Articles | Volume 18, issue 5
https://doi.org/10.5194/cp-18-1231-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1231-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Plio-Pleistocene Perth Basin water temperatures and Leeuwin Current dynamics (Indian Ocean) derived from oxygen and clumped-isotope paleothermometry
David De Vleeschouwer
CORRESPONDING AUTHOR
Institute of Geology and Palaeontology, University of Muenster, Corrensstr. 24, 48149 Münster, Germany
MARUM – Center for Marine Environmental Sciences, University of Bremen, Klagenfurterstr. 2–3, 28359 Bremen, Germany
Marion Peral
Analytical, Environmental, and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Marta Marchegiano
Analytical, Environmental, and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Angelina Füllberg
MARUM – Center for Marine Environmental Sciences, University of Bremen, Klagenfurterstr. 2–3, 28359 Bremen, Germany
Niklas Meinicke
MARUM – Center for Marine Environmental Sciences, University of Bremen, Klagenfurterstr. 2–3, 28359 Bremen, Germany
Heiko Pälike
MARUM – Center for Marine Environmental Sciences, University of Bremen, Klagenfurterstr. 2–3, 28359 Bremen, Germany
Gerald Auer
Institute of Earth Sciences (Geology and Paleontology), University of Graz, Heinrichstraße 26, 8010 Graz, Austria
Benjamin Petrick
Paleontology and Historical Geology, Kiel University, Ludewig-Meyn-Str. 14 R.12, 24118 Kiel, Germany
Christophe Snoeck
Analytical, Environmental, and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Maritime Cultures Research Institute, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Steven Goderis
Analytical, Environmental, and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Philippe Claeys
Analytical, Environmental, and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Related authors
Gerald Auer, David De Vleeschouwer, Arisa Seki, Anna Joy Drury, Yusuke Kubo, Minoru Ikehara, Junichiro Kuroda, and the ReC23-01 scientists
EGUsphere, https://doi.org/10.5194/egusphere-2025-2760, https://doi.org/10.5194/egusphere-2025-2760, 2025
Short summary
Short summary
We explore new methods for ice-rafted debris detection in marine sediment cores to detect past climate changes and ice sheet dynamics. Traditional IRD detection methods are destructive and time-consuming. To alleviate this problem, we utilize non-destructive imaging techniques core material from the Indian Ocean. While promising, we found contamination to be an issue. Machine learning identifies density and chemical differences, but rigorous testing is needed to avoid false positives.
Niklas Hohmann, David De Vleeschouwer, Sietske Batenburg, and Emilia Jarochowska
EGUsphere, https://doi.org/10.5194/egusphere-2024-2857, https://doi.org/10.5194/egusphere-2024-2857, 2024
Short summary
Short summary
Age-depth models assign ages to sampling locations (e.g., in drill cores), making them crucial to determined timing and pace of past changes. We present two methods to estimate age-depth models from sedimentological and stratigraphic information, resulting in richer and more empirically realistic age-depth models. As a use case, we determine (1) the timing of the Frasnian-Famennian extinction and (2) examine the duration of PETM, an potential deep time analogue for anthropogenic climate change.
Nina M. A. Wichern, Or M. Bialik, Theresa Nohl, Lawrence M. E. Percival, R. Thomas Becker, Pim Kaskes, Philippe Claeys, and David De Vleeschouwer
Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, https://doi.org/10.5194/cp-20-415-2024, 2024
Short summary
Short summary
Middle–Late Devonian sedimentary rocks are often punctuated by anoxic black shales. Due to their semi-regular nature, anoxic events may be linked to periodic changes in the Earth’s climate caused by astronomical forcing. We use portable X-ray fluorescence elemental records, measured on marine sediments from Germany, to construct an astrochronological framework for the Kellwasser ocean anoxic Crisis. Results suggest that the Upper Kellwasser event was preceded by a specific orbital configuration.
David De Vleeschouwer, Theresa Nohl, Christian Schulbert, Or M. Bialik, and Gerald Auer
Sci. Dril., 32, 43–54, https://doi.org/10.5194/sd-32-43-2023, https://doi.org/10.5194/sd-32-43-2023, 2023
Short summary
Short summary
Differences exist in International Ocean Discovery Program (IODP) sediment lithification depending on the coring tool used. Advanced piston corers (APCs) display less pronounced lithification compared to extended core barrels (XCBs) of the same formation. The difference stems from the destruction of early cements between sediment grains and an
acoustic compactioncaused by the piston-core pressure wave. XCB cores provide a more accurate picture of the lithification of the original formation.
Manlio Bellesi, Giovanni Pratesi, Alessandro Di Michele, Sabrina Nazzareni, Lidia Pittarello, Steven Goderis, Carlo Santini, and Gabriele Giuli
Eur. J. Mineral., 37, 617–626, https://doi.org/10.5194/ejm-37-617-2025, https://doi.org/10.5194/ejm-37-617-2025, 2025
Short summary
Short summary
Chromites found within the fusion crust of ordinary-chondrite meteorites display significant differences with respect to chromites found in the interior of the same meteorites. Chromites within the fusion crust, when compared to those in the interior of the meteorite, display a significantly higher Mg / (Mg + Fe) ratio; moreover, ca. 15 % of the chromites formed within the crust display small but detectable amounts of Ni.
Gerald Auer, David De Vleeschouwer, Arisa Seki, Anna Joy Drury, Yusuke Kubo, Minoru Ikehara, Junichiro Kuroda, and the ReC23-01 scientists
EGUsphere, https://doi.org/10.5194/egusphere-2025-2760, https://doi.org/10.5194/egusphere-2025-2760, 2025
Short summary
Short summary
We explore new methods for ice-rafted debris detection in marine sediment cores to detect past climate changes and ice sheet dynamics. Traditional IRD detection methods are destructive and time-consuming. To alleviate this problem, we utilize non-destructive imaging techniques core material from the Indian Ocean. While promising, we found contamination to be an issue. Machine learning identifies density and chemical differences, but rigorous testing is needed to avoid false positives.
Rute Coimbra, Niels de Winter, Maria Ríos, Rui Bernardino, Darío Estraviz-López, Priscila Lohmann, Roberta Martino, Aurora Grandal-d'Anglade, Fernando Rocha, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-1770, https://doi.org/10.5194/egusphere-2025-1770, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
To understand human impact on climate and biodiversity, we studied fossil teeth of Gomphotherium from Miocene Portugal. Chemical patterns, like those in modern elephants, show seasonal diet changes and geophagy during dry periods. This suggests dry seasons shaped animal behavior and ecosystems, offering insights into how land life responded to past warming—and how it might react to future climate change.
Niels J. de Winter, Najat al Fudhaili, Iris Arndt, Philippe Claeys, René Fraaije, Steven Goderis, John Jagt, Matthias López Correa, Axel Munnecke, Jarosław Stolarski, and Martin Ziegler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2308, https://doi.org/10.5194/egusphere-2025-2308, 2025
Short summary
Short summary
To test the tolerance of past shallow marine ecosystems to extreme climates, we collected and compiled stable and clumped isotope data from rudist bivalves that lived in tropical shallow marine waters in present-day Oman during the Campanian (75 million years ago). Our dataset shows that these animals were able to withstand exceptionally warm temperatures, exceeding 40 °C, during hot summers. Our finding highlights how seasonal climate extremes impact marine biodiversity.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Marion Peral, Marta Marchegiano, Weronika Wierny, Inigo A. Müller, Johan Vellekoop, Zofia Dubicka, Maciej J. Bojanowski, Steven Goderis, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-502, https://doi.org/10.5194/egusphere-2025-502, 2025
Short summary
Short summary
Around 70 million years ago, during the Late Cretaceous, Earth’s climate was undergoing long-term cooling despite high CO₂ levels. Using an advanced temperature reconstruction technique, we analyzed foraminifer fossils from the European Chalk Sea. Our results show highly variable surface waters, likely influenced by freshwater inputs or upwelling, while deeper waters remained warm and stable, possibly influenced by shifting ocean currents. This improves our understanding of past ocean dynamics.
Benjamin F. Petrick, Lars Reuning, Miriam Pfeiffer, Gerald Auer, and Lorenz Schwark
Clim. Past, 21, 405–417, https://doi.org/10.5194/cp-21-405-2025, https://doi.org/10.5194/cp-21-405-2025, 2025
Short summary
Short summary
It is known that coral reefs were absent in the central Indo-Pacific during the Early Pliocene. This study uses a new temperature record based on TEX86H biomarkers from the Coral Sea between 11–2 Ma to show a 2 °C cooling in the central Indo-Pacific during the Late Miocene Cooling (7–5.4 Ma). This cooling triggered changes in terrestrial input, ocean circulation, and temperature. These multiple stressors could have caused reef collapses across the central Indo-Pacific.
Pauline Cornuault, Luc Beaufort, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
EGUsphere, https://doi.org/10.5194/egusphere-2025-198, https://doi.org/10.5194/egusphere-2025-198, 2025
Short summary
Short summary
We present new high-resolution data of the relative contribution of the two main pelagic carbonate producers (coccoliths and foraminifera) to the total pelagic carbonate production from the tropical Atlantic in past warm periods since the Miocene. Our findings suggests that the two groups responded differently to orbital forcing and oceanic changes in tropical ocean, but their proportion changes did not drive the changes in overall pelagic carbonate deposition.
Arianna V. Del Gaudio, Aaron Avery, Gerald Auer, Werner E. Piller, and Walter Kurz
Clim. Past, 20, 2237–2266, https://doi.org/10.5194/cp-20-2237-2024, https://doi.org/10.5194/cp-20-2237-2024, 2024
Short summary
Short summary
The Benguela Upwelling System is a region in the SE Atlantic Ocean of high biological productivity. It comprises several water masses such as the Benguela Current, South Atlantic Central Water, and Indian Ocean Agulhas waters. We analyzed planktonic foraminifera from IODP Sites U1575 and U1576 to characterize water masses and their interplay in the Pleistocene. This defined changes in the local thermocline, which were linked to long-term Benguela Niño- and Niña-like and deglaciation events.
Niklas Hohmann, David De Vleeschouwer, Sietske Batenburg, and Emilia Jarochowska
EGUsphere, https://doi.org/10.5194/egusphere-2024-2857, https://doi.org/10.5194/egusphere-2024-2857, 2024
Short summary
Short summary
Age-depth models assign ages to sampling locations (e.g., in drill cores), making them crucial to determined timing and pace of past changes. We present two methods to estimate age-depth models from sedimentological and stratigraphic information, resulting in richer and more empirically realistic age-depth models. As a use case, we determine (1) the timing of the Frasnian-Famennian extinction and (2) examine the duration of PETM, an potential deep time analogue for anthropogenic climate change.
Nina M. A. Wichern, Or M. Bialik, Theresa Nohl, Lawrence M. E. Percival, R. Thomas Becker, Pim Kaskes, Philippe Claeys, and David De Vleeschouwer
Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, https://doi.org/10.5194/cp-20-415-2024, 2024
Short summary
Short summary
Middle–Late Devonian sedimentary rocks are often punctuated by anoxic black shales. Due to their semi-regular nature, anoxic events may be linked to periodic changes in the Earth’s climate caused by astronomical forcing. We use portable X-ray fluorescence elemental records, measured on marine sediments from Germany, to construct an astrochronological framework for the Kellwasser ocean anoxic Crisis. Results suggest that the Upper Kellwasser event was preceded by a specific orbital configuration.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Sarah Wauthy, Jean-Louis Tison, Mana Inoue, Saïda El Amri, Sainan Sun, François Fripiat, Philippe Claeys, and Frank Pattyn
Earth Syst. Sci. Data, 16, 35–58, https://doi.org/10.5194/essd-16-35-2024, https://doi.org/10.5194/essd-16-35-2024, 2024
Short summary
Short summary
The datasets presented are the density, water isotopes, ions, and conductivity measurements, as well as age models and surface mass balance (SMB) from the top 120 m of two ice cores drilled on adjacent ice rises in Dronning Maud Land, dating from the late 18th century. They offer many development possibilities for the interpretation of paleo-profiles and for addressing the mechanisms behind the spatial and temporal variability of SMB and proxies observed at the regional scale in East Antarctica.
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Gerald Auer, Or M. Bialik, Mary-Elizabeth Antoulas, Noam Vogt-Vincent, and Werner E. Piller
Clim. Past, 19, 2313–2340, https://doi.org/10.5194/cp-19-2313-2023, https://doi.org/10.5194/cp-19-2313-2023, 2023
Short summary
Short summary
We provided novel insights into the behaviour of a major upwelling cell between 15 and 8.5 million years ago. To study changing conditions, we apply a combination of geochemical and paleoecological parameters to characterize the nutrient availability and subsequent utilization by planktonic primary producers. These changes we then juxtapose with established records of contemporary monsoon wind intensification and changing high-latitude processes to explain shifts in the plankton community.
David De Vleeschouwer, Theresa Nohl, Christian Schulbert, Or M. Bialik, and Gerald Auer
Sci. Dril., 32, 43–54, https://doi.org/10.5194/sd-32-43-2023, https://doi.org/10.5194/sd-32-43-2023, 2023
Short summary
Short summary
Differences exist in International Ocean Discovery Program (IODP) sediment lithification depending on the coring tool used. Advanced piston corers (APCs) display less pronounced lithification compared to extended core barrels (XCBs) of the same formation. The difference stems from the destruction of early cements between sediment grains and an
acoustic compactioncaused by the piston-core pressure wave. XCB cores provide a more accurate picture of the lithification of the original formation.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Matthias Sinnesael, Alfredo Loi, Marie-Pierre Dabard, Thijs R. A. Vandenbroucke, and Philippe Claeys
Geochronology, 4, 251–267, https://doi.org/10.5194/gchron-4-251-2022, https://doi.org/10.5194/gchron-4-251-2022, 2022
Short summary
Short summary
We used new geochemical measurements to study the expression of astronomical climate cycles recorded in the Ordovician (~ 460 million years ago) geological sections of the Crozon Peninsula (France). This type of geological archive is not often studied in this way, but as they become more important going back in time, a better understanding of their potential astronomical cycles is crucial to advance our knowledge of deep-time climate dynamics and to construct high-resolution timescales.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Cited articles
Amidon, W. H., Fisher, G. B., Burbank, D. W., Ciccioli, P. L., Alonso, R.
N., Gorin, A. L., Silverhart, P. H., Kylander-Clark, A. R. C., and
Christoffersen, M. S.: Mio-Pliocene aridity in the south-central Andes
associated with Southern Hemisphere cold periods, P. Natl. Acad. Sci. USA, 114, 6474–6479, https://doi.org/10.1073/pnas.1700327114, 2017.
Anderson, N. T., Kelson, J. R., Kele, S., Daëron, M., Bonifacie, M.,
Horita, J., Mackey, T. J., John, C. M., Kluge, T., Petschnig, P., Jost, A.
B., Huntington, K. W., Bernasconi, S. M., and Bergmann, K. D.: A Unified
Clumped Isotope Thermometer Calibration (0.5–1,100 ∘C) Using
Carbonate-Based Standardization, Geophys. Res. Lett., 48, e2020GL092069, https://doi.org/10.1029/2020GL092069, 2021.
Andrae, J. W., McInerney, F. A., Polissar, P. J., Sniderman, J. M. K.,
Howard, S., Hall, P. A., and Phelps, S. R.: Initial Expansion of C4
Vegetation in Australia During the Late Pliocene, Geophys. Res. Lett., 45, 4831–4840, https://doi.org/10.1029/2018GL077833, 2018.
Auer, G., De Vleeschouwer, D., Smith, R. A., Bogus, K., Groeneveld, J.,
Grunert, P., Castañeda, I. S., Petrick, B. F., Christensen, B. A.,
Fulthorpe, C. S., Gallagher, S. J., and Henderiks, J.: Timing and pacing of
Indonesian Throughflow restriction and its connection to Late Plioceneclimate shifts, Paleoceanography and Paleoclimatology, 34, 635–657, https://doi.org/10.1029/2018PA003512, 2019.
Auer, G., Petrick, B., Yoshimura, T., Mamo, B. L., Reuning, L., Takayanagi,
H., De Vleeschouwer, D., and Martinez-Garcia, A.: Intensified organic carbon
burial on the Australian shelf after the Middle Pleistocene transition,
Quaternary Sci. Rev., 262, 106965, https://doi.org/10.1016/j.quascirev.2021.106965, 2021.
Barker, S., Greaves, M., and Elderfield, H.: A study of cleaning procedures
used for foraminiferal Mg/Ca paleothermometry, Geochem. Geophy. Geosy., 4, 8407, https://doi.org/10.1029/2003GC000559, 2003.
Bé, A. W. H.: Gametogenic calcification in a spinose planktonic
foraminifer, Globigerinoides sacculifer (Brady), Mar. Micropaleontol., 5, 283–310, https://doi.org/10.1016/0377-8398(80)90014-6, 1980.
Benthien, A. and Müller, P. J.: Anomalously low alkenone temperatures
caused by lateral particle and sediment transport in the Malvinas Current
region, western Argentine Basin, Deep-Sea Res. Pt. I, 47, 2369–2393,
https://doi.org/10.1016/S0967-0637(00)00030-3, 2000.
Bernasconi, S. M., Daëron, M., Bergmann, K. D., Bonifacie, M., Meckler,
A. N., Affek, H. P., Anderson, N., Bajnai, D., Barkan, E., Beverly, E.,
Blamart, D., Burgener, L., Calmels, D., Chaduteau, C., Clog, M.,
Davidheiser-Kroll, B., Davies, A., Dux, F., Eiler, J., Elliott, B., Fetrow,
A. C., Fiebig, J., Goldberg, S., Hermoso, M., Huntington, K. W., Hyland, E.,
Ingalls, M., Jaggi, M., John, C. M., Jost, A. B., Katz, S., Kelson, J.,
Kluge, T., Kocken, I. J., Laskar, A., Leutert, T. J., Liang, D., Lucarelli,
J., Mackey, T. J., Mangenot, X., Meinicke, N., Modestou, S. E., Müller,
I. A., Murray, S., Neary, A., Packard, N., Passey, B. H., Pelletier, E.,
Petersen, S., Piasecki, A., Schauer, A., Snell, K. E., Swart, P. K.,
Tripati, A., Upadhyay, D., Vennemann, T., Winkelstern, I., Yarian, D.,
Yoshida, N., Zhang, N., and Ziegler, M.: InterCarb: A Community Effort to
Improve Interlaboratory Standardization of the Carbonate Clumped Isotope
Thermometer Using Carbonate Standards, Geochem. Geophy. Geosy.,
22, e2020GC009588, https://doi.org/10.1029/2020GC009588, 2021.
Bohaty, S. M. and Harwood, D. M.: Southern Ocean pliocene paleotemperature
variation from high-resolution silicoflagellate biostratigraphy, Mar. Micropaleontol., 33, 241–272, https://doi.org/10.1016/S0377-8398(97)00037-6, 1998.
Bosmans, J. H. C., Hilgen, F. J., Tuenter, E., and Lourens, L. J.: Obliquity forcing of low-latitude climate, Clim. Past, 11, 1335–1346, https://doi.org/10.5194/cp-11-1335-2015, 2015.
Brand, W. A., Assonov, S. S., and Coplen, T. B.: Correction for the 17O
interference in δ(13C) measurements when analyzing CO2 with stable
isotope mass spectrometry (IUPAC Technical Report), Pure Appl. Chem., 82, 1719–1733, https://doi.org/10.1351/PAC-REP-09-01-05, 2010.
Cane, M. A. and Molnar, P.: Closing of the Indonesian seaway as a precursor
to east African aridification around 3-4 million years ago, Nature, 411,
157–162, 2001.
Christensen, B. A., Renema, W., Henderiks, J., De Vleeschouwer, D.,
Groeneveld, J., Castañeda, I. S., Reuning, L., Bogus, K., Auer, G.,
Ishiwa, T., McHugh, C. M., Gallagher, S. J., Fulthorpe, C. S., and
Scientists, I. E.: Indonesian Throughflow drove Australian climate from
humid Pliocene to arid Pleistocene, Geophys. Res. Lett., 44, 6914–6925, https://doi.org/10.1002/2017GL072977, 2017.
Church, J. A., Cresswell, G. R., and Stuart Godfrey, J.: The Leeuwin
Current, in: Poleward Flows Along Eastern Ocean Boundaries, edited by:
Neshyba, S. J., Mooers, C. N. K., Smith, R. L., and Barber, R. T., Springer New York, New York, NY, 230–254, https://doi.org/10.1007/978-1-4613-8963-7_16, 1989.
Clague, J. J., Barendregt, R. W., Menounos, B., Roberts, N. J., Rabassa, J.,
Martinez, O., Ercolano, B., Corbella, H., and Hemming, S. R.: Pliocene and
Early Pleistocene glaciation and landscape evolution on the Patagonian
Steppe, Santa Cruz province, Argentina, Quaternary Sci. Rev., 227,
105992, https://doi.org/10.1016/j.quascirev.2019.105992, 2020.
Cresswell, G. R. and Peterson, J. L.: The Leeuwin Current south of Western
Australia, Journal of the Royal Society of Western Australia, 92, 83–100,
2009.
Daëron, M.: Full Propagation of Analytical Uncertainties in Δ47
Measurements, Geochem. Geophy. Geosy., 22, e2020GC009592, https://doi.org/10.1029/2020GC009592, 2021.
Daëron, M., Blamart, D., Peral, M., and Affek, H. P.: Absolute isotopic
abundance ratios and the accuracy of Δ47 measurements, Chem. Geol.,
442, 83–96, https://doi.org/10.1016/j.chemgeo.2016.08.014, 2016.
De Schepper, S., Gibbard, P. L., Salzmann, U., and Ehlers, J.: A global
synthesis of the marine and terrestrial evidence for glaciation during the
Pliocene Epoch, Earth-Sci. Rev., 135, 83–102, https://doi.org/10.1016/j.earscirev.2014.04.003, 2014.
De Vleeschouwer, D.: Natural Gamma Radiation-derived K, U and Th contents of marine sediments obtained during IODP Expeditions with DV JOIDES Resolution, Version 1.0, Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.1594/IEDA/100668, 2017.
De Vleeschouwer, D., Dunlea, A. G., Auer, G., Anderson, C. H., Brumsack, H.,
de Loach, A., Gurnis, M., Huh, Y., Ishiwa, T., Jang, K., Kominz, M. A.,
März, C., Schnetger, B., Murray, R. W., Pälike, H., and Expedition
356 Shipboard, S.: Quantifying K, U, and Th contents of marine sediments
using shipboard natural gamma radiation spectra measured on DV JOIDES
Resolution, Geochem. Geophy. Geosy., 18, 1053–1064, https://doi.org/10.1002/2016GC006715, 2017.
De Vleeschouwer, D., Auer, G., Smith, R., Bogus, K. A., Christensen, B. A., Groeneveld, J., Petrick, B. F., Henderiks, J., Castañeda, I. S., O'Brian, E., Ellinghausen, M., Gallagher, S. J., Fulthorpe, C. S., and Pälike, H.: Planktic carbon and oxygen isotopes and NGR-derived K, U and Th data, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.892422, 2018a.
De Vleeschouwer, D., Auer, G., Smith, R., Bogus, K., Christensen, B.,
Groeneveld, J., Petrick, B., Henderiks, J., Castañeda, I. S., O'Brien,
E., Ellinghausen, M., Gallagher, S. J., Fulthorpe, C. S., and Pälike, H.: The amplifying effect of Indonesian Throughflow heat transport on Late
Pliocene Southern Hemisphere climate cooling, Earth Planet. Sc. Lett., 500, 15–27, https://doi.org/10.1016/j.epsl.2018.07.035, 2018b.
De Vleeschouwer, D., Petrick, B. F., and Martínez‐García, A.: Biomarkers (TEX86), planktic isotopes and XRF records of IODP Site 356-U1459 (Perth Basin), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.903102, 2019a.
De Vleeschouwer, D., Petrick, B. F., and Martínez-García, A.:
Stepwise Weakening of the Pliocene Leeuwin Current, Geophys. Res.
Lett., 46, 8310–8319, https://doi.org/10.1029/2019gl083670, 2019b.
De Vleeschouwer, D., Peral, M., and Marchegiano, M.: Clumped isotopes on planktonic foraminiferal calcite from IODP Site U1459 (Plio-Pleistocene), Version 1.0, Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.26022/IEDA/112262, 2022a.
De Vleeschouwer, D., Peral, M., Marchegiano, M., Füllberg, A., Meinicke, N., Pälike, H., Auer, G., Petrick, B., Snoeck, C., Goderis, S., and Claeys, P.: Plio-Pleistocene Perth Basin water temperatures and Leeuwin Current dynamics (Indian Ocean) derived from oxygen and clumped isotope paleothermometry, Zenodo [code], https://doi.org/10.5281/zenodo.6380452, 2022b.
Dodson, J. R. and Macphail, M. K.: Palynological evidence for aridity events
and vegetation change during the Middle Pliocene, a warm period in
Southwestern Australia, Global Planet. Change, 41, 285–307,
https://doi.org/10.1016/j.gloplacha.2004.01.013, 2004.
Dodson, J. R. and Ramrath, A.: An Upper Pliocene lacustrine environmental
record from south-Western Australia – preliminary results,
Palaeogeogr. Palaeocl., 167, 309–320, https://doi.org/10.1016/S0031-0182(00)00244-3, 2001.
Dolan, A. M., Haywood, A. M., Hunter, S. J., Tindall, J. C., Dowsett, H. J.,
Hill, D. J., and Pickering, S. J.: Modelling the enigmatic Late Pliocene
Glacial Event — Marine Isotope Stage M2, Global Planet. Change, 128,
47–60, https://doi.org/10.1016/j.gloplacha.2015.02.001, 2015.
Duplessy, J. C., Bé, A. W. H., and Blanc, P. L.: Oxygen and carbon
isotopic composition and biogeographic distribution of planktonic
foraminifera in the Indian Ocean, Palaeogeogr. Palaeocl., 33, 9–46,
https://doi.org/10.1016/0031-0182(81)90031-6, 1981.
Elderfield, H., Vautravers, M., and Cooper, M.: The relationship between
shell size and Mg/Ca, Sr/Ca, δ18O, and δ13C of species of planktonic foraminifera, Geochem. Geophy. Geosy., 3, 1–13, https://doi.org/10.1029/2001GC000194, 2002.
Erez, J. and Luz, B.: Experimental paleotemperature equation for planktonic
foraminifera, Geochim. Cosmochim. Ac., 47, 1025–1031,
https://doi.org/10.1016/0016-7037(83)90232-6, 1983.
Escutia, C., Bárcena, M. A., Lucchi, R. G., Romero, O., Ballegeer, A.
M., Gonzalez, J. J., and Harwood, D. M.: Circum-Antarctic warming events
between 4 and 3.5 Ma recorded in marine sediments from the Prydz Bay (ODP Leg 188) and the Antarctic Peninsula (ODP Leg 178) margins, Global Planet. Change, 69, 170–184, https://doi.org/10.1016/j.gloplacha.2009.09.003, 2009.
Fiebig, J., Daëron, M., Bernecker, M., Guo, W., Schneider, G., Boch, R.,
Bernasconi, S. M., Jautzy, J., and Dietzel, M.: Calibration of the dual
clumped isotope thermometer for carbonates, Geochim. Cosmochim. Ac., 312, 235–256, https://doi.org/10.1016/j.gca.2021.07.012, 2021.
Fujioka, T., Chappell, J., Fifield, L. K., and Rhodes, E. J.: Australian
desert dune fields initiated with Pliocene–Pleistocene global climatic
shift, Geology, 37, 51–54, 2009.
Gallagher, S. J., Wallace, M. W., Hoiles, P. W., and Southwood, J. M.:
Seismic and stratigraphic evidence for reef expansion and onset of aridity
on the Northwest Shelf of Australia during the Pleistocene, Mar. Petrol. Geol., 57, 470–481, https://doi.org/10.1016/j.marpetgeo.2014.06.011, 2014.
Gallagher, S. J., Fulthorpe, C. S., Bogus, K., Auer, G., Baranwal, S.,
Castañeda, I. S., Christensen, B. A., De Vleeschouwer, D., Franco, D.
R., Groeneveld, J., Gurnis, M., Haller, C., He, Y., Henderiks, J., Himmler,
T., Ishiwa, T., Iwatani, H., Jatiningrum, R. S., Kominz, M. A., Korpanty, C.
A., Lee, E. Y., Levin, E., Mamo, B. L., McGregor, H. V., McHugh, C. M.,
Petrick, B. F., Potts, D. C., Rastegar Lari, A., Renema, W., Reuning, L.,
Takayanagi, H., and Zhang, W.: Site U1459, in: Indonesian Throughflow,
edited by: Gallagher, S. J., Fulthorpe, C. S., Bogus, K., and the Expedition
356 Scientists, Proceedings of the International Ocean Discovery Program 356, College Station, TX, https://doi.org/10.14379/iodp.proc.356.104.2017, 2017.
Godfrey, J. and Ridgway, K.: The large-scale environment of the
poleward-flowing Leeuwin Current, Western Australia: longshore steric height
gradients, wind stresses and geostrophic flow, J. Phys. Oceanogr., 15, 481–495, 1985.
Grauel, A.-L., Schmid, T. W., Hu, B., Bergami, C., Capotondi, L., Zhou, L.,
and Bernasconi, S. M.: Calibration and application of the “clumped isotope”
thermometer to foraminifera for high-resolution climate reconstructions,
Geochim. Cosmochim. Ac., 108, 125–140, https://doi.org/10.1016/j.gca.2012.12.049, 2013.
Groeneveld, J., Henderiks, J., Renema, W., McHugh, C. M., De Vleeschouwer,
D., Christensen, B. A., Fulthorpe, C. S., Reuning, L., Gallagher, S. J.,
Bogus, K., Auer, G., and Ishiwa, T.: Australian shelf sediments reveal
shifts in Miocene Southern Hemisphere westerlies, Science Advances, 3, e1602567, https://doi.org/10.1126/sciadv.1602567, 2017.
Groeneveld, J., De Vleeschouwer, D., McCaffrey, J. C., and Gallagher, S. J.:
Dating the Northwest Shelf of Australia Since the Pliocene, Geochem. Geophy. Geosy., 22, e2020GC009418, https://doi.org/10.1029/2020GC009418, 2021.
Guo, J., Yuan, H., Song, J., Qu, B., Xing, J., Wang, Q., Li, X., Duan, L.,
Li, N., and Wang, Y.: Variation of Isoprenoid GDGTs in the Stratified Marine
Water Column: Implications for GDGT-Based TEX86 Paleothermometry, Frontiers
in Marine Science, 8, 715708, https://doi.org/10.3389/fmars.2021.715708, 2021.
Gurnis, M., Kominz, M., and Gallagher, S. J.: Reversible subsidence on the
North West Shelf of Australia, Earth Planet. Sc. Lett., 534, 116070, https://doi.org/10.1016/j.epsl.2020.116070, 2020.
Haq, B. U., Rad, U., O'Connell, S., and Shipboard Scientific Party: Proc.
ODP, Init. Repts., 122, Ocean Drilling Program, College Station, TX, USA, https://doi.org/10.2973/odp.proc.ir.122.1990, 1990.
He, Y. and Wang, H.: Terrestrial Material Input to the Northwest Shelf of
Australia Through the Pliocene-Pleistocene Period and Its Implications on
Continental Climates, Geophys. Res. Lett., 48, e2021GL092745, https://doi.org/10.1029/2021GL092745, 2021.
He, Y., Wang, H., and Liu, Z.: Development of the Leeuwin Current on the
northwest shelf of Australia through the Pliocene-Pleistocene period, Earth Planet. Sc. Lett., 559, 116767, https://doi.org/10.1016/j.epsl.2021.116767, 2021.
Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C.,
Caballero-Gill, R., and Kelly, C. S.: Late Miocene global cooling and the
rise of modern ecosystems, Nat. Geosci., 9, 843–847, https://doi.org/10.1038/ngeo2813, 2016.
Ho, S. L. and Laepple, T.: Flat meridional temperature gradient in the
early Eocene in the subsurface rather than surface ocean, Nat. Geosci., 9, 606–610, https://doi.org/10.1038/ngeo2763, 2016.
John, C. M. and Bowen, D.: Community software for challenging isotope
analysis: First applications of “Easotope” to clumped isotopes, Rapid
Commun. Mass Sp., 30, 2285–2300, 2016.
Jonkers, L. and Kučera, M.: Global analysis of seasonality in the shell flux of extant planktonic Foraminifera, Biogeosciences, 12, 2207–2226, https://doi.org/10.5194/bg-12-2207-2015, 2015.
Jonkers, L. and Kučera, M.: Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies, Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, 2017.
Karas, C., Nürnberg, D., Gupta, A. K., Tiedemann, R., Mohan, K., and
Bickert, T.: Mid-Pliocene climate change amplified by a switch in Indonesian
subsurface throughflow, Nat. Geosci., 2, 434–438, 2009.
Karas, C., Nürnberg, D., Tiedemann, R., and Garbe-Schonberg, D.:
Pliocene Indonesian Throughflow and Leeuwin Current dynamics: Implications
for Indian Ocean polar heat flux, Paleoceanography, PA2217, 26, https://doi.org/10.1029/2010pa001949, 2011a.
Karas, C., Nürnberg, D., Tiedemann, R., and Garbe-Schönberg, D.: Indian Ocean Pliocene Paired Foraminiferal δ18O and Mg Ca Data, IGBP PAGES/World Data Center for Paleoclimatology [data set], https://www.ncei.noaa.gov/pub/data/paleo/contributions_by_author/karas2011/karas2011.txt (last access: 22 May 2022), 2011b.
Karatsolis, B.-T., De Vleeschouwer, D., Groeneveld, J., Christensen, B., and
Henderiks, J.: The Late Miocene to Early Pliocene “Humid Interval” on the
NW Australian Shelf: Disentangling Climate Forcing From Regional Basin
Evolution, Paleoceanography and Paleoclimatology, 35, e2019PA003780, https://doi.org/10.1029/2019pa003780, 2020.
Kato, Y.: Diatom-based reconstruction of the Subantarctic Front migrations
during the late Miocene and Pliocene, Mar. Micropaleontol., 160, 101908, https://doi.org/10.1016/j.marmicro.2020.101908, 2020.
Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V.,
Sangiorgi, F., Koç, N., Hopmans, E. C., and Damsté, J. S. S.: New
indices and calibrations derived from the distribution of crenarchaeal
isoprenoid tetraether lipids: Implications for past sea surface temperature
reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654,
https://doi.org/10.1016/j.gca.2010.05.027, 2010.
Kocken, I. J., Müller, I. A., and Ziegler, M.: Optimizing the Use of
Carbonate Standards to Minimize Uncertainties in Clumped Isotope Data,
Geochem. Geophy. Geosy., 20, 5565–5577, https://doi.org/10.1029/2019GC008545, 2019.
Krebs, U., Park, W., and Schneider, B.: Pliocene aridification of Australia
caused by tectonically induced weakening of the Indonesian throughflow,
Palaeogeogr. Palaeocl., 309, 111–117,
https://doi.org/10.1016/j.palaeo.2011.06.002, 2011.
Kretschmer, K., Jonkers, L., Kucera, M., and Schulz, M.: Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale, Biogeosciences, 15, 4405–4429, https://doi.org/10.5194/bg-15-4405-2018, 2018.
Kuhnt, W., Holbourn, A., Xu, J., Opdyke, B., De Deckker, P., Röhl, U.,
and Mudelsee, M.: Southern Hemisphere control on Australian monsoon
variability during the late deglaciation and Holocene, Nat. Commun., 6, 5916, https://doi.org/10.1038/ncomms6916, 2015.
Kuroyanagi, A. and Kawahata, H.: Vertical distribution of living planktonic
foraminifera in the seas around Japan, Mar. Micropaleontol., 53, 173–196, https://doi.org/10.1016/j.marmicro.2004.06.001, 2004.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285, 2004.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Martínez-Garcia, A., Rosell-Melé, A., McClymont, E. L., Gersonde,
R., and Haug, G. H.: Subpolar Link to the Emergence of the Modern Equatorial
Pacific Cold Tongue, Science, 328, 1550–1553, https://doi.org/10.1126/science.1184480, 2010.
McCaffrey, J. C., Wallace, M. W., and Gallagher, S. J.: A Cenozoic Great
Barrier Reef on Australia's North West shelf, Global Planet. Change,
184, 103048, https://doi.org/10.1016/j.gloplacha.2019.103048, 2020.
Meckler, A. N., Ziegler, M., Millán, M. I., Breitenbach, S. F. M., and
Bernasconi, S. M.: Long-term performance of the Kiel carbonate device with a
new correction scheme for clumped isotope measurements, Rapid Commun. Mass Sp., 28, 1705–1715, https://doi.org/10.1002/rcm.6949, 2014.
Meinicke, N., Ho, S. L., Hannisdal, B., Nürnberg, D., Tripati, A., Schiebel, R., and Meckler, A. N.: A robust calibration of the clumped
isotopes to temperature relationship for foraminifers, Geochim. Cosmochim. Ac., 270, 160–183, https://doi.org/10.1016/j.gca.2019.11.022, 2020.
Meinicke, N., Reimi, M. A., Ravelo, A. C., and Meckler, A. N.: Coupled Mg/Ca
and Clumped Isotope Measurements Indicate Lack of Substantial Mixed Layer
Cooling in the Western Pacific Warm Pool During the Last ∼5
Million Years, Paleoceanography and Paleoclimatology, 36, e2020PA004115, https://doi.org/10.1029/2020PA004115, 2021.
Mohtadi, M., Oppo, D. W., Lückge, A., DePol-Holz, R., Steinke, S.,
Groeneveld, J., Hemme, N., and Hebbeln, D.: Reconstructing the thermal
structure of the upper ocean: Insights from planktic foraminifera shell
chemistry and alkenones in modern sediments of the tropical eastern Indian
Ocean, Paleoceanography, 26, PA3219, https://doi.org/10.1029/2011PA002132, 2011.
Pearce, A.: Eastern boundary currents of the southern hemisphere, Journal of
the Royal Society of Western Australia, 74, 35–45, 1991.
Peral, M., Daëron, M., Blamart, D., Bassinot, F., Dewilde, F.,
Smialkowski, N., Isguder, G., Bonnin, J., Jorissen, F., Kissel, C., Michel,
E., Vázquez Riveiros, N., and Waelbroeck, C.: Updated calibration of the
clumped isotope thermometer in planktonic and benthic foraminifera,
Geochim. Cosmochim. Ac., 239, 1–16, https://doi.org/10.1016/j.gca.2018.07.016, 2018.
Peral, M., Bassinot, F., Daëron, M., Blamart, D., Bonnin, J., Jorissen,
F., Kissel, C., Michel, E., Waelbroeck, C., Rebaubier, H., and Gray, W. R.:
On the combination of the planktonic foraminiferal Mg/Ca, clumped (Δ47) and conventional (δ18O) stable isotope paleothermometers in palaeoceanographic studies, EarthArXiv, 3235, https://doi.org/10.31223/X5VK82, in review, 2022.
Petersen, S. V., Defliese, W. F., Saenger, C., Daëron, M., Huntington,
K. W., John, C. M., Kelson, J. R., Bernasconi, S. M., Colman, A. S., Kluge,
T., Olack, G. A., Schauer, A. J., Bajnai, D., Bonifacie, M., Breitenbach, S.
F. M., Fiebig, J., Fernandez, A. B., Henkes, G. A., Hodell, D., Katz, A.,
Kele, S., Lohmann, K. C., Passey, B. H., Peral, M. Y., Petrizzo, D. A.,
Rosenheim, B. E., Tripati, A., Venturelli, R., Young, E. D., and
Winkelstern, I. Z.: Effects of Improved 17O Correction on Interlaboratory
Agreement in Clumped Isotope Calibrations, Estimates of Mineral-Specific
Offsets, and Temperature Dependence of Acid Digestion Fractionation,
Geochem. Geophy. Geosy., 20, 3495–3519, https://doi.org/10.1029/2018GC008127, 2019.
Petrick, B., McClymont, E. L., Littler, K., Rosell-Melé, A., Clarkson,
M. O., Maslin, M., Röhl, U., Shevenell, A. E., and Pancost, R. D.:
Oceanographic and climatic evolution of the southeastern subtropical
Atlantic over the last 3.5 Ma, Earth Planet. Sc. Lett., 492, 12–21, https://doi.org/10.1016/j.epsl.2018.03.054, 2018.
Petrick, B., Martínez-García, A., Auer, G., Reuning, L., Auderset,
A., Deik, H., Takayanagi, H., De Vleeschouwer, D., Iryu, Y., and Haug, G.
H.: Glacial Indonesian Throughflow weakening across the Mid-Pleistocene
Climatic Transition, Scientific Reports, 9, 16995, https://doi.org/10.1038/s41598-019-53382-0, 2019.
Piasecki, A., Bernasconi, S. M., Grauel, A.-L., Hannisdal, B., Ho, S. L.,
Leutert, T. J., Marchitto, T. M., Meinicke, N., Tisserand, A., and Meckler,
N.: Application of Clumped Isotope Thermometry to Benthic Foraminifera,
Geochem. Geophy. Geosy., 20, 2082–2090, https://doi.org/10.1029/2018GC007961,
2019.
Prescott, C. L., Dolan, A. M., Haywood, A. M., Hunter, S. J., and Tindall,
J. C.: Regional climate and vegetation response to orbital forcing within
the mid-Pliocene Warm Period: A study using HadCM3, Global Planet. Change, 161, 231–243, https://doi.org/10.1016/j.gloplacha.2017.12.015, 2018.
Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H., Schiebel, R., Fraile, I., Schulz, M., and Kucera, M.: Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic, Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, 2017.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.:
An Improved In Situ and Satellite SST Analysis for Climate, J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442, 2002.
Ridgway, K. R. and Godfrey, J. S.: The source of the Leeuwin Current seasonality, J. Geophys. Res.-Oceans, 120, 6843–6864, https://doi.org/10.1002/2015JC011049, 2015.
Rippert, N., Nürnberg, D., Raddatz, J., Maier, E., Hathorne, E., Bijma,
J., and Tiedemann, R.: Constraining foraminiferal calcification depths in
the western Pacific warm pool, Mar. Micropaleontol., 128, 14–27, https://doi.org/10.1016/j.marmicro.2016.08.004, 2016.
Rohling, E. J., Yu, J., Heslop, D., Foster, G. L., Opdyke, B., and Roberts,
A. P.: Sea level and deep-sea temperature reconstructions suggest
quasi-stable states and critical transitions over the past 40 million years,
Science Advances, 7, eabf5326, https://doi.org/10.1126/sciadv.abf5326, 2021.
Smith, R. A., Castañeda, I. S., Groeneveld, J., De Vleeschouwer, D.,
Henderiks, J., Christensen, B. A., Renema, W., Auer, G., Bogus, K.,
Gallagher, S. J., and Fulthorpe, C. S.: Plio–Pleistocene Indonesian
Throughflow variability drove Eastern Indian Ocean sea surface temperatures,
Paleoceanography and Paleoclimatology, 35, e2020PA003872, https://doi.org/10.1029/2020pa003872, 2020.
Sniderman, J. M. K., Woodhead, J. D., Hellstrom, J., Jordan, G. J.,
Drysdale, R. N., Tyler, J. J., and Porch, N.: Pliocene reversal of late
Neogene aridification, P. Natl. Acad. Sci. USA, 113, 1999–2004, https://doi.org/10.1073/pnas.1520188113, 2016.
Spooner, M. I., De Deckker, P., Barrows, T. T., and Fifield, L. K.: The
behaviour of the Leeuwin Current offshore NW Australia during the last five
glacial–interglacial cycles, Global Planet. Change, 75, 119–132, https://doi.org/10.1016/j.gloplacha.2010.10.015, 2011.
Stainbank, S., Spezzaferri, S., De Boever, E., Bouvier, A.-S., Chilcott, C.,
de Leau, E. S., Foubert, A., Kunkelova, T., Pichevin, L., Raddatz, J.,
Rüggeberg, A., Wright, J. D., Yu, S. M., Zhang, M., and Kroon, D.:
Assessing the impact of diagenesis on foraminiferal geochemistry from a low
latitude, shallow-water drift deposit, Earth Planet. Sc. Lett., 545, 116390, https://doi.org/10.1016/j.epsl.2020.116390, 2020.
Stuut, J.-B. W., Temmesfeld, F., and De Deckker, P.: A 550 ka record of
aeolian activity near North West Cape, Australia: inferences from grain-size
distributions and bulk chemistry of SE Indian Ocean deep-sea sediments,
Quaternary Sci. Rev., 83, 83–94, https://doi.org/10.1016/j.quascirev.2013.11.003, 2014.
Stuut, J.-B. W., De Deckker, P., Saavedra-Pellitero, M., Bassinot, F.,
Drury, A. J., Walczak, M. H., Nagashima, K., and Murayama, M.: A
5.3-Million-Year History of Monsoonal Precipitation in Northwestern
Australia, Geophys. Res. Lett., 46, 6946–6954, https://doi.org/10.1029/2019GL083035, 2019.
Tagliaro, G., Fulthorpe, C. S., Gallagher, S. J., McHugh, C. M., Kominz, M.,
and Lavier, L. L.: Neogene siliciclastic deposition and climate variability
on a carbonate margin: Australian Northwest Shelf, Mar. Geol., 403,
285–300, https://doi.org/10.1016/j.margeo.2018.06.007, 2018.
Takahashi, K. and Be, A. W. H.: Planktonic foraminifera: factors controlling
sinking speeds, Deep-Sea Res., 31, 1477–1500, https://doi.org/10.1016/0198-0149(84)90083-9, 1984.
Thomson, D. J.: Spectrum Estimation and Harmonic-Analysis, P. IEEE, 70, 1055–1096, 1982.
Tierney, J. E. and Tingley, M. P.: A Bayesian, spatially-varying calibration
model for the TEX86 proxy, Geochim. Cosmochim. Ac., 127, 83–106, https://doi.org/10.1016/j.gca.2013.11.026, 2014.
Waite, A. M., Thompson, P. A., Pesant, S., Feng, M., Beckley, L. E.,
Domingues, C. M., Gaughan, D., Hanson, C. E., Holl, C. M., Koslow, T.,
Meuleners, M., Montoya, J. P., Moore, T., Muhling, B. A., Paterson, H.,
Rennie, S., Strzelecki, J., and Twomey, L.: The Leeuwin Current and its
eddies: An introductory overview, Deep-Sea Res. Pt. II, 54, 789–796,
https://doi.org/10.1016/j.dsr2.2006.12.008, 2007.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D.,
Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D.,
Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An
astronomically dated record of Earth's climate and its predictability over
the last 66 million years, Science, 369, 1383–1387, https://doi.org/10.1126/science.aba6853, 2020.
Wycech, J. B., Kelly, D. C., Kitajima, K., Kozdon, R., Orland, I. J., and
Valley, J. W.: Combined Effects of Gametogenic Calcification and Dissolution
on ä18O Measurements of the Planktic Foraminifer Trilobatus sacculifer,
Geochem. Geophy. Geosy., 19, 4487–4501, https://doi.org/10.1029/2018GC007908, 2018.
Wyrwoll, K.-H., Greenstein, B. J., and Kendrick, G.: The palaeoceanography
of the Leeuwin Current: implications for a future world, Journal of the
Royal Society of Western Australia, 92, 37–51, 2009.
Zammit-Mangion, A. and Wikle, C. K.: Deep integro-difference equation models
for spatio-temporal forecasting, Spatial Statistics, 37, 100408,
https://doi.org/10.1016/j.spasta.2020.100408, 2020.
Zhang, P., Zuraida, R., Rosenthal, Y., Holbourn, A., Kuhnt, W., and Xu, J.:
Geochemical characteristics from tests of four modern planktonic foraminiferal species in the Indonesian Throughflow region and their
implications, Geosci. Front., 10, 505–516, https://doi.org/10.1016/j.gsf.2018.01.011, 2019.
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics...