka, Quaternary Sci. Rev.,
284, 107495, https://doi.org/10.1016/j.quascirev.2022.107495, 2022.
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P.
U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient Simulation of Last
Deglaciation with a New Mechanism for Bølling-Allerød Warming, Science, 325, 309–314,
2009.
Liu, Z., Lu, Z., Wen, X., Otto-Bliesner, B. L., Timmermann, A., and Cobb, K.
M.: Evolution and forcing mechanisms of El Niño over the past 21,000
years, Nature, 515, 550–553, https://doi.org/10.1038/nature13963, 2014a.
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L.,
Timmermann, A., Smith, R. S., Lohmann, G., Zheng, W., and Elison Timm, O.:
The Holocene temperature conundrum, P. Natl. Acad.
Sci. USA, 111, E3501–E3505, https://doi.org/10.1073/pnas.1407229111, 2014b.
Louys, J. and Roberts, P.: Environmental drivers of megafauna and hominin
extinction in Southeast Asia, Nature, 586, 402–406,
https://doi.org/10.1038/s41586-020-2810-y, 2020.
Malhi, Y. and Wright, J.: Spatial patterns and recent trends in the climate
of tropical rainforest regions, Philos. T. R. Soc. Lond. B, 359, 311–329,
https://doi.org/10.1098/rstb.2003.1433, 2004.
McGee, D., Donohoe, A., Marshall, J., and Ferreira, D.: Changes in ITCZ
location and cross-equatorial heat transport at the Last Glacial Maximum,
Heinrich Stadial 1, and the mid-Holocene, Earth Planet. Sc. Lett., 390, 69–79, https://doi.org/10.1016/j.epsl.2013.12.043, 2014.
Meehl, G. A., Shields, C., Arblaster, J. M., Annamalai, H., and Neale, R.:
Intraseasonal, Seasonal, and Interannual Characteristics of Regional Monsoon
Simulations in CESM2, J. Adv. Model. Earth
Sy., 12, e2019MS001962,
https://doi.org/10.1029/2019MS001962, 2020.
Mohtadi, M., Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang,
X., Steinke, S., and Lückge, A.: North Atlantic forcing of tropical
Indian Ocean climate, Nature, 509, 76–80,
https://doi.org/10.1038/nature13196, 2014.
NGRIP members: High-resolution record of Northern Hemisphere climate
extending into the last interglacial period, Nature, 431, 147–151,
https://doi.org/10.1038/nature02805, 2004.
Niedermeyer, E. M., Sessions, A. L., Feakins, S. J., and Mohtadi, M.:
Hydroclimate of the western Indo-Pacific Warm Pool during the past 24,000
years, P. Natl. Acad. Sci. USA, 111, 9402–9406,
https://doi.org/10.1073/pnas.1323585111, 2014.
Orihuela-Pinto, B., England, M. H., and Taschetto, A. S.: Interbasin and
interhemispheric impacts of a collapsed Atlantic Overturning Circulation,
Nat. Clim. Chang., 12, 1–8, https://doi.org/10.1038/s41558-022-01380-y, 2022.
Otto-Bliesner, B. L. and Brady, E. C.: The sensitivity of the climate
response to the magnitude and location of freshwater forcing: last glacial
maximum experiments, Quaternary Sci. Rev., 29, 56–73,
https://doi.org/10.1016/j.quascirev.2009.07.004, 2010.
Partin, J. W., Cobb, K. M., Adkins, J. F., Clark, B., and Fernandez, D. P.:
Millennial-scale trends in west Pacific warm pool hydrology since the Last
Glacial Maximum, Nature, 449, 452–455, https://doi.org/10.1038/nature06164,
2007.
Partin, J. W., Quinn, T. M., Shen, C.-C., Okumura, Y., Cardenas, M. B.,
Siringan, F. P., Banner, J. L., Lin, K., Hu, H.-M., and Taylor, F. W.:
Gradual onset and recovery of the Younger Dryas abrupt climate event in the
tropics, Nat. Commun., 6, 8061, https://doi.org/10.1038/ncomms9061, 2015.
Raes, N., Cannon, C. H., Hijmans, R. J., Piessens, T., Saw, L. G., van
Welzen, P. C., and Slik, J. W. F.: Historical distribution of Sundaland's
Dipterocarp rainforests at Quaternary glacial maxima, P. Natl. Acad. Sci.
USA, 111, 16790–16795, https://doi.org/10.1073/pnas.1403053111, 2014.
Roxy, M. K., Dasgupta, P., McPhaden, M. J., Suematsu, T., Zhang, C., and
Kim, D.: Twofold expansion of the Indo-Pacific warm pool warps the MJO life
cycle, Nature, 575, 647–651, https://doi.org/10.1038/s41586-019-1764-4,
2019.
Russell, J. M., Vogel, H., Konecky, B. L., Bijaksana, S., Huang, Y., Melles,
M., Wattrus, N., Costa, K., and King, J. W.: Glacial forcing of central
Indonesian hydroclimate since 60,000 y B.P., P. Natl.
Acad. Sci. USA, 111, 5100–5105,
https://doi.org/10.1073/pnas.1402373111, 2014.
Sadekov, A. Y., Ganeshram, R., Pichevin, L., Berdin, R., McClymont, E.,
Elderfield, H., and Tudhope, A. W.: Palaeoclimate reconstructions reveal a
strong link between El Niño-Southern Oscillation and Tropical Pacific
mean state, Nat. Commun., 4, 2692, https://doi.org/10.1038/ncomms3692, 2013.
Santoso, A., Cai, W., England, M. H., and Phipps, S. J.: The Role of the
Indonesian Throughflow on ENSO Dynamics in a Coupled Climate Model, J. Climate, 24,
585–601, https://doi.org/10.1175/2010JCLI3745.1, 2011.
Schenk, F., Muschitiello, F., Tarasov, L., Heikkilä, M.,
Björck, S., Brandefeld, J., Johansson, A. V., Näslund,
J.-O., and Wohlfarth, B.: Warm summers during the Younger Dryas cold
reversal, Nat. Commun., 9, 1634, https://doi.org/10.1038/s41467-018-04071-5, 2018.
Schröder, J. F., Kuhnt, W., Holbourn, A., Beil, S., Zhang, P.,
Hendrizan, M., and Xu, J.: Deglacial Warming and Hydroclimate Variability in
the Central Indonesian Archipelago, Paleoceanogr. Paleocl.,
33, 974–993, https://doi.org/10.1029/2018PA003323, 2018.
Song, Q., Vecchi, G. A., and Rosati, A. J.: The Role of the Indonesian
Throughflow in the Indo–Pacific Climate Variability in the GFDL Coupled
Climate Model, J. Climate, 20, 2434–2451, https://doi.org/10.1175/JCLI4133.1, 2007.
Stuecker, M. F., Timmermann, A., Jin, F., Chikamoto, Y., Zhang, W.,
Wittenberg, A. T., Widiasih, E., and Zhao, S.: Revisiting ENSO/Indian Ocean
Dipole phase relationships, Geophys. Res. Lett., 44, 2481–2492,
https://doi.org/10.1002/2016GL072308, 2017.
Thirumalai, K., DiNezio, P. N., Tierney, J. E., Puy, M., and Mohtadi, M.: An
El Niño Mode in the Glacial Indian Ocean?, Paleoceanogr.
Paleocl., 34, 1316–1327, https://doi.org/10.1029/2019PA003669,
2019.
Timmermann, A., Menviel, L., Okumura, Y., Schilla, A., Merkel, U., Timm, O.,
Hu, A., Otto-Bliesner, B., and Schulz, M.: Towards a quantitative
understanding of millennial-scale Antarctic warming events, Quaternary
Sci, Rev,, 29, 74–85,
https://doi.org/10.1016/j.quascirev.2009.06.021, 2010.
Voris, H. K. and Sathiamurthy, E.: Maps of Holocene Sea level transgression
and submerged lakes on the Sunda Shelf, Natural Histrory Journal
Chulalongkorn University, 2, 1–43, 2006.
Wang, C.: Three-ocean interactions and climate variability: a review and
perspective, Clim. Dynam., 53, 5119–5136,
https://doi.org/10.1007/s00382-019-04930-x, 2019.
Wang, X., Sun, X., Wang, P., and Stattegger, K.: A high-resolution history
of vegetation and climate history on Sunda Shelf since the last glaciation,
Sci. China Ser. D, 50, 75–80, https://doi.org/10.1007/s11430-007-2067-4,
2007.
Wen, X., Liu, Z., Wang, S., Cheng, J., and Zhu, J.: Correlation and
anti-correlation of the East Asian summer and winter monsoons during the
last 21,000 years, Nat. Commun., 7, 11999,
https://doi.org/10.1038/ncomms11999, 2016.
Wengel, C., Lee, S.-S., Stuecker, M. F., Timmermann, A., Chu, J.-E., and
Schloesser, F.: Future high-resolution El Niño/Southern Oscillation
dynamics, Nat. Clim. Chang., 11, 758–765,
https://doi.org/10.1038/s41558-021-01132-4, 2021.
Windler, G., Tierney, J. E., DiNezio, P. N., Gibson, K., and Thunell, R.:
Shelf exposure influence on Indo-Pacific Warm Pool climate for the last
450,000 years, Earth Planet. Sc. Lett., 516, 66–76,
https://doi.org/10.1016/j.epsl.2019.03.038, 2019.
Wurster, C. M., Bird, M. I., Bull, I. D., Creed, F., Bryant, C., Dungait, J.
A. J., and Paz, V.: Forest contraction in north equatorial Southeast Asia
during the Last Glacial Period, P. Natl. Acad.
Sci. USA, 107, 15508–15511, https://doi.org/10.1073/pnas.1005507107, 2010.
Wurster, C. M., Rifai, H., Zhou, B., Haig, J., and Bird, M. I.: Savanna in
equatorial Borneo during the late Pleistocene, Sci. Rep.-UK, 9, 6392,
https://doi.org/10.1038/s41598-019-42670-4, 2019.
Wurtzel, J. B., Abram, N. J., Lewis, S. C., Bajo, P., Hellstrom, J. C.,
Troitzsch, U., and Heslop, D.: Tropical Indo-Pacific hydroclimate response
to North Atlantic forcing during the last deglaciation as recorded by a
speleothem from Sumatra, Indonesia, Earth Planet. Sc. Lett.,
492, 264–278, https://doi.org/10.1016/j.epsl.2018.04.001, 2018.
Yamoah, K. A., Chabangborn, A., Chawchai, S., Fritz, S., Löwemark, L.,
Kaboth-Bahr, S., Reimer, P. J., Smittenberg, R. H., and Wohlfarth, B.: A
muted El Niño-like condition during late MIS 3, Quaternary Sci.
Rev., 254, 106782, https://doi.org/10.1016/j.quascirev.2020.106782, 2021.
Yang, Z., Li, T., Lei, Y., Chang, F., and Nan, Q.: Vegetation
evolution-based hydrological climate history since LGM in southern South
China Sea, Marine Micropaleontol., 156, 101837,
https://doi.org/10.1016/j.marmicro.2020.101837, 2020.
Yuan, X., Kaplan, M. R., and Cane, M. A.: The Interconnected Global Climate
System – A Review of Tropical–Polar Teleconnections, J. Climate, 31,
5765–5792, https://doi.org/10.1175/JCLI-D-16-0637.1, 2018.
Zhang, G. J., Song, X., and Wang, Y.: The double ITCZ syndrome in GCMs: A
coupled feedback problem among convection, clouds, atmospheric and ocean
circulations, Atmos. Res., 229, 255–268,
https://doi.org/10.1016/j.atmosres.2019.06.023, 2019.
Zhu, J., Liu, Z., Brady, E., Otto-Bliesner, B., Zhang, J., Noone, D., Tomas,
R., Nusbaumer, J., Wong, T., Jahn, A., and Tabor, C.: Reduced ENSO
variability at the LGM revealed by an isotope-enabled Earth system model, Geophys. Res. Lett.,
44, 6984–6992, https://doi.org/10.1002/2017GL073406, 2017.
Short summary
Using climate model simulations, we find that SE Asian tropical climate was strongly seasonal under Late Glacial conditions. During Northern Hemisphere winters, it was highly arid in this region that is today humid year-round. The seasonal aridity was driven by orbital forcing and stronger East Asian winter monsoon. A breakdown of deep convection caused a reorganized Walker Circulation and a mean state resembling El Niño conditions.
Using climate model simulations, we find that SE Asian tropical climate was strongly seasonal...