Articles | Volume 18, issue 6
https://doi.org/10.5194/cp-18-1429-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1429-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of terrestrial biosphere on the atmospheric CO2 concentration across Termination V
Département de Géosciences, École Normale Supérieure, PSL Université, Paris, France
UMR CNRS 5805, EPOC – OASU – Université de Bordeaux, Allee Geoffroy St Hilaire, 33615 Pessac CEDEX, France
María F. Sánchez Goñi
Ecole Pratique des Hautes Etudes (EPHE), PSL University, Allée
Geoffroy Saint-Hilaire Bât. 18N, 33615 Pessac CEDEX, France
UMR CNRS 5805, EPOC – OASU – Université de Bordeaux, Allee Geoffroy St Hilaire, 33615 Pessac CEDEX, France
Nathaelle Bouttes
Laboratoire des Sciences du Climat et de l'environnement, LSCE/IPSL, CEA-CNRS-UVSQ-Université Paris Saclay, 91-198, Gif sur Yvette, France
Related authors
No articles found.
Nathaelle Bouttes, Lester Kwiatkowski, Elodie Bougeot, Manon Berger, Victor Brovkin, and Guy Munhoven
EGUsphere, https://doi.org/10.5194/egusphere-2024-3738, https://doi.org/10.5194/egusphere-2024-3738, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Coral reefs are under threat due to warming and ocean acidification. It is difficult to project future coral reef production due to uncertainties in climate models, socio-economic scenarios and coral adaptation to warming. Here we have included a coral reef module within a climate model for the first time to evaluate the range of possible futures. We show that coral reef production decreases in most future scenarios, but in some cases coral reef carbonate production can persist.
Sandra Domingues Gomes, William Fletcher, Abi Stone, Teresa Rodrigues, Andreia Rebotim, Dulce Oliveira, Maria F. Sánchez Goñi, Fatima Abrantes, and Filipa Naughton
EGUsphere, https://doi.org/10.5194/egusphere-2024-3334, https://doi.org/10.5194/egusphere-2024-3334, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Our study explores how rising CO2 at the end of the last ice age impacted vegetation in the Iberian Peninsula. By analyzing pollen and ocean temperatures in marine sediments, we found that higher CO2 helped forests expand, even in cool or dry conditions. This shows that CO2 played a key role in shaping ecosystems during climate shifts. Understanding this past response helps us see how different factors interact and provides insights into how today’s ecosystems might adapt to rapidly rising CO2.
Nathaelle Bouttes, Lester Kwiatkowski, Manon Berger, Victor Brovkin, and Guy Munhoven
Geosci. Model Dev., 17, 6513–6528, https://doi.org/10.5194/gmd-17-6513-2024, https://doi.org/10.5194/gmd-17-6513-2024, 2024
Short summary
Short summary
Coral reefs are crucial for biodiversity, but they also play a role in the carbon cycle on long time scales of a few thousand years. To better simulate the future and past evolution of coral reefs and their effect on the global carbon cycle, hence on atmospheric CO2 concentration, it is necessary to include coral reefs within a climate model. Here we describe the inclusion of coral reef carbonate production in a carbon–climate model and its validation in comparison to existing modern data.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-86, https://doi.org/10.5194/cp-2023-86, 2023
Revised manuscript under review for CP
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving southern high latitude temperature changes. We find that atmospheric CO2 changes and AMOC changes are the primary drivers of the major warming and cooling during the middle stage of the deglaciation. The multi-model analysis highlights the model’s sensitivity of CO2, AMOC to meltwater, and the meltwater history on temperature changes in southern high latitudes.
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023, https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
Short summary
The last deglaciation is a period of large warming from 21 000 to 9000 years ago, concomitant with ice sheet melting. Here, we evaluate the impact of different ice sheet reconstructions and different processes linked to their changes. Changes in bathymetry and coastlines, although not often accounted for, cannot be neglected. Ice sheet melt results in freshwater into the ocean with large effects on ocean circulation, but the timing cannot explain the observed abrupt climate changes.
Aurélien Quiquet, Didier M. Roche, Christophe Dumas, Nathaëlle Bouttes, and Fanny Lhardy
Clim. Past, 17, 2179–2199, https://doi.org/10.5194/cp-17-2179-2021, https://doi.org/10.5194/cp-17-2179-2021, 2021
Short summary
Short summary
In this paper we discuss results obtained with a set of coupled ice-sheet–climate model experiments for the last 26 kyrs. The model displays a large sensitivity of the oceanic circulation to the amount of the freshwater flux resulting from ice sheet melting. Ice sheet geometry changes alone are not enough to lead to abrupt climate events, and rapid warming at high latitudes is here only reported during abrupt oceanic circulation recoveries that occurred when accounting for freshwater flux.
Fanny Lhardy, Nathaëlle Bouttes, Didier M. Roche, Xavier Crosta, Claire Waelbroeck, and Didier Paillard
Clim. Past, 17, 1139–1159, https://doi.org/10.5194/cp-17-1139-2021, https://doi.org/10.5194/cp-17-1139-2021, 2021
Short summary
Short summary
Climate models struggle to simulate a LGM ocean circulation in agreement with paleotracer data. Using a set of simulations, we test the impact of boundary conditions and other modelling choices. Model–data comparisons of sea-surface temperatures and sea-ice cover support an overall cold Southern Ocean, with implications on the AMOC strength. Changes in implemented boundary conditions are not sufficient to simulate a shallower AMOC; other mechanisms to better represent convection are required.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Lise Missiaen, Nathaelle Bouttes, Didier M. Roche, Jean-Claude Dutay, Aurélien Quiquet, Claire Waelbroeck, Sylvain Pichat, and Jean-Yves Peterschmitt
Clim. Past, 16, 867–883, https://doi.org/10.5194/cp-16-867-2020, https://doi.org/10.5194/cp-16-867-2020, 2020
Nathaelle Bouttes, Didier Swingedouw, Didier M. Roche, Maria F. Sanchez-Goni, and Xavier Crosta
Clim. Past, 14, 239–253, https://doi.org/10.5194/cp-14-239-2018, https://doi.org/10.5194/cp-14-239-2018, 2018
Short summary
Short summary
Atmospheric CO2 is key for climate change. CO2 is lower during the oldest warm period of the last million years, the interglacials, than during the most recent ones (since 430 000 years ago). This difference has not been explained yet, but could be due to changes of ocean circulation. We test this hypothesis and the role of vegetation and ice sheets using an intermediate complexity model. We show that only small changes of CO2 can be obtained, underlying missing feedbacks or mechanisms.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Jonathan M. Gregory, Nathaelle Bouttes, Stephen M. Griffies, Helmuth Haak, William J. Hurlin, Johann Jungclaus, Maxwell Kelley, Warren G. Lee, John Marshall, Anastasia Romanou, Oleg A. Saenko, Detlef Stammer, and Michael Winton
Geosci. Model Dev., 9, 3993–4017, https://doi.org/10.5194/gmd-9-3993-2016, https://doi.org/10.5194/gmd-9-3993-2016, 2016
Short summary
Short summary
As a consequence of greenhouse gas emissions, changes in ocean temperature, salinity, circulation and sea level are expected in coming decades. Among the models used for climate projections for the 21st century, there is a large spread in projections of these effects. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to investigate and explain this spread by prescribing a common set of changes in the input of heat, water and wind stress to the ocean in the participating models.
N. Bouttes, D. M. Roche, V. Mariotti, and L. Bopp
Geosci. Model Dev., 8, 1563–1576, https://doi.org/10.5194/gmd-8-1563-2015, https://doi.org/10.5194/gmd-8-1563-2015, 2015
Short summary
Short summary
We describe the development of a relatively simple climate model to include a model of the carbon cycle in the ocean. The carbon cycle consists of the exchange of carbon between the atmosphere, land vegetation and ocean. In the ocean, carbon exists in organic form, such as plankton which grows and dies, and inorganic forms, such as dissolved CO2. With this we will be able to explore long-standing questions such as why the atmospheric CO2 has changed over time during the last million years.
V. Valsecchi, M. F. Sanchez Goñi, and L. Londeix
Clim. Past, 8, 1941–1956, https://doi.org/10.5194/cp-8-1941-2012, https://doi.org/10.5194/cp-8-1941-2012, 2012
Related subject area
Subject: Vegetation Dynamics | Archive: Marine Archives | Timescale: Pleistocene
Pollen-based climatic reconstructions for the interglacial analogues of MIS 1 (MIS 19, 11 and 5) in the Southwestern Mediterranean: insights from ODP Site 976
Continuous vegetation record of the Greater Cape Floristic Region (South Africa) covering the past 300 000 years (IODP U1479)
Pliocene expansion of C4 vegetation in the Core Monsoon Zone on the Indian Peninsula
Effects of atmospheric CO2 variability of the past 800 kyr on the biomes of southeast Africa
Increased aridity in southwestern Africa during the warmest periods of the last interglacial
Dael Sassoon, Nathalie Combourieu-Nebout, Odile Peyron, Adele Bertini, Francesco Toti, Vincent Lebreton, and Marie-Hélène Moncel
EGUsphere, https://doi.org/10.5194/egusphere-2024-1771, https://doi.org/10.5194/egusphere-2024-1771, 2024
Short summary
Short summary
Comparisons of climatic reconstructions of past interglacials MIS 19, 11, 5 with the current interglacial (MIS 1) based on pollen data from a marine core (Alboran Sea) show that, compared with MIS 1, MIS 19 was colder and highly variable, MIS 11 was longer and more stable, and MIS 5 was warmer. While there is no real equivalent to the current interglacial, past interglacials give insights into the sensitivity of the SW Mediterranean to global climatic changes during conditions similar to MIS 1.
Lydie M. Dupont, Xueqin Zhao, Christopher Charles, John Tyler Faith, and David Braun
Clim. Past, 18, 1–21, https://doi.org/10.5194/cp-18-1-2022, https://doi.org/10.5194/cp-18-1-2022, 2022
Short summary
Short summary
We studied the vegetation and climate of southwestern South Africa for the period of the past 300000 years. Vegetation and climate development in this region are interesting because the vegetation of the Western Cape is a global biodiversity hotspot and because the archeology of the region substantially contributed to the understanding of the origins of modern humans. We found that the influence of precession variability on the vegetation and climate of southwestern South Africa is strong.
Ann G. Dunlea, Liviu Giosan, and Yongsong Huang
Clim. Past, 16, 2533–2546, https://doi.org/10.5194/cp-16-2533-2020, https://doi.org/10.5194/cp-16-2533-2020, 2020
Short summary
Short summary
Over the past 20 Myr, there has been a dramatic global increase in plants using C4 photosynthetic pathways. We analyze C and H isotopes in fatty acids of leaf waxes preserved in marine sediment from the Bay of Bengal to examine changes in photosynthesis in the Core Monsoon Zone of the Indian Peninsula over the past 6 Myr. The observed increase in C4 vegetation from 3.5 to 1.5 Ma is synchronous with C4 expansions in northwest Australia and East Africa, suggesting regional hydroclimate controls
Lydie M. Dupont, Thibaut Caley, and Isla S. Castañeda
Clim. Past, 15, 1083–1097, https://doi.org/10.5194/cp-15-1083-2019, https://doi.org/10.5194/cp-15-1083-2019, 2019
Short summary
Short summary
Multiproxy study of marine sediments off the Limpopo River mouth spanning the Late Pleistocene reveals the impact of atmospheric carbon dioxide on the development of the vegetation of southeast Africa and indicates changes in the interglacial vegetation before and after the Mid-Brunhes Event (430 ka).
D. H. Urrego, M. F. Sánchez Goñi, A.-L. Daniau, S. Lechevrel, and V. Hanquiez
Clim. Past, 11, 1417–1431, https://doi.org/10.5194/cp-11-1417-2015, https://doi.org/10.5194/cp-11-1417-2015, 2015
Short summary
Short summary
We present a new pollen-based palaeoclimatic reconstruction covering the period between 190,000 and 24,000 years ago from a marine sediment core located off the Namibian coast. Our work identifies increased dryness during the three warmest periods of the last interglacial involving atmospheric and oceanic reorganisations in southern Africa that are linked to precession minima.
Cited articles
Alonso, B., Ercilla, G., Casas, D., Stow, D. A. V., Rodríguez-Tovar, F.
J., Dorador, J., and Hernández-Molina, F.-J.: Contourite vs gravity-flow
deposits of the Pleistocene Faro Drift (Gulf of Cadiz): Sedimentological and
mineralogical approaches, Mar. Geol., 377, 77–94,
https://doi.org/10.1016/j.margeo.2015.12.016, 2016.
Barth, A. M., Clark, P. U., Bill, N. S., He, F., and Pisias, N. G.: Climate evolution across the Mid-Brunhes Transition, Clim. Past, 14, 2071–2087, https://doi.org/10.5194/cp-14-2071-2018, 2018.
Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S.,
Gajewski, K., Guiot, J., Harrison-Prentice, T. I., Henderson, A., Peyron,
O., Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S.,
Thompson, R. S., Viau, A. E., Williams, J., and Wu, H.: Pollen-based
continental climate reconstructions at 6 and 21 ka: a global synthesis,
Clim. Dynam., 37, 775–802, https://doi.org/10.1007/s00382-010-0904-1,
2010.
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S.,
Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The
configuration of Northern Hemisphere ice sheets through the Quaternary, Nat.
Commun., 10, 1–10, https://doi.org/10.1038/s41467-019-11601-2, 2019.
Bennett, K. D.: Psimpoll and pscomb: computer programs for data plotting and
analysis, Upps. Swed. Quat. Geol. Earth Sci. Upps. Univ. Softw., https://chrono.qub.ac.uk/psimpoll/psimpoll.html (last access: 24 June 2022), 2000.
Berger, A. L.: Long-Term Variations of Daily Insolation and Quaternary
Climatic Changes, J. Atmos. Sci., 35, 2362–2367,
https://doi.org/10.1175/1520-0469(1978)035<2362:ltvodi>2.0.co;2,
1978.
Berger, W. H. and Wefer, G.: On the dynamics of the ice ages: Stage-11
paradox, mid-Brunhes climate shift, and 100-ky cycle, Geophys. Monogr.-Am.
Geophys. UNION, 137, 41–60, 2003.
Birks, H. J. B. and Birks, H. H.: Quaternary paleoecology, Edw.
Arnold, London, 8, 289–289, ISBN 0713127813, 1980.
Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Hilgen, F. J., Lourens, L.
J., and Rohling, E. J.: Precession and obliquity forcing of the freshwater
budget over the Mediterranean, Quaternary Sci. Rev., 123, 16–30, 2015.
Bouttes, N., Roche, D. M., Mariotti, V., and Bopp, L.: Including an ocean carbon cycle model into iLOVECLIM (v1.0), Geosci. Model Dev., 8, 1563–1576, https://doi.org/10.5194/gmd-8-1563-2015, 2015.
Bouttes, N., Swingedouw, D., Roche, D. M., Sanchez-Goni, M. F., and Crosta, X.: Response of the carbon cycle in an intermediate complexity model to the different climate configurations of the last nine interglacials, Clim. Past, 14, 239–253, https://doi.org/10.5194/cp-14-239-2018, 2018.
Bouttes, N., Vazquez Riveiros, N., Govin, A., Swingedouw, D., Sanchez-Goni,
M. F., Crosta, X., and Roche, D. M.: Carbon 13 isotopes reveal limited ocean
circulation changes between interglacials of the last 800 ka, Paleoceanogr.
Paleoclimatology, 35, e2019PA003776, https://doi.org/10.1029/2019PA003776, 2020.
Bradshaw, R. H. W. and Webb III, T.: Relationships between contemporary
pollen and vegetation data from Wisconsin and Michigan, USA, Ecology, 66,
721–737, 1985.
Brandon, M., Landais, A., Duchamp-Alphonse, S., Favre, V., Schmitz, L.,
Abrial, H., Prié, F., Extier, T., and Blunier, T.: Exceptionally high
biosphere productivity at the beginning of Marine Isotopic Stage 11, Nat.
Commun., 11, 1–10, 2020.
Braun-Blanquet, J.: L'origine et le développement des Flores dans le
massif central de France avec aperçu sur les migrations des Flores dans
l'Europe sud-occidentale, Publ. Société Linn. Lyon, 75, 1–73,
1930.
Broecker, W. S.: Terminations, in: Milankovitch and climate, Springer,
687–698, https://doi.org/10.1007/978-94-017-4841-4_14, 1984.
Broecker, W. S. and van Donk, J.: Insolation changes, ice volumes, and the
O18 record in deep-sea cores, Rev. Geophys., 8, 169–169,
https://doi.org/10.1029/rg008i001p00169, 1970.
Brovkin, V., Ganopolski, A., and Svirezhev, Y.: A continuous
climate-vegetation classification for use in climate-biosphere studies,
Ecol. Model., 101, 251–261, 1997.
Brovkin, V., Bendtsen, J., Claussen, M., Ganopolski, A., Kubatzki, C., Petoukhov, V., and Andreev, A.: Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model, Global Biogeochem. Cy., 16, 1139, https://doi.org/10.1029/2001GB001662, 2002.
Candy, I., Schreve, D. C., Sherriff, J., and Tye, G. J.: Marine Isotope
Stage 11: Palaeoclimates, palaeoenvironments and its role as an analogue for
the current interglacial, Earth-Sci. Rev., 128, 18–51,
https://doi.org/10.1016/j.earscirev.2013.09.006, 2014.
Castro, E. B., González, M. A. C., Tenorio, M. C., Bombìn, R. E.,
Antón, M. G., Fuster, M. G., Manzaneque, F. G., Sáis, J. C. M.,
Juaristi, C. M., Pajares, P. R., and H. Sfiiz Ollero: Los Bosques
Ibéricos, Barcelona, ISBN 9788408058205, 1997.
Cheng, Z., Weng, C., Steinke, S., and Mohtadi, M.: Anthropogenic
modification of vegetated landscapes in southern China from 6,000 years ago,
Nat. Geosci., 11, 939–943, https://doi.org/10.1038/s41561-018-0250-1, 2018.
Crowley, T. J.: Ice Age terrestrial carbon changes revisited, Global
Biogeochem. Cy., 9, 377–389, https://doi.org/10.1029/95gb01107, 1995.
de Beaulieu, J.-L. and Reille, M.: Long Pleistocene pollen sequences from
the Velay Plateau (Massif Central, France), Veg. Hist. Archaeobotany, 1,
233–242, https://doi.org/10.1007/BF00189500, 1992.
Desprat, S., Goñi, M. F. S., Turon, J.-L., McManus, J. F., Loutre,
M.-F., Duprat, J., Malaize, B., Peyron, O., and Peypouquet, J.-P.: Is
vegetation responsible for glacial inception during periods of muted
insolation changes?, Quaternary Sci. Rev., 24, 1361–1374, 2005.
de Vernal, A. and Hillaire-Marcel, C.: Natural Variability of Greenland
Climate, Vegetation, and Ice Volume During the Past Million Years, Science,
320, 1622–1625, https://doi.org/10.1126/science.1153929, 2008.
Dupont, L. M. and Agwu, C. O. C.: Latitudinal shifts of forest and savanna
in NW Africa during the Brunhes chron: further marine palynological results
from site M 16415 (9∘; N 19∘ W), Veg. Hist.
Archaeobotany, 1, 163–175, 1992.
Dupont, L. M., Beug, H. J., Stalling, H., and Tiedemann, R.: First
palynological results from Site 658 at 21∘ N off Northwest Africa:
Pollen as climate indicators, in: Proceedings Ocean Drilling Program Scientific Results, edited by: Ruddiman, W., Sarnthein, M., Heath, G. R., and Baldauf, J., 93–112, https://doi.org/10.2973/odp.proc.sr.108.174.1989, 1989.
Dupont, L. M., Marret, F., and Winn, K.: Land-sea correlation by means of
terrestrial and marine palynomorphs from the equatorial East Atlantic:
phasing of SE trade winds and the oceanic productivity, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 142, 51–84, 1998.
Dupont, L. M., Caley, T., and Castañeda, I. S.: Effects of atmospheric CO2 variability of the past 800 kyr on the biomes of southeast Africa, Clim. Past, 15, 1083–1097, https://doi.org/10.5194/cp-15-1083-2019, 2019.
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U.,
DeConto, R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-level rise
due to polar ice-sheet mass loss during past warm periods, Science, 349, aaa4019, https://doi.org/10.1126/science.aaa4019, 2015.
Fawcett, P. J., Werne, J. P., Anderson, R. S., Heikoop, J. M., Brown, E. T.,
Berke, M. A., Smith, S. J., Goff, F., Donohoo-Hurley, L., Cisneros-Dozal, L.
M., Schouten, S., Sinninghe Damsté, J. S., Huang, Y., Toney, J.,
Fessenden, J., WoldeGabriel, G., Atudorei, V., Geissman, J. W., and Allen,
C. D.: Extended megadroughts in the southwestern United States during
Pleistocene interglacials, Nature, 470, 518–521, 2011.
Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles, Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011.
Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles, Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011.
Ganopolski, A. and Brovkin, V.: Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity, Clim. Past, 13, 1695–1716, https://doi.org/10.5194/cp-13-1695-2017, 2017.
Goosse, H., Brovkin, V., Fichefet, T., Haarsma, R., Huybrechts, P., Jongma, J., Mouchet, A., Selten, F., Barriat, P.-Y., Campin, J.-M., Deleersnijder, E., Driesschaert, E., Goelzer, H., Janssens, I., Loutre, M.-F., Morales Maqueda, M. A., Opsteegh, T., Mathieu, P.-P., Munhoven, G., Pettersson, E. J., Renssen, H., Roche, D. M., Schaeffer, M., Tartinville, B., Timmermann, A., and Weber, S. L.: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603–633, https://doi.org/10.5194/gmd-3-603-2010, 2010.
Govin, A., Braconnot, P., Capron, E., Cortijo, E., Duplessy, J.-C., Jansen, E., Labeyrie, L., Landais, A., Marti, O., Michel, E., Mosquet, E., Risebrobakken, B., Swingedouw, D., and Waelbroeck, C.: Persistent influence of ice sheet melting on high northern latitude climate during the early Last Interglacial, Clim. Past, 8, 483–507, https://doi.org/10.5194/cp-8-483-2012, 2012.
Hall, S. A.: Deteriorated pollen grains and the interpretation of quaternary
pollen diagrams, Rev. Palaeobot. Palynol., 32, 193–206,
https://doi.org/10.1016/0034-6667(81)90003-8, 1981.
Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., De Bruin, S.,
Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., and Tyukavina, A.: Global maps of twenty-first century forest carbon
fluxes, Nat. Clim. Change, 11, 234-240-234–240, 2021.
Hayashi, R., Sagawa, T., Irino, T., and Tada, R.: Orbital-scale
vegetation-ocean-atmosphere linkages in western Japan during the last 550 ka
based on a pollen record from the IODP site U1427 in the Japan Sea, Quaternary Sci. Rev., 267, 107103–107103, 2021.
Hes, G.: Global arboreal pollen database for Termination V (404–433 kyr BP), in: Climate of the Past, Zenodo [data set], https://doi.org/10.5281/zenodo.6611054, 2022.
Hes, G. and Bouttes, N.: Simulated terrestrial biosphere variables across Termination V, (iLOVECLIM model), Zenodo [data set], https://doi.org/10.5281/zenodo.5592751, 2021.
Hes, G., d'Olier, D., and Sanchez Goñi, M. F.: Pollen counts of IODP Site 339-U1386 across Termination V (404–433 kyr BP), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.939160, 2021.
Heusser, L. and Balsam, W. L.: Pollen distribution in the northeast Pacific
Ocean, Quat. Res., 7, 45-62-45–62, 1977.
Hoogakker, B. A. A., Smith, R. S., Singarayer, J. S., Marchant, R., Prentice, I. C., Allen, J. R. M., Anderson, R. S., Bhagwat, S. A., Behling, H., Borisova, O., Bush, M., Correa-Metrio, A., de Vernal, A., Finch, J. M., Fréchette, B., Lozano-Garcia, S., Gosling, W. D., Granoszewski, W., Grimm, E. C., Grüger, E., Hanselman, J., Harrison, S. P., Hill, T. R., Huntley, B., Jiménez-Moreno, G., Kershaw, P., Ledru, M.-P., Magri, D., McKenzie, M., Müller, U., Nakagawa, T., Novenko, E., Penny, D., Sadori, L., Scott, L., Stevenson, J., Valdes, P. J., Vandergoes, M., Velichko, A., Whitlock, C., and Tzedakis, C.: Terrestrial biosphere changes over the last 120 kyr, Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, 2016.
Huntley, B.: An atlas of past and present pollen maps for Europe, 0-13,000
years ago, Cambridge University Press, 1983.
Huntley, B.: European vegetation history: Palaeovegetation maps from pollen
data – 13 000 yr BP to present, J. Quat. Sci., 5, 103–122,
https://doi.org/10.1002/jqs.3390050203, 1990.
Ivory, S. J., Blome, M. W., King, J. W., McGlue, M. M., Cole, J. E., and
Cohen, A. S.: Environmental change explains cichlid adaptive radiation at
Lake Malawi over the past 1.2 million years, P. Natl. Acad. Sci. USA, 113,
11895–11900, https://doi.org/10.1073/pnas.1611028113, 2016.
Janssen, C. R.: On the reconstruction of past vegetation by pollen analysis:
a review, Proc. K. Ned. Akad. Van Wet., 84, 197–210, 1981.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffmann, G., Minster, B., Nouet, J., Barnola, J.-M., Chappellaz, J., and Wolff, E. W.: Orbital and millennial Antarctic climate variability over
the past 800,000 years, Science, 317, 793–796, 2007.
Juggins, S.: Package “rioja”–analysis of quaternary science data, Compr.
R Arch. Netw., https://cran.r-project.org/web/packages/rioja/index.html
(last access: 24 June 2022), 2009.
Kaboth, S., de Boer, B., Bahr, A., Zeeden, C., and Lourens, L. J.:
Mediterranean Outflow Water dynamics during the past 570 kyr: Regional and
global implications, Paleoceanography, 32, 634–647, 2017.
Kleinen, T., Hildebrandt, S., Prange, M., Rachmayani, R., Müller, S.,
Bezrukova, E., Brovkin, V., and Tarasov, P. E.: The climate and vegetation
of Marine Isotope Stage 11 – Model results and proxy-based reconstructions
at global and regional scale, Quaternary Int., 348, 247–265,
https://doi.org/10.1016/j.quaint.2013.12.028, 2014.
Kleinen, T., Brovkin, V., and Munhoven, G.: Modelled interglacial carbon cycle dynamics during the Holocene, the Eemian and Marine Isotope Stage (MIS) 11, Clim. Past, 12, 2145–2160, https://doi.org/10.5194/cp-12-2145-2016, 2016.
Köhler, P. and Fischer, H.: Simulating low frequency changes in atmospheric CO2 during the last 740 000 years, Clim. Past, 2, 57–78, https://doi.org/10.5194/cp-2-57-2006, 2006.
Koutsodendris, A., Müller, U. C., Pross, J., Brauer, A., Kotthoff, U.,
and Lotter, A. F.: Vegetation dynamics and climate variability during the
Holsteinian interglacial based on a pollen record from Dethlingen (northern
Germany), Quaternary Sci. Rev., 29, 3298–3307, 2010.
Landais, A., Dreyfus, G., Capron, E., Masson-Delmotte, V., Sanchez-Goñi,
M. F., Desprat, S., Hoffmann, G., Jouzel, J., Leuenberger, M., and Johnsen,
S.: What drives the millennial and orbital variations of δ18Oatm?,
Quaternary Sci. Rev., 29, 235–246, 2010.
Leroy, S. A. G.: Climatic and non-climatic lake-level changes inferred from
a Plio-Pleistocene lacustrine complex of Catalonia (Spain): palynology of
the Tres Pins sequences, J. Paleolimnol., 17, 347–367,
https://doi.org/10.1023/A:1007929213952, 1997.
Levavasseur, G., Vrac, M., Roche, D. M., and Paillard, D.: Statistical
modelling of a new global potential vegetation distribution, Environ. Res.
Lett., 7, 044019, https://doi.org/10.1088/1748-9326/7/4/044019, 2012.
Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V.,
Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., and Xoplaki,
E.: The Mediterranean climate: an overview of the main characteristics and
issues, Developments in earth and environmental sciences, 4, 1–26, https://doi.org/10.1016/S1571-9197(06)80003-0, 2006.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography, 20,
PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Litt, T., Pickarski, N., Heumann, G., Stockhecke, M., and Tzedakis, P. C.: A
600,000 year long continental pollen record from Lake Van, eastern Anatolia
(Turkey), Quaternary Sci. Rev., 104, 30–41,
https://doi.org/10.1016/j.quascirev.2014.03.017, 2014.
Loughran, T., Boysen, L., Bastos, A., Hartung, K., Havermann, F., Li, H.,
Nabel, J. E. M. S., Obermeier, W. A., and Pongratz, J.: Past and future
climate variability uncertainties in the global carbon budget using the MPI
Grand Ensemble, Glob. Biogeochem. Cy., 35, e2021GB007019, https://doi.org/10.1029/2021GB007019, 2021.
Loutre, M.-F. and Berger, A.: Marine Isotope Stage 11 as an analogue for the
present interglacial, Global Planet. Change, 36, 209–217, 2003.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T. F.: High-resolution carbon dioxide concentration record
650,000–800,000 years before present, Nature, 453, 379–382, 2008.
Maher Jr., L. J.: Statistics for microfossil concentration measurements
employing samples spiked with marker grains, Rev. Palaeobot. Palynol., 32,
153–191, 1981.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M. I.: Climate
Change 2021: The Physical Science Basis. Contribution of Working Group I to
the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change, IPCC Geneva, Switzerland, https://www.ipcc.ch/report/ar6/wg1/ (last access: 24 June 2022), 2021.
Mc Andrews, J. H. and King, J. E.: Pollen of the North American Quaternary:
the top twenty, Geosci. Man, 15, 41–49, 1976.
McManus, J. F., Oppo, D. W., and Cullen, J. L.: A 0.5-million-year record of
millennial-scale climate variability in the North Atlantic, Science, 283,
971–975, 1999.
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich,
V., DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., Cook, T.
L., and Wagner, B.: 2.8 million years of Arctic climate change from
Lake El'gygytgyn, NE Russia, Science, 337, 315–320, 2012.
Moal-Darrigade, P., Ducassou, E., Giraudeau, J., Bahr, A., Kaboth-Bahr, S.,
Hanquiez, V., and Perello, M.-C.: MOW strengthening and contourite
development over two analog climate cycles (MIS 12–11 and MIS 2–1) in the
Gulf of Cadíz: An impact on North Atlantic climate during deglaciation
V and MIS 11?, Global Planet. Change, 208, 103721,
https://doi.org/10.1016/j.gloplacha.2021.103721, 2022a.
Moal-Darrigade, P., Ducassou, E., Bout-Roumazeilles, V., Hanquiez, V.,
Perello, M.-C., Mulder, T., and Giraudeau, J.: Source-to-sink pathways of
clay minerals in the cadiz contourite system over the last 25 kyrs: The
segregational role of mediterranean outflow water, Mar. Geol., 443, 106697,
https://doi.org/10.1016/j.margeo.2021.106697, 2022b.
Morales-Molino, C., Devaux, L., Georget, M., Hanquiez, V., and Goñi, M.
F. S.: Modern pollen representation of the vegetation of the Tagus Basin
(central Iberian Peninsula), Rev. Palaeobot. Palynol., 276, 104193–104193,
2020.
Naughton, F., Goñi, M. F. S., Desprat, S., Turon, J.-L., Duprat, J.,
Malaizé, B., Joli, C., Cortijo, E., Drago, T., and Freitas, M. C.:
Present-day and past (last 25 000 years) marine pollen signal off western
Iberia, Mar. Micropaleontol., 62, 91–114, 2007.
Nehrbass-Ahles, C., Shin, J., Schmitt, J., Bereiter, B., Joos, F., Schilt,
A., Schmidely, L., Silva, L., Teste, G., Grilli, R., Chappellaz, J., Hodell,
D., Fischer, H., and Stocker, T. F.: Abrupt CO2 release to the atmosphere under glacial and early interglacial climate conditions, Science, 369, 1000–1005, https://doi.org/10.1126/science.aay8178, 2020.
Oliveira, D., Desprat, S., Rodrigues, T., Naughton, F., Hodell, D., Trigo,
R., Rufino, M., Lopes, C., Abrantes, F., and Goni, M. F. S.: The complexity
of millennial-scale variability in southwestern Europe during MIS 11, Quaternary Res., 86, 373–387, 2016.
Overpeck, J., Whitlock, C., and Huntley, B.: Terrestrial biosphere dynamics
in the climate system: past and future, in: Paleoclimate, global change and
the future, Springer, 81–103, https://doi.org/10.1007/978-3-642-55828-3_5, 2003.
Owen, R. B., Muiruri, V. M., Lowenstein, T. K., Renaut, R. W., Rabideaux,
N., Luo, S., Deino, A. L., Sier, M. J., Dupont-Nivet, G., McNulty, E. P.,
Leet, K., Cohen, A., Campisano, C., Deocampo, D., Shen, C.-C., Billingsley,
A., and Mbuthia, A.: Progressive aridification in East Africa over the last
half million years and implications for human evolution, P. Natl. Acad.
Sci. USA, 115, 11174–11179,
https://doi.org/10.1073/pnas.1801357115, 2018.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P.,
Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A.,
Sitch, S., and Hayes, D.: A Large and Persistent Carbon Sink in the World's
Forests, Science, 333, 988–993, https://doi.org/10.1126/science.1201609, 2011.
Peinado-Lorca, M. and Martínez-Parras, J. M.: Castilla-La Mancha, La vegetación de España, Servicio de Publicaciones, Universidad de Alcalá de Henares, 3, 163–196, 1987.
Pickett, E. J., Harrison, S. P., Hope, G., Harle, K., Dodson, J. R., Peter
Kershaw, A., Colin Prentice, I., Backhouse, J., Colhoun, E. A., D'Costa, D.,
Flenley, J., Grindrod, J., Haberle, S., Hassell, C., Kenyon, C., Macphail,
M., Martin, H., Martin, A. H., McKenzie, M., Newsome, J. C., Penny, D.,
Powell, J., Ian Raine, J., Southern, W., Stevenson, J., Sutra, J.-P.,
Thomas, I., van der Kaars, S., and Ward, J.: Pollen-based reconstructions of
biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC
region) at 0, 6000 and 18,000 14C yr BP, J. Biogeogr., 31, 1381–1444,
https://doi.org/10.1111/j.1365-2699.2004.01001.x, 2004.
Polunin, O. and Walters, M.: Guide to the Vegetation of Britain and Europe,
Oxford University Press, ISBN 978-0192177131, 1985.
Prentice, C., Guiot, J., Huntley, B., Jolly, D., and Cheddadi, R.:
Reconstructing biomes from palaeoecological data: a general method and its
application to European pollen data at 0 and 6 ka, Clim. Dynam., 12, 185–194, https://doi.org/10.1007/BF00211617, 1996.
Prentice, I. C., Harrison, S. P., and Bartlein, P. J.: Global vegetation and
terrestrial carbon cycle changes after the last ice age, New Phytol., 189, 988–998, https://doi.org/10.1111/j.1469-8137.2010.03620.x, 2011.
Prokopenko, A. A., Williams, D. F., Kuzmin, M. I., Karabanov, E. B.,
Khursevich, G. K., and Peck, J. A.: Muted climate variations in continental
Siberia during the mid-Pleistocene epoch, Nature, 418, 65–68,
https://doi.org/10.1038/nature00886, 2002.
Rachmayani, R., Prange, M., and Schulz, M.: Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15, Clim. Past, 12, 677–695, https://doi.org/10.5194/cp-12-677-2016, 2016.
Raymo, M. E.: The timing of major climate terminations, Paleoceanography,
12, 577–585, https://doi.org/10.1029/97pa01169, 1997.
Rivas-Martinez, S.: Nociones sobre fitosociologia, biogeografia y
bioclimatologia, Veg. Espana, 17–45, ISBN 978-8460051466, 1987.
Roche, D. M., Dokken, T. M., Goosse, H., Renssen, H., and Weber, S. L.: Climate of the Last Glacial Maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model, Clim. Past, 3, 205–224, https://doi.org/10.5194/cp-3-205-2007, 2007.
Roche, D. M., Renssen, H., Paillard, D., and Levavasseur, G.: Deciphering the spatio-temporal complexity of climate change of the last deglaciation: a model analysis, Clim. Past, 7, 591–602, https://doi.org/10.5194/cp-7-591-2011, 2011.
Rull, V.: A note on pollen counting in palaeoecology, Pollen et spores, 29, 471–480, 1987.
Sánchez Goñi, M. F., Eynaud, F., Turon, J.-L., and Shackleton, N.
J.: High resolution palynological record off the Iberian margin: direct
land-sea correlation for the Last Interglacial complex, Earth Planet. Sci.
Lett., 171, 123–137, 1999.
Sánchez Goñi, M. F., Bard, E., Landais, A., Rossignol, L., and
d'Errico, F.: Air–sea temperature decoupling in western Europe during the
last interglacial–glacial transition, Nat. Geosci., 6, 837–841,
https://doi.org/10.1038/ngeo1924, 2013.
Sánchez Goñi, M. F., Llave, E., Oliveira, D., Naughton, F., Desprat,
S., Ducassou, E., Hodell, D. A., and Hernandez-Molina, F. J.: Climate
changes in south western Iberia and Mediterranean Outflow variations during
two contrasting cycles of the last 1 Myrs: MIS 31–MIS 30 and MIS 12–MIS
11, Global Planet. Change, 136, 18–29, 2016.
Sánchez Goñi, M. F., Desprat, S., Fletcher, W. J., Morales-Molino,
C., Naughton, F., Oliveira, D., Urrego, D. H., and Zorzi, C.: Pollen from
the deep-sea: A breakthrough in the mystery of the Ice Ages, Front. Plant
Sci., 9, 38–38, 2018.
Sarnthein, M. and Tiedemann, R.: Younger Dryas-Style Cooling Events at
Glacial Terminations I-VI at ODP Site 658: Associated benthic δ13C anomalies constrain meltwater hypothesis, Paleoceanography, 5, 1041–1055,
https://doi.org/10.1029/pa005i006p01041, 1990.
Shackleton, N. J., Sánchez-Goñi, M. F., Pailler, D., and Lancelot,
Y.: Marine isotope substage 5e and the Eemian interglacial, Global Planet.
Change, 36, 151–155, 2003.
Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z.,
Otto-Bliesner, B., Schmittner, A., and Bard, E.: Global warming preceded by
increasing carbon dioxide concentrations during the last deglaciation, Nature, 484, 49–54, https://doi.org/10.1038/nature10915, 2012.
Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V.,
Pörtner, H. O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., Van
Diemen, R., and Malley, J. E.: IPCC, 2019: Climate Change and Land: an
IPCC special report on climate change, desertification, land degradation,
sustainable land management, food security, and greenhouse gas fluxes in
terrestrial ecosystems, https://www.ipcc.ch/site/assets/uploads/sites/4/2021/07/05_Chapter-2-V6.pdf (last access: 24 June 2022), 2019.
Skinner, L. C. and Shackleton, N. J.: An Atlantic lead over Pacific
deep-water change across Termination I: implications for the application of
the marine isotope stage stratigraphy, Quaternary Sci. Rev., 24,
571–580, 2005.
Stow, D. A. V., Hernández-Molina, F. J., Alvarez-Zarikian, C., and
Scientists, E.: Expedition 339 summary, Proc. Ocean Drill. Prog., 339, 10–11, https://doi.org/10.2204/iodp.proc.339.101.2013, 2013.
Suc, J.-P.: Origin and evolution of the Mediterranean vegetation and climate
in Europe, Nature, 307, 429–432, https://doi.org/10.1038/307429a0, 1984.
Tarasov, P. E., Nakagawa, T., Demske, D., Österle, H., Igarashi, Y.,
Kitagawa, J., Mokhova, L., Bazarova, V., Okuda, M., Gotanda, K., Miyoshi,
N., Fujiki, T., Takemura, K., Yonenobu, H., and Fleck, A.: Progress in the
reconstruction of Quaternary climate dynamics in the Northwest Pacific: A
new modern analogue reference dataset and its application to the 430-kyr
pollen record from Lake Biwa, Earth-Sci. Rev., 108, 64–79,
https://doi.org/10.1016/j.earscirev.2011.06.002, 2011.
Torres, V., Hooghiemstra, H., Lourens, L., and Tzedakis, P. C.: Astronomical
tuning of long pollen records reveals the dynamic history of montane biomes
and lake levels in the tropical high Andes during the Quaternary, Quaternary Sci. Rev., 63, 59–72, 2013.
Tzedakis, P. C.: Long-term tree populations in northwest Greece through
multiple Quaternary climatic cycles, Nature, 364, 437–440,
https://doi.org/10.1038/364437a0, 1993.
Tzedakis, P. C., Hooghiemstra, H., and Pälike, H.: The last 1.35 million
years at Tenaghi Philippon: revised chronostratigraphy and long-term
vegetation trends, Quaternary Sci. Rev., 25, 3416–3430, 2006.
Van Campo, M.: Relations entre la végétation de l'Europe et les
températures de surface océaniques après le dernier maximum
glaciaire, Pollen Spores, 26, 497–518, 1984.
Wagner, B., Vogel, H., Francke, A., Friedrich, T., Donders, T., Lacey, J.
H., Leng, M. J., Regattieri, E., Sadori, L., Wilke, T., and Zhang, X.:
Mediterranean winter rainfall in phase with African monsoons during the past
1.36 million years, Nature, 573, 256–260, 2019.
Xiao, X. Y., Shen, J., Wang, S. M., Xiao, H. F., and Tong, G. B.: The
variation of the southwest monsoon from the high resolution pollen record in
Heqing Basin, Yunnan Province, China for the last 2.78 Ma, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 287, 45–57,
https://doi.org/10.1016/j.palaeo.2010.01.013, 2010.
Yin, Q.: Insolation-induced mid-Brunhes transition in Southern Ocean
ventilation and deep-ocean temperature, Nature, 494, 222–225, 2013.
Yin, Q. Z. and Berger, A.: Individual contribution of insolation and CO2 to the interglacial climates of the past 800 000 years, Clim. Dynam., 38, 709–724, 2012.
Zanon, M., Davis, B. A. S., Marquer, L., Brewer, S., and Kaplan, J. O.:
European Forest Cover During the Past 12,000 Years: A Palynological
Reconstruction Based on Modern Analogs and Remote Sensing, Front. Plant
Sci., 9, 253, https://doi.org/10.3389/fpls.2018.00253, 2018.
Zhao, Y., Tzedakis, P. C., Li, Q., Qin, F., Cui, Q., Liang, C., Birks, H. J.
B., Liu, Y., Zhang, Z., Ge, J., Zhao, H., Felde, V.A., Deng, C., Cai, M.,
Li, H., Ren, W., Wei, H., Yang, H., Zhang, J., Yu, Z., and Guoand, Z.:
Evolution of vegetation and climate variability on the Tibetan Plateau over
the past 1.74 million years, Sci. Adv., 6, eaay6193, https://doi.org/10.1126/sciadv.aay6193, 2020.
Short summary
Termination V (TV, ~ 404–433 kyr BP) marks a transition in the climate system towards amplified glacial–interglacial cycles. While the associated atmospheric CO2 changes are mostly attributed to the Southern Ocean, little is known about the terrestrial biosphere contribution to the carbon cycle. This study provides the first (model- and pollen-based) reconstruction of global forests highlighting the potential role of temperate and boreal forests in atmospheric CO2 sequestration during TV.
Termination V (TV, ~ 404–433 kyr BP) marks a transition in the climate system towards amplified...