Articles | Volume 18, issue 5
https://doi.org/10.5194/cp-18-1203-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1203-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sclerochronological evidence of pronounced seasonality from the late Pliocene of the southern North Sea basin and its implications
Andrew L. A. Johnson
CORRESPONDING AUTHOR
School of Built and Natural Environment, University of Derby, Derby, DE22 1GB, UK
Annemarie M. Valentine
School of Geography and Environmental Science, Nottingham Trent University, Southwell, NG25 0QF, UK
Bernd R. Schöne
Institute of Geosciences, University of Mainz, 55128 Mainz, Germany
Melanie J. Leng
National Environmental Isotope Facility, British Geological Survey, Keyworth, NG12 5GG, UK
Stijn Goolaerts
OD Earth & History of Life and Scientific Heritage Service, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
Related authors
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Valentin Siebert, Brivaëla Moriceau, Lukas Fröhlich, Bernd R. Schöne, Erwan Amice, Beatriz Beker, Kevin Bihannic, Isabelle Bihannic, Gaspard Delebecq, Jérémy Devesa, Morgane Gallinari, Yoan Germain, Émilie Grossteffan, Klaus Peter Jochum, Thierry Le Bec, Manon Le Goff, Céline Liorzou, Aude Leynaert, Claudie Marec, Marc Picheral, Peggy Rimmelin-Maury, Marie-Laure Rouget, Matthieu Waeles, and Julien Thébault
Earth Syst. Sci. Data, 15, 3263–3281, https://doi.org/10.5194/essd-15-3263-2023, https://doi.org/10.5194/essd-15-3263-2023, 2023
Short summary
Short summary
This article presents an overview of the results of biological, chemical and physical parameters measured at high temporal resolution (sampling once and twice per week) during environmental monitoring that took place in 2021 in the Bay of Brest. We strongly believe that this dataset could be very useful for other scientists performing sclerochronological investigations, studying biogeochemical cycles or conducting various ecological research projects.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Mark A. Stevenson, Suzanne McGowan, Emma J. Pearson, George E. A. Swann, Melanie J. Leng, Vivienne J. Jones, Joseph J. Bailey, Xianyu Huang, and Erika Whiteford
Biogeosciences, 18, 2465–2485, https://doi.org/10.5194/bg-18-2465-2021, https://doi.org/10.5194/bg-18-2465-2021, 2021
Short summary
Short summary
We link detailed stable isotope and biomarker analyses from the catchments of three Arctic upland lakes on Disko Island (West Greenland) to a recent dated sediment core to understand how carbon cycling has changed over the past ~500 years. We find that the carbon deposited in sediments in these upland lakes is predominately sourced from in-lake production due to the catchment's limited terrestrial vegetation and elevation and that recent increases in algal production link with climate change.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
James M. Russell, Philip Barker, Andrew Cohen, Sarah Ivory, Ishmael Kimirei, Christine Lane, Melanie Leng, Neema Maganza, Michael McGlue, Emma Msaky, Anders Noren, Lisa Park Boush, Walter Salzburger, Christopher Scholz, Ralph Tiedemann, Shaidu Nuru, and the Lake Tanganyika Scientific Drilling Project (TSDP) Consortium
Sci. Dril., 27, 53–60, https://doi.org/10.5194/sd-27-53-2020, https://doi.org/10.5194/sd-27-53-2020, 2020
Short summary
Short summary
Our planet experienced enormous environmental changes in the last 10 million years. Lake Tanganyika is the oldest lake in Africa and its sediments comprise the most continuous terrestrial environmental record for this time period in the tropics. This workshop report identifies key research objectives in rift processes, evolutionary biology, geomicrobiology, paleoclimatology, paleoecology, paleoanthropology, and geochronology that could be addressed by drilling this globally important site.
Bernd R. Schöne, Aliona E. Meret, Sven M. Baier, Jens Fiebig, Jan Esper, Jeffrey McDonnell, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 673–696, https://doi.org/10.5194/hess-24-673-2020, https://doi.org/10.5194/hess-24-673-2020, 2020
Short summary
Short summary
We present the first annually resolved stable isotope record (1819–1998) from shells of Swedish river mussels. Data reflect hydrological processes in the catchment and changes in the isotope value of local precipitation. The latter is related to the origin of moisture from which precipitation formed (North Atlantic or the Arctic) and governed by large-scale atmospheric circulation patterns. Results help to better understand climate dynamics and constrain ecological changes in river ecosystems.
Anna Mikis, Katharine R. Hendry, Jennifer Pike, Daniela N. Schmidt, Kirsty M. Edgar, Victoria Peck, Frank J. C. Peeters, Melanie J. Leng, Michael P. Meredith, Chloe L. C. Jones, Sharon Stammerjohn, and Hugh Ducklow
Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, https://doi.org/10.5194/bg-16-3267-2019, 2019
Short summary
Short summary
Antarctic marine calcifying organisms are threatened by regional climate change and ocean acidification. Future projections of regional carbonate production are challenging due to the lack of historical data combined with complex climate variability. We present a 6-year record of flux, morphology and geochemistry of an Antarctic planktonic foraminifera, which shows that their growth is most sensitive to sea ice dynamics and is linked with the El Niño–Southern Oscillation.
Elizabeth Atar, Christian März, Andrew C. Aplin, Olaf Dellwig, Liam G. Herringshaw, Violaine Lamoureux-Var, Melanie J. Leng, Bernhard Schnetger, and Thomas Wagner
Clim. Past, 15, 1581–1601, https://doi.org/10.5194/cp-15-1581-2019, https://doi.org/10.5194/cp-15-1581-2019, 2019
Short summary
Short summary
We present a geochemical and petrographic study of the Kimmeridge Clay Formation from the Cleveland Basin (Yorkshire, UK). Our results indicate that deposition during this interval was very dynamic and oscillated between three distinct modes of sedimentation. In line with recent modelling results, we propose that these highly dynamic conditions were driven by changes in climate, which affected continental weathering, enhanced primary productivity, and led to organic carbon enrichment.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Rowan Dejardin, Sev Kender, Claire S. Allen, Melanie J. Leng, George E. A. Swann, and Victoria L. Peck
J. Micropalaeontol., 37, 25–71, https://doi.org/10.5194/jm-37-25-2018, https://doi.org/10.5194/jm-37-25-2018, 2018
Bernd Wagner, Thomas Wilke, Alexander Francke, Christian Albrecht, Henrike Baumgarten, Adele Bertini, Nathalie Combourieu-Nebout, Aleksandra Cvetkoska, Michele D'Addabbo, Timme H. Donders, Kirstin Föller, Biagio Giaccio, Andon Grazhdani, Torsten Hauffe, Jens Holtvoeth, Sebastien Joannin, Elena Jovanovska, Janna Just, Katerina Kouli, Andreas Koutsodendris, Sebastian Krastel, Jack H. Lacey, Niklas Leicher, Melanie J. Leng, Zlatko Levkov, Katja Lindhorst, Alessia Masi, Anna M. Mercuri, Sebastien Nomade, Norbert Nowaczyk, Konstantinos Panagiotopoulos, Odile Peyron, Jane M. Reed, Eleonora Regattieri, Laura Sadori, Leonardo Sagnotti, Björn Stelbrink, Roberto Sulpizio, Slavica Tofilovska, Paola Torri, Hendrik Vogel, Thomas Wagner, Friederike Wagner-Cremer, George A. Wolff, Thomas Wonik, Giovanni Zanchetta, and Xiaosen S. Zhang
Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017, https://doi.org/10.5194/bg-14-2033-2017, 2017
Short summary
Short summary
Lake Ohrid is considered to be the oldest existing lake in Europe. Moreover, it has a very high degree of endemic biodiversity. During a drilling campaign at Lake Ohrid in 2013, a 569 m long sediment sequence was recovered from Lake Ohrid. The ongoing studies of this record provide first important information on the environmental and evolutionary history of the lake and the reasons for its high endimic biodiversity.
Stefania Milano, Gernot Nehrke, Alan D. Wanamaker Jr., Irene Ballesta-Artero, Thomas Brey, and Bernd R. Schöne
Biogeosciences, 14, 1577–1591, https://doi.org/10.5194/bg-14-1577-2017, https://doi.org/10.5194/bg-14-1577-2017, 2017
Laura A. Casella, Erika Griesshaber, Xiaofei Yin, Andreas Ziegler, Vasileios Mavromatis, Dirk Müller, Ann-Christine Ritter, Dorothee Hippler, Elizabeth M. Harper, Martin Dietzel, Adrian Immenhauser, Bernd R. Schöne, Lucia Angiolini, and Wolfgang W. Schmahl
Biogeosciences, 14, 1461–1492, https://doi.org/10.5194/bg-14-1461-2017, https://doi.org/10.5194/bg-14-1461-2017, 2017
Short summary
Short summary
Mollusc shells record past environments. Fossil shell chemistry and microstructure change as metastable biogenic aragonite transforms to stable geogenic calcite. We simulated this alteration of Arctica islandica shells by hydrothermal treatments. Below 175 °C the shell aragonite survived for weeks. At 175 °C the replacement of the original material starts after 4 days and yields submillimetre-sized calcites preserving the macroscopic morphology as well as the original internal micromorphology.
Jack H. Lacey, Melanie J. Leng, Alexander Francke, Hilary J. Sloane, Antoni Milodowski, Hendrik Vogel, Henrike Baumgarten, Giovanni Zanchetta, and Bernd Wagner
Biogeosciences, 13, 1801–1820, https://doi.org/10.5194/bg-13-1801-2016, https://doi.org/10.5194/bg-13-1801-2016, 2016
Short summary
Short summary
We use stable isotope data from carbonates to provide a palaeoenvironmental reconstruction covering the last 637 kyr at Lake Ohrid (FYROM/Albania). Our results indicate a relatively stable climate until 450 ka, wetter climate conditions at 400–250 ka, and a transition to a drier climate after 250 ka. This work emphasises the importance of Lake Ohrid as a valuable archive of climate change in the northern Mediterranean region.
E. O. Walliser, B. R. Schöne, T. Tütken, J. Zirkel, K. I. Grimm, and J. Pross
Clim. Past, 11, 653–668, https://doi.org/10.5194/cp-11-653-2015, https://doi.org/10.5194/cp-11-653-2015, 2015
A. M. Snelling, G. E. A. Swann, J. Pike, and M. J. Leng
Clim. Past, 10, 1837–1842, https://doi.org/10.5194/cp-10-1837-2014, https://doi.org/10.5194/cp-10-1837-2014, 2014
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Cenozoic
Can we reliably reconstruct the mid-Pliocene Warm Period with sparse data and uncertain models?
Paleocene–Eocene age glendonites from the Mid-Norwegian Margin – indicators of cold snaps in the hothouse?
Coccolithophorids precipitate carbonate in clumped isotope equilibrium with seawater
Assessing environmental change associated with early Eocene hyperthermals in the Atlantic Coastal Plain, USA
Technical note: A new online tool for δ18O–temperature conversions
A 15-million-year surface- and subsurface-integrated TEX86 temperature record from the eastern equatorial Atlantic
Pliocene evolution of the tropical Atlantic thermocline depth
Maastrichtian–Rupelian paleoclimates in the southwest Pacific – a critical re-evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172
Southern Ocean bottom-water cooling and ice sheet expansion during the middle Miocene climate transition
Rapid and sustained environmental responses to global warming: the Paleocene–Eocene Thermal Maximum in the eastern North Sea
Atmospheric carbon dioxide variations across the middle Miocene climate transition
OPTiMAL: a new machine learning approach for GDGT-based palaeothermometry
Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow
Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge
Surface-circulation change in the southwest Pacific Ocean across the Middle Eocene Climatic Optimum: inferences from dinoflagellate cysts and biomarker paleothermometry
A new age model for the Pliocene of the southern North Sea basin: a multi-proxy climate reconstruction
Joint inversion of proxy system models to reconstruct paleoenvironmental time series from heterogeneous data
Mercury anomalies across the Palaeocene–Eocene Thermal Maximum
Reinforcing the North Atlantic backbone: revision and extension of the composite splice at ODP Site 982
Highly variable Pliocene sea surface conditions in the Norwegian Sea
The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction
Revisiting carbonate chemistry controls on planktic foraminifera Mg / Ca: implications for sea surface temperature and hydrology shifts over the Paleocene–Eocene Thermal Maximum and Eocene–Oligocene transition
The Paleocene–Eocene Thermal Maximum at DSDP Site 277, Campbell Plateau, southern Pacific Ocean
The bivalve Glycymeris planicostalis as a high-resolution paleoclimate archive for the Rupelian (Early Oligocene) of central Europe
Pliocene diatom and sponge spicule oxygen isotope ratios from the Bering Sea: isotopic offsets and future directions
Re-evaluation of the age model for North Atlantic Ocean Site 982 – arguments for a return to the original chronology
Exploring the controls on element ratios in middle Eocene samples of the benthic foraminifera Oridorsalis umbonatus
Application of Fourier Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, Erin McClymont, and Sze Ling Ho
Clim. Past, 20, 1989–1999, https://doi.org/10.5194/cp-20-1989-2024, https://doi.org/10.5194/cp-20-1989-2024, 2024
Short summary
Short summary
We have created a new global surface temperature reconstruction of the climate of the mid-Pliocene Warm Period, representing the period roughly 3.2 million years before the present day. We estimate that the globally averaged mean temperature was around 3.9 °C warmer than it was in pre-industrial times, but there is significant uncertainty in this value.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
EGUsphere, https://doi.org/10.5194/egusphere-2023-2581, https://doi.org/10.5194/egusphere-2023-2581, 2023
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our well-constrained coccolith clumped isotope-temperature calibration falls within error of other biogenic carbonate calibrations, with a systematic offset to inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future biogenic carbonate temperature reconstructions.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Daniel E. Gaskell and Pincelli M. Hull
Clim. Past, 19, 1265–1274, https://doi.org/10.5194/cp-19-1265-2023, https://doi.org/10.5194/cp-19-1265-2023, 2023
Short summary
Short summary
One of the most common ways of reconstructing temperatures in the geologic past is by analyzing oxygen isotope ratios in fossil shells. However, converting these data to temperatures can be a technically complicated task. Here, we present a new online tool that automates this task.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Thomas J. Leutert, Sevasti Modestou, Stefano M. Bernasconi, and A. Nele Meckler
Clim. Past, 17, 2255–2271, https://doi.org/10.5194/cp-17-2255-2021, https://doi.org/10.5194/cp-17-2255-2021, 2021
Short summary
Short summary
The Miocene climatic optimum associated with high atmospheric CO2 levels (~17–14 Ma) was followed by a period of dramatic climate change. We present a clumped isotope-based bottom-water temperature record from the Southern Ocean covering this key climate transition. Our record reveals warm conditions and a substantial cooling preceding the main ice volume increase, possibly caused by thresholds involved in ice growth and/or regional effects at our study site.
Ella W. Stokke, Morgan T. Jones, Lars Riber, Haflidi Haflidason, Ivar Midtkandal, Bo Pagh Schultz, and Henrik H. Svensen
Clim. Past, 17, 1989–2013, https://doi.org/10.5194/cp-17-1989-2021, https://doi.org/10.5194/cp-17-1989-2021, 2021
Short summary
Short summary
In this paper, we present new sedimentological, geochemical, and mineralogical data exploring the environmental response to climatic and volcanic impact during the Paleocene–Eocene Thermal Maximum (~55.9 Ma; PETM). Our data suggest a rise in continental weathering and a shift to anoxic–sulfidic conditions. This indicates a rapid environmental response to changes in the carbon cycle and temperatures and highlights the important role of shelf areas as carbon sinks driving the PETM recovery.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Tom Dunkley Jones, Yvette L. Eley, William Thomson, Sarah E. Greene, Ilya Mandel, Kirsty Edgar, and James A. Bendle
Clim. Past, 16, 2599–2617, https://doi.org/10.5194/cp-16-2599-2020, https://doi.org/10.5194/cp-16-2599-2020, 2020
Short summary
Short summary
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly preserved in ancient marine sediments, in providing estimates of past ocean temperatures. The group of lipids concerned show compositional changes across the modern oceans that are correlated, to some extent, with local surface ocean temperatures. Here we present new machine learning approaches to improve our understanding of this temperature sensitivity and its application to reconstructing past climates.
Martin Tetard, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron, and Luc Beaufort
Clim. Past, 16, 2415–2429, https://doi.org/10.5194/cp-16-2415-2020, https://doi.org/10.5194/cp-16-2415-2020, 2020
Short summary
Short summary
Radiolarians are marine micro-organisms that produce a siliceous shell that is preserved in the fossil record and can be used to reconstruct past climate variability. However, their study is only possible after a time-consuming manual selection of their shells from the sediment followed by their individual identification. Thus, we develop a new fully automated workflow consisting of microscopic radiolarian image acquisition, image processing and identification using artificial intelligence.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Emily Dearing Crampton-Flood, Lars J. Noorbergen, Damian Smits, R. Christine Boschman, Timme H. Donders, Dirk K. Munsterman, Johan ten Veen, Francien Peterse, Lucas Lourens, and Jaap S. Sinninghe Damsté
Clim. Past, 16, 523–541, https://doi.org/10.5194/cp-16-523-2020, https://doi.org/10.5194/cp-16-523-2020, 2020
Short summary
Short summary
The mid-Pliocene warm period (mPWP; 3.3–3.0 million years ago) is thought to be the last geological interval with similar atmospheric carbon dioxide concentrations as the present day. Further, the mPWP was 2–3 °C warmer than present, making it a good analogue for estimating the effects of future climate change. Here, we construct a new precise age model for the North Sea during the mPWP, and provide a detailed reconstruction of terrestrial and marine climate using a multi-proxy approach.
Gabriel J. Bowen, Brenden Fischer-Femal, Gert-Jan Reichart, Appy Sluijs, and Caroline H. Lear
Clim. Past, 16, 65–78, https://doi.org/10.5194/cp-16-65-2020, https://doi.org/10.5194/cp-16-65-2020, 2020
Short summary
Short summary
Past climate conditions are reconstructed using indirect and incomplete geological, biological, and geochemical proxy data. We propose that such reconstructions are best obtained by statistical inversion of hierarchical models that represent how multi–proxy observations and calibration data are produced by variation of environmental conditions in time and/or space. These methods extract new information from traditional proxies and provide robust, comprehensive estimates of uncertainty.
Morgan T. Jones, Lawrence M. E. Percival, Ella W. Stokke, Joost Frieling, Tamsin A. Mather, Lars Riber, Brian A. Schubert, Bo Schultz, Christian Tegner, Sverre Planke, and Henrik H. Svensen
Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, https://doi.org/10.5194/cp-15-217-2019, 2019
Short summary
Short summary
Mercury anomalies in sedimentary rocks are used to assess whether there were periods of elevated volcanism in the geological record. We focus on five sites that cover the Palaeocene–Eocene Thermal Maximum, an extreme global warming event that occurred 55.8 million years ago. We find that sites close to the eruptions from the North Atlantic Igneous Province display significant mercury anomalies across this time interval, suggesting that magmatism played a role in the global warming event.
Anna Joy Drury, Thomas Westerhold, David Hodell, and Ursula Röhl
Clim. Past, 14, 321–338, https://doi.org/10.5194/cp-14-321-2018, https://doi.org/10.5194/cp-14-321-2018, 2018
Short summary
Short summary
North Atlantic Site 982 is key to our understanding of climate evolution over the past 12 million years. However, the stratigraphy and age model are unverified. We verify the composite splice using XRF core scanning data and establish a revised benthic foraminiferal stable isotope astrochronology from 8.0–4.5 million years ago. Our new stratigraphy accurately correlates the Atlantic and the Mediterranean and suggests a connection between late Miocene cooling and dynamic ice sheet expansion.
Paul E. Bachem, Bjørg Risebrobakken, Stijn De Schepper, and Erin L. McClymont
Clim. Past, 13, 1153–1168, https://doi.org/10.5194/cp-13-1153-2017, https://doi.org/10.5194/cp-13-1153-2017, 2017
Short summary
Short summary
We present a high-resolution multi-proxy study of the Norwegian Sea, covering the 5.33 to 3.14 Ma time window within the Pliocene. We show that large-scale climate transitions took place during this warmer than modern time, most likely in response to ocean gateway transformations. Strong warming at 4.0 Ma in the Norwegian Sea, when regions closer to Greenland cooled, indicate that increased northward ocean heat transport may be compatible with expanding glaciation and Arctic sea ice growth.
Harry Dowsett, Aisling Dolan, David Rowley, Robert Moucha, Alessandro M. Forte, Jerry X. Mitrovica, Matthew Pound, Ulrich Salzmann, Marci Robinson, Mark Chandler, Kevin Foley, and Alan Haywood
Clim. Past, 12, 1519–1538, https://doi.org/10.5194/cp-12-1519-2016, https://doi.org/10.5194/cp-12-1519-2016, 2016
Short summary
Short summary
Past intervals in Earth history provide unique windows into conditions much different than those observed today. We investigated the paleoenvironments of a past warm interval (~ 3 million years ago). Our reconstruction includes data sets for surface temperature, vegetation, soils, lakes, ice sheets, topography, and bathymetry. These data are being used along with global climate models to expand our understanding of the climate system and to help us prepare for future changes.
David Evans, Bridget S. Wade, Michael Henehan, Jonathan Erez, and Wolfgang Müller
Clim. Past, 12, 819–835, https://doi.org/10.5194/cp-12-819-2016, https://doi.org/10.5194/cp-12-819-2016, 2016
Short summary
Short summary
We show that seawater pH exerts a substantial control on planktic foraminifera Mg / Ca, a widely applied palaeothermometer. As a result, temperature reconstructions based on this proxy are likely inaccurate over climatic events associated with a significant change in pH. We examine the implications of our findings for hydrological and temperature shifts over the Paleocene-Eocene Thermal Maximum and for the degree of surface ocean precursor cooling before the Eocene-Oligocene transition.
C. J. Hollis, B. R. Hines, K. Littler, V. Villasante-Marcos, D. K. Kulhanek, C. P. Strong, J. C. Zachos, S. M. Eggins, L. Northcote, and A. Phillips
Clim. Past, 11, 1009–1025, https://doi.org/10.5194/cp-11-1009-2015, https://doi.org/10.5194/cp-11-1009-2015, 2015
Short summary
Short summary
Re-examination of a Deep Sea Drilling Project sediment core (DSDP Site 277) from the western Campbell Plateau has identified the initial phase of the Paleocene-Eocene Thermal Maximum (PETM) within nannofossil chalk, the first record of the PETM in an oceanic setting in the southern Pacific Ocean (paleolatitude of ~65°S). Geochemical proxies indicate that intermediate and surface waters warmed by ~6° at the onset of the PETM prior to the full development of the negative δ13C excursion.
E. O. Walliser, B. R. Schöne, T. Tütken, J. Zirkel, K. I. Grimm, and J. Pross
Clim. Past, 11, 653–668, https://doi.org/10.5194/cp-11-653-2015, https://doi.org/10.5194/cp-11-653-2015, 2015
A. M. Snelling, G. E. A. Swann, J. Pike, and M. J. Leng
Clim. Past, 10, 1837–1842, https://doi.org/10.5194/cp-10-1837-2014, https://doi.org/10.5194/cp-10-1837-2014, 2014
K. T. Lawrence, I. Bailey, and M. E. Raymo
Clim. Past, 9, 2391–2397, https://doi.org/10.5194/cp-9-2391-2013, https://doi.org/10.5194/cp-9-2391-2013, 2013
C. F. Dawber and A. K. Tripati
Clim. Past, 8, 1957–1971, https://doi.org/10.5194/cp-8-1957-2012, https://doi.org/10.5194/cp-8-1957-2012, 2012
G. E. A. Swann and S. V. Patwardhan
Clim. Past, 7, 65–74, https://doi.org/10.5194/cp-7-65-2011, https://doi.org/10.5194/cp-7-65-2011, 2011
Cited articles
Alexandroff, S. J., Butler, P. G., Hollyman, P. R., Schöne, B. R., and
Scourse, J. D.: Late Holocene seasonal temperature variability of the
western Scottish shelf (St Kilda) recorded in fossil shells of the bivalve
Glycymeris glycymeris, Palaeogeogr. Palaeocl., 562, 110146, https://doi.org/10.1016/j.palaeo.2020.110146, 2021.
Arthur, M. A., Williams, D. F., and Jones, D. S.: Seasonal
temperature-salinity changes and thermocline development in the mid-Atlantic
Bight as recorded by the isotopic composition of bivalves, Geology, 11,
655–659, https://doi.org/10.1130/0091-7613(1983)11<655:STCATD>2.0.CO;2, 1983.
Bachem, P. E., Risebrobakken, B., De Schepper, S., and McClymont, E. L.: Highly variable Pliocene sea surface conditions in the Norwegian Sea, Clim. Past, 13, 1153–1168, https://doi.org/10.5194/cp-13-1153-2017, 2017.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the
oxygen isotopic composition of planktonic foraminifera: Experimental results
and revised paleotemperature equations, Paleoceanography, 13, 150–160,
https://doi.org/10.1029/98PA00070, 1998.
Bice, K. L., Arthur, M. A., and Marincovich, L.: Late Paleocene Arctic Ocean
shallow-marine temperatures from mollusc stable isotopes, Paleoceanography,
11, 241–249, https://doi.org/10.1029/96PA00813, 1996.
Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P., and Yan, M.: Seasonal origin
of the thermal maxima at the Holocene and the last interglacial, Nature,
589, 548–553, https://doi.org/10.1038/s41586-020-03155-x, 2021.
Briard, J., Pucéat, E., Vennin, E., Daëronc, M., Chavagnac, V.,
Jaillet, R., Merle, D., and de Rafélis, M.: Seawater paleotemperature and
paleosalinity evolution in neritic environments of the Mediterranean margin:
Insights from isotope analysis of bivalve shells, Palaeogeogr. Palaeocl.,
543, 109582, https://doi.org/10.1016/j.palaeo.2019.109582, 2020.
Buchardt, B. and Simonarson, L. A.: Isotopic palaeotemperatures from the
Tjörnes Beds in Iceland: evidence of Pliocene cooling, Palaeogeogr.
Palaeocl., 189, 71–95, https://doi.org/10.1016/S0031-0182(02)00594-1, 2003.
Caldarescu, D. E., Sadatzki, H., Andersson, C., Schäfer, P., Fortunato,
H., and Meckler, A. N.: Clumped isotope thermometry in bivalve shells: A tool
for reconstructing seasonal upwelling, Geochim. Cosmochim. Ac., 294,
174–191, https://doi.org/10.1016/j.gca.2020.11.019, 2021.
Chauvaud, L., Thébault, J., Clavier, J., Lorrain, A., and Strand, Ø.:
What's hiding behind ontogenetic δ13C variations in mollusk
shells? New insights from the Great Scallop (Pecten maximus), Estuar. Coast., 34, 211–220, https://doi.org/10.1007/s12237-010-9267-4, 2011.
Coplen, T. B., Kendall, C., and Hopple, J.: Comparison of stable isotope
reference samples, Nature, 302, 236–238, https://doi.org/10.1038/302236a0, 1983.
Crippa, G., Angiolini, L., Bottini, C., Erba, E., Felletti, F., Frigerio,
C., Hennissen, J. A. I., Leng, M. J., Petrizzo, M. R., Raffi, I., Raineri,
G., and Stephenson, M. H.: Seasonality fluctuations recorded in fossil
bivalves during the early Pleistocene: Implications for climate change,
Palaeogeogr. Palaeocl., 446, 234–251, https://doi.org/10.1016/j.palaeo.2016.01.029, 2016.
Dearing Crampton-Flood, E., Noorbergen, L. J., Smits, D., Boschman, R. C., Donders, T. H., Munsterman, D. K., ten Veen, J., Peterse, F., Lourens, L., and Sinninghe Damsté, J. S.: A new age model for the Pliocene of the southern North Sea basin: a multi-proxy climate reconstruction, Clim. Past, 16, 523–541, https://doi.org/10.5194/cp-16-523-2020, 2020.
Deckers, J., Louwye, S., and Goolaerts, S.: The internal division of the
Pliocene Lillo Formation: correlation between Cone Penetration Tests and
lithostratigraphic type sections, Geol. Belg., 23, 333–343, https://doi.org/10.20341/gb.2020.027, 2020.
DeLong, K. L., Quinn, T. M., and Taylor, F. W.: Reconstructing
twentieth-century sea surface temperature variability in the southwest
Pacific: A replication study using multiple coral records from New Caledonia, Paleoceanography, 22, PA4212, https://doi.org/10.1029/2007PA001444, 2007.
DeLong, K. L., Flannery, J. A., Maupin, C. R., Poore, R. Z., and Quinn, T. M.: A coral calibration and replication study of two massive corals from the Gulf of Mexico, Palaeogeogr. Palaeocl., 307, 117–128, https://doi.org/10.1016/j.palaeo.2011.05.005, 2011.
De Meuter, F. and Laga, P.: Lithostratigraphy and biostratigraphy based on
benthonic Foraminifera of the Neogene deposits of northern Belgium, Bulletin
van de Belgische Vereniging voor Geologie, 85, 133–152, 1976.
de Nooijer, W., Zhang, Q., Li, Q., Zhang, Q., Li, X., Zhang, Z., Guo, C., Nisancioglu, K. H., Haywood, A. M., Tindall, J. C., Hunter, S. J., Dowsett, H. J., Stepanek, C., Lohmann, G., Otto-Bliesner, B. L., Feng, R., Sohl, L. E., Chandler, M. A., Tan, N., Contoux, C., Ramstein, G., Baatsen, M. L. J., von der Heydt, A. S., Chandan, D., Peltier, W. R., Abe-Ouchi, A., Chan, W.-L., Kamae, Y., and Brierley, C. M.: Evaluation of Arctic warming in mid-Pliocene climate simulations, Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, 2020.
De Schepper, S., Head, M. J., and Louwye, S.: Pliocene dinoflagellate cyst
stratigraphy, palaeoecology and sequence stratigraphy of the Tunnel-Canal
Dock, Belgium, Geol. Mag., 146, 92–112, https://doi.org/10.1017/S0016756808005438, 2009.
de Winter, N. J., Ullmann, C. V., Sørensen, A. M., Thibault, N., Goderis, S., Van Malderen, S. J. M., Snoeck, C., Goolaerts, S., Vanhaecke, F., and Claeys, P.: Shell chemistry of the boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates and life cycle of an extinct Cretaceous oyster, Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, 2020a.
de Winter, N. J., Vellekoop, J., Clark, A. J., Stassen, P., Speijer, R. P., and Claeys, P.: The giant marine gastropod Campanile giganteum (Lamarck, 1804) as a high-resolution archive of seasonality in the Eocene greenhouse world, Geochem. Geophy. Geosy., 21, e2019GC008794, https://doi.org/10.1029/2019GC008794, 2020b.
de Winter, N. J., Agterhuis, T., and Ziegler, M.: Optimizing sampling strategies in high-resolution paleoclimate records, Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, 2021.
Dowsett, H., Robinson, M., Haywood, A., Salzmann, U., Hill, D., Sohl, L.,
Chandler, M., Williams, M., Foley, K., and Stoll, D.: The PRISM3D
paleoenvironmental reconstruction, Stratigraphy, 7, 123–129, 2010.
Dowsett, H. J. Haywood, A. M., Valdes, P. J., Robinson, M. M., Lunt, D. J.,
Hill, D., Stoll, D. K., and Foley, K. M.: Sea surface temperatures of the
mid-Piacenzian Warm Period: A comparison of PRISM3 and HadCM3, Palaeogeogr.
Palaeocl., 309, 83–91, https://doi.org/10.1016/j.palaeo.2011.03.016, 2011.
Dowsett, H. J., Robinson, M. M., Stoll, D. K., Foley, K. M., Johnson, A. L.
A., Williams, M., and Riesselman, C. R.: The PRISM (Pliocene palaeoclimate)
reconstruction: time for a paradigm shift, Philos. T. Roy. Soc. A, 371,
20120524, https://doi.org/10.1098/rsta.2012.0524, 2013.
Dowsett, H. J., Robinson, M. M., Foley, K. M., Herbert, T. D.,
Otto-Bliesner, B. L., and Spivey, W.: The mid-Piacenzian of the North
Atlantic Ocean, Stratigraphy, 16, 119–144, https://doi.org/10.29041/strat.16.3.119-144, 2019.
Dowsett, H. J., Robinson, M. M., Foley, K. M., and Herbert, T. D.: The
Yorktown Formation: Improved stratigraphy, chronology, and paleoclimate
interpretations from the U.S. Mid-Atlantic Coastal Plain, Geosciences, 11,
486, https://doi.org/10.3390/geosciences11120486, 2021.
Featherstone, A. M., Butler, P. G., Schöne, B. R., Peharda, M., and
Thébault, J.: A 45-year sub-annual reconstruction of seawater
temperature in the Bay of Brest, France, using the shell oxygen isotope
composition of the bivalve Glycymeris glycymeris, Holocene, 30, 3–12, https://doi.org/10.1177/0959683619865592, 2020.
Fenger, T., Surge, D., Schöne, B. R., and Milner, N.: Sclerochronology
and geochemical variation in limpet shells (Patella vulgata): A new archive to reconstruct coastal sea surface temperature, Geochem. Geophy. Geosy., 8, Q07001,
https://doi.org/10.1029/2006GC001488, 2007.
Füllenbach, C. S., Schöne, B. R., and Mertz-Kraus., R.:
Strontium/lithium ratio in shells of Cerastoderma edule (Bivalvia) – A new potential temperature proxy for brackish environments, Chem. Geol., 417, 341–355, https://doi.org/10.1016/j.chemgeo.2015.10.030, 2015.
Funnell, B. M.: Plio-Pleistocene palaeogeography of the southern North Sea
Basin (3.75–0.60 Ma), Quaternary Sci. Rev., 15, 391–405, https://doi.org/10.1016/0277-3791(96)00022-4, 1996.
Gaemers, P. A. M.: Enkele paleo-ecologische opmerkingen over de Pliocene
afzettingen in de tunnelput nabij Kallo, België, provincie
Oost-Vlaanderen. Deel 2, Mededelingen van de Werkgroep voor Tertiare en
Kwartaire Geologie, 12, 43–49, 1975.
Gaemers, P. A. M. and Schwarzhans, W.: Fisch-Otolithen aus dem Pliozän
von Antwerpen (Belgien) und Ouwerkerk (Niederlande) und aus dem
Plio-Pleistozän der Westerschelde (Niederlande), Leidse Geologische
Mededelingen, 49, 207–257, 1973.
Garcia-March, J. R., Surge, D., Lees, J. M., and Kersting, D. K.: Ecological
information and water mass properties in the Mediterranean recorded by
stable isotope ratios in Pinna nobilis shells, J. Geophys. Res., 116, G02009, https://doi.org/10.1029/2010JG001461, 2011.
Gibbard, P. L. and Lewin, J.: Filling the North Sea Basin: Cenozoic sediment
sources and river styles (André Dumont medallist lecture 2014), Geol.
Belg., 19, 201–217, https://doi.org/10.20341/gb.2015.017, 2016.
Gillikin, D. P., Lorrain, A., Navez, J., Taylor, J. W., Keppens, E.,
Baeyens, W., and Dehairs, F.: Strong biological controls on ratios in aragonitic marine bivalve shells, Geochem. Geophy. Geosy., 6, Q05009, https://doi.org/10.1029/2004GC000874, 2005.
Goodwin, D. H., Schöne, B. R., and Dettman, D. L.: Resolution and
fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk
shells: Models and observations, Palaios, 18, 110–125, https://doi.org/10.1669/0883-1351(2003)18<110:RAFOOI>2.0.CO;2, 2003.
Grossman, E. L. and Ku, T.: Oxygen and carbon isotope fractionation in
biogenic aragonite: Temperature effects, Chemical Geology: Isotope Geoscience section, 59, 59–74, https://doi.org/10.1016/0009-2541(86)90044-6, 1986.
Hacquaert, N.: Palynologisch onderzoek van de cenozoische mariene zanden
(Scalidisien en Merxemian) van het Hansadok te Antwerpen,
Natuurwetenschappelijk Tijdschrift, 42, 65–112, 1960.
Harwood, A. J. P., Dennis, P. F., Marca, A. D., Pilling, G. M., and Millner,
R. S.: The oxygen isotope composition of water masses within the North Sea,
Estuar. Coast. Shelf S., 78, 353–359, https://doi.org/10.1016/j.ecss.2007.12.010, 2008.
Haywood, A. M., Sellwood, B. W., and Valdes, P. J.: Regional warming:
Pliocene (3 Ma) paleoclimate of Europe and the Mediterranean, Geology, 28,
1063–1066, 2000.
Hennissen, J. A. I., Head, M. J., De Schepper, S., and Groeneveld, J.:
Increased seasonality during the intensification of Northern Hemisphere
glaciation at the Pliocene-Pleistocene boundary ∼2.6 Ma,
Quaternary Sci. Rev., 129, 321–332,
https://doi.org/10.1016/j.quascirev.2015.10.010, 2015.
Hennissen, J. A. I., Head, M. J., De Schepper, S., and Groeneveld, J.:
Dinoflagellate cyst paleoecology during the Pliocene–Pleistocene climatic
transition in the North Atlantic, Palaeogeogr. Palaeocl., 470, 81–108,
https://doi.org/10.1016/j.palaeo.2016.12.023, 2017.
Hickson, J. A., Johnson, A. L. A., Heaton, T. H. E., and Balson, P. S.: The
shell of the Queen Scallop Aequipecten opercularis (L.) as a promising tool for palaeoenvironmental reconstruction: evidence and reasons for equilibrium stable-isotope incorporation, Palaeogeogr. Palaeocl., 154, 325–337, https://doi.org/10.1016/S0031-0182(99)00120-0, 1999.
Hickson, J. A., Johnson, A. L. A., Heaton, T. H. E., and Balson, P. S.: Late
Holocene environment of the southern North Sea from the stable isotopic
composition of Queen Scallop shells, Palaeontol. Electron., 3, 11 pp., https://palaeo-electronica.org/2000_2/scallop/issue2_00.htm (last access: 17 May 2022), 2000.
Höche, N., Peharda, M., Walliser, E. O., and Schöne, B. R.:
Morphological variations of crossed-lamellar ultrastructures of Glycymeris bimaculata (Bivalvia) serve as a marine temperature proxy, Estuar. Coast. Shelf S., 237, 106658, https://doi.org/10.1016/j.ecss.2020.106658, 2020.
Höche, N., Walliser, E. O., de Winter, N. J., Witbaard, R., and
Schöne, B. R.: Temperature-induced microstructural changes in shells of
laboratory-grown Arctica islandica (Bivalvia), PloS ONE, 16, e0247968, https://doi.org/10.1371/journal.pone.0247968, 2021.
Howarth, M. J., Dyer, K. R., Joint, I. R., Hydes, D. J., Purdie, D. A.,
Edmunds, H., Jones, J. E., Lowry, R. K., Moffat, T. J., Pomroy, A. J., and
Proctor, R.: Seasonal cycles and their spatial variability, Philos. T. Roy.
Soc. A, 343, 383–403, https://doi.org/10.1098/rsta.1993.0054, 1993.
Huyghe, D., Emmanuel, L., de Rafelis, M., Renard, M., Ropert, M.,
Labourdette, N., and Lartaud, F.: Oxygen isotope disequilibrium in the
juvenile portion of oyster shells biases seawater temperature
reconstructions, Estuar. Coast. Shelf Sci., 240, 106777, https://doi.org/10.1016/j.ecss.2020.106777, 2020.
Huyghe, D., Daëron, M., de Rafelis, M., Blamart, D., Sébilo, M.,
Paulet, Y.-M., and Lartaud, F.: Clumped isotopes in modern marine bivalves,
Geochim. Cosmochim. Ac., 316, 41–58, https://doi.org/10.1016/j.gca.2021.09.019, 2022.
Ivany, L. C. and Judd, E. J.: Deciphering temperature seasonality in Earth's
ancient oceans, Annu. Rev. Earth Planet. Sci., 50, 123–152, https://doi.org/10.1146/annurev-earth-032320-095156, 2022.
Ivany, L. C., Wilkinson, B. H., and Jones, D. S.: Using stable isotope data
to resolve rate and duration of growth throughout ontogeny: An example from
the surf clam, Spisula solidissima, Palaios, 18, 126–137, https://doi.org/10.1669/0883-1351(2003)18<126:USIDTR>2.0.CO;2, 2003.
Ivany, L. C., Wilkinson, B. H., Lohmann, K. C., Johnson, E. R., McElroy, B.
J., and Cohen, G. J.: Intra-annual isotopic variation in Venericardia bivalves: Implications for early Eocene temperature, seasonality, and salinity on the US Gulf Coast, J. Sediment. Res., 74, 7–19, https://doi.org/10.1306/052803740007, 2004.
Johnson, A. L. A., Hickson, J. A., Bird, A., Schöne, B. R., Balson, P.
S., Heaton, T. H. E., and Williams, M.: Comparative sclerochronology of
modern and mid-Pliocene (c. 3.5 Ma) Aequipecten opercularis (Mollusca, Bivalvia): an insight into past and future climate change in the north-east Atlantic region, Palaeogeogr. Palaeocl., 284, 164–179, https://doi.org/10.1016/j.palaeo.2009.0.022, 2009.
Johnson, A. L. A., Valentine, A., Leng, M. J., Sloane, H. J., Schöne, B.
R., and Balson, P. S.: Isotopic temperatures from the Early and Mid-Pliocene
of the US Middle Atlantic Coastal Plain, and their implications for the
cause of regional marine climate change, Palaios, 32, 250–269, https://doi.org/10.2110/palo.2016.080, 2017.
Johnson, A. L. A., Valentine, A. M., Leng, M. J., Schöne, B. R., and
Sloane, H. J.: Life history, environment and extinction of the scallop
Carolinapecten eboreus (Conrad) in the Plio-Pleistocene of the US eastern seaboard, Palaios, 34, 49–70, https://doi.org/10.2110/palo.2018.056, 2019.
Johnson, A. L. A., Harper, E. M., Clarke, A., Featherstone, A. C., Heywood,
D. J., Richardson, K. E, Spink, J. O., and Thornton, L. A. H.: Growth rate,
extinction and survival amongst late Cenozoic bivalves of the North
Atlantic, Hist. Biol., 33, 802–813, https://doi.org/10.1080/08912963.2019.1663839, 2021a.
Johnson, A. L. A., Valentine, A. M., Schöne, B. R., Leng, M. J., Sloane,
H. J., and Janeković, I.: Growth-increment characteristics and isotopic
(δ18O) temperature record of sub-thermocline Aequipecten opercularis (Mollusca:Bivalvia): evidence from modern Adriatic forms and an application to early Pliocene examples from eastern England, Palaeogeogr. Palaeocl., 561, 110046, https://doi.org/10.1016/j.palaeo.2020.110046, 2021b.
Johnson, A. L. A., Valentine, A. M., Schöne, B. R., Leng, M. J., Sloane,
H. J., and Goolaerts, S.: Raw data for “Sclerochronological evidence of
pronounced seasonality from the late Pliocene of the southern North Sea
Basin, and its implications”, Version 1, Zenodo [data set], https://doi.org/10.5281/zenodo.5585630, 2021c.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475,
https://doi.org/10.1016/S0016-7037(97)00169-5, 1997.
Kim, S.-T., O'Neil, J. R., Hillaire-Marcel, C., and Mucci, A.: Oxygen isotope
fractionation between synthetic aragonite and water: Influence of
temperature and Mg2+ concentration, Geochim. Cosmochim. Ac., 71,
4704–4715, https://doi.org/10.1016/j.gca.2007.04.019, 2007.
Knowles, T., Taylor, P. D., Williams, M., Haywood, A. M., and Okamura, B.:
Pliocene seasonality across the North Atlantic inferred from cheilostome
bryozoans, Palaeogeogr. Palaeocl., 77, 226–235, https://doi.org/10.1016/j.palaeo.2009.04.006, 2009.
Krantz, D. E., Williams, D. F., and Jones, D. S.: Ecological and
paleoenvironmental information using stable isotope profiles from living and
fossil molluscs, Palaeogeogr. Palaeocl., 58, 249–266, https://doi.org/10.1016/0031-0182(87)90064-2, 1987.
Laga, P.: Stratigrafie van de mariene Plio-Pleistocene afzettingen uit de
omgeving van Antwerpen met een bijzondere studie van de foraminiferen, PhD
thesis, Katholieke Universiteit Leuven, Belgium, 252 pp., 1972.
Lane, A. and Prandle, D.: Inter-annual variability in the temperature of the
North Sea, Cont. Shelf Res., 16, 1489–1507, https://doi.org/10.1016/0278-4343(96)00001-5, 1996.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene–Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography,
20, 522–533, https://doi.org/10.1029/2004PA001071, 2005.
Lloyd, R. M.: Variations in the oxygen and carbon isotope ratios of Florida
Bay mollusks and their environmental significance, J. Geol., 72, 84–111,
1964.
Lorrain, A., Paulet, Y.-M., Chauvaud, L., Dunbar, R., Mucciarone, D., and
Fontugne, M.: δ13C variation in scallop shells: Increasing
metabolic carbon contribution with body size?, Geochim. Cosmochim. Ac., 68,
3509–3519, https://doi.org/10.1016/j.gca.2004.01.025, 2004.
Louwye, S. and De Schepper, S.: The Miocene-Pliocene hiatus in the southern
North Sea Basin (northern Belgium) revealed by dinoflagellate cysts, Geol.
Mag., 147, 760–776, https://doi.org/10.1017/S0016756810000191, 2010.
Louwye, S., Head, M. J., and De Schepper, S.: Dinoflagellate cyst
stratigraphy and palaeoecology of the Pliocene in northern Belgium, southern
North Sea Basin, Geol. Mag., 141, 353–378, https://doi.org/10.1017/S0016756804009136, 2004.
Louwye, S., Deckers, J., and Vandenberghe, N.: The Pliocene Lillo, Poederlee,
Merksplas, Mol and Kieseloolite Formations in northern Belgium: a synthesis,
Geol. Belg., 23, 297–313, https://doi.org/10.20341/gb.2020.016, 2020.
Lunt, D. J., Haywood, A. M., Schmidt, G. A., Salzmann, U., Valdes, P. J., and
Dowsett, H. J.: Earth system sensitivity inferred from Pliocene modelling
and data, Nat. Geosci., 3, 60–64, https://doi.org/10.1038/ngeo706, 2010.
Marchais, V., Richard, J., Jolivet, A., Flye-Sainte-Marie, J., Thébault,
J., Jean, F., Richard, P., Paulet, Y.-M., Clavier, J., and Chauvaud, L.:
Coupling experimental and field-based approaches to decipher carbon sources
in the shell of the great scallop, Pecten maximus (L.), Geochim. Cosmochim. Ac., 168, 58–69, https://doi.org/10.1016/j.gca.2015.07.010, 2015.
Markulin, K., Peharda, M., Mertz-Kraus, R., Schöne, B. R., Uvanović,
H., Kovač, Z., and Janeković, I.: Trace and minor element records in
aragonitic bivalve shells as environmental proxies, Chem. Geol., 507,
120–133, https://doi.org/10.1016/j.chemgeo.2019.01.008, 2019.
Marquet, R.: The Neogene Amphineura and Bivalvia (Protobranchia and
Pteriomorphia) from Kallo and Doel (Oost-Vlaanderen, Belgium), Palaeontos,
2, 1–99, 2002.
Marquet, R.: Ecology and evolution of Pliocene bivalves from the Antwerp
Basin, Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, 74, 205–212, 2004.
Marquet, R.: The Neogene Bivalvia (Heterodonta and Anomalodesmata) and
Scaphopoda from Kallo and Doel (Oost-Vlaanderen, Belgium), Palaeontos, 6,
1–142, 2005.
Marquet, R. and Herman, J.: The stratigraphy of the Pliocene in Belgium,
Palaeofocus, 2, 1–39, 2009.
Mettam, C., Johnson, A. L. A., Nunn, E. V., and Schöne, B. R.: Stable
isotope (δ18O and δ13C) sclerochronology of
Callovian (Middle Jurassic) bivalves (Gryphaea (Bilobissa) dilobotes) and belemnites (Cylindroteuthis pusoziana) from the Peterborough Member of the Oxford Clay Formation (Cambridgeshire, England): evidence of palaeoclimate, water depth and belemnite behaviour, Palaeogeogr. Palaeocl., 399, 187–201, https://doi.org/10.1016/j.palaeo.2014.01.010, 2014.
Mette, M. J., Whitney, N. M., Ballew, J., and Wanamaker, A. D.: Unexpected
isotopic variability in biogenic aragonite: A user issue or proxy problem?,
Chem. Geol., 483, 286–294, https://doi.org/10.1016/j.chemgeo.2018.02.027, 2018.
Moon, L. R., Judd, E. J., Thomas, J., and Ivany, L. C.: Out of the oven and
into the fire: Unexpected preservation of the seasonal δ18O cycle
following heating experiments on shell carbonate, Palaeogeogr. Palaeocl.,
562, 110115, https://doi.org/10.1016/j.palaeo.2020.110115, 2021.
Munsterman, D. K., ten Veen, J. H., Menkovic, A., Deckers, J., Witmans, N.,
Verhaegen, J., Kersthold-Boegehold, S. J., van de Ven, T., and Busschers, F.:
An updated and revised stratigraphic framework for the Miocene and earliest
Pliocene strata of the Roer Valley Graben and adjacent blocks, Neth. J.
Geosci., 98, E8, https://doi.org/10.1017/njg.2019.10, 2020.
Murray, J. W.: Palaeogene and Neogene, in: Atlas of Palaeogeography and
Lithofacies, edited by: Cope, J. C. W., Ingham, J. K., and Rawson, P. F.,
The Geological Society, London, UK, Memoir 13, 141–147, 1992.
Nooitgedacht, C. W., van der Lubbe, H. J. L., Ziegler, M., and Staudigel, P.
T.: Internal water facilitates thermal resetting of clumped isotopes in
biogenic aragonite, Geochem. Geophy. Geosy., 22, e2021GC009730, https://doi.org/10.1029/2021GC009730, 2021.
Norton, P. E. P.: Paleoecology of the Mollusca of the Tjörnes sequence,
Iceland, Boreas, 4, 97–110, 1975.
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K.: Oxygen isotope
fractionation in divalent metal carbonates, J. Chem. Phys., 51, 5547–5558,
1969.
Overeem, I., Weltje, G. J., Bishop-Kay, C., and Kroonenberg, S. B.: The Late
Cenozoic Eridanos delta system in the Southern North Sea Basin: a climate
signal in sediment supply?, Basin Res., 13, 293–312, https://doi.org/10.1046/j.1365-2117.2001.00151.x, 2001.
Owen, R., Kennedy, H., and Richardson, C.: Isotopic partitioning between
scallop shell calcite and seawater: Effect of shell growth rate, Geochim.
Comochim. Ac., 66, 1727–1737, https://doi.org/10.1016/S0016-7037(01)00882-1, 2002a.
Owen, R., Kennedy, H., and Richardson, C.: Experimental investigation into
partitioning of stable isotopes between scallop (Pecten maximus) shell calcite and sea water, Palaeogeogr. Palaeocl., 185, 163–174, https://doi.org/10.1016/S0031-0182(02)00297-3, 2002b.
Panitz, S., Salzmann, U., Risebrobakken, B., De Schepper, S., Pound, M. J.,
Haywood, A. M., Dolan, A. M., and Lunt, D. J.: Orbital, tectonic and
oceanographic controls on Pliocene climate and atmospheric circulation in
Arctic Norway, Global Planet. Change, 161, 183–193, https://doi.org/10.1016/j.gloplacha.2017.12.022, 2018.
Peharda, M., Crnčević, M., Bušelić, I., Richardson, C. A.,
and Ezgeta-Balić, D.: Growth and longevity of Glycymeris nummaria (Linnaeus, 1758) from the eastern Adriatic, Croatia, J. Shellfish Res., 31, 947–950, https://doi.org/10.2983/035.031.0406, 2012.
Peharda, M., Thébault, J., Markulin, K., Schöne, B. R.,
Janeković, I., and Chauvaud, L.: Contrasting shell growth strategies in
two Mediterranean bivalves revealed by oxygen-isotope ratio geochemistry:
The case of Pecten jacobaeus and Glycymeris pilosa, Chem. Geol., 526, 23–35, https://doi.org/10.1016/j.chemgeo.2017.09.029, 2019a.
Peharda, M., Walliser, E. O., Markulin, K., Purroy, A., Uvanović, H., Janeković, I., Župan, I., Vilibić, I., and Schöne, B. R.: Glycymeris pilosa (Bivalvia) – A high-potential geochemical archive of the environmental variability in the Adriatic Sea, Mar. Environ. Res., 150, 104759, https://doi.org/10.1016/j.marenvres.2019.104759, 2019b.
Raffi, S., Stanley, S. M., and Marasti, R.: Biogeographic patterns and
Plio-Pleistocene extinction of Bivalvia in the Mediterranean and southern
North Sea, Paleobiology, 11, 368–388, https://doi.org/10.1017/S0094837300011684, 1985.
Reynolds, D. J., Hall, I. R., Slater, S. M., Scourse, J. D., Halloran, P. R.,
and Sayer, M. D. J.: Reconstructing past seasonal to multicentennial-scale
variability in the NE Atlantic Ocean using the long-lived marine bivalve
mollusk Glycymeris glycymeris, Paleoceanography, 32, 1153–1173, https://doi.org/10.1002/2017PA003154, 2017.
Robinson, M. M.: New quantitative evidence of extreme warmth in the Pliocene
Arctic, Stratigraphy, 6, 265–275, 2009.
Robinson, M. M., Dowsett, H. J., Foley, K. M., and Riesselman, C. R.: PRISM
marine sites: The history of PRISM sea surface temperature estimation, U.S.
Geological Survey Open-File Report, 2018–1148, 49 pp., https://doi.org/10.3133/ofr20181148, 2018.
Royer, C., Thébault, J., Chauvaud, L., and Olivier, F.: Structural
analysis and paleoenvironmental potential of dog cockle shells (Glycymeris glycymeris) in Brittany, northwest France, Palaeogeogr. Palaeocl., 373, 123–132, https://doi.org/10.1016/j.palaeo.2012.01.033, 2013.
Schöne, B. R.: The curse of physiology–challenges and opportunities in
the interpretation of geochemical data from mollusk shells, Geo-Mar. Lett.,
28, 269–285, https://doi.org/10.1007/s00367-008-0114-6, 2008.
Schöne, B. R.: Arctica islandica (Bivalvia): A unique paleoenvironmental archive of the northern North Atlantic Ocean, Global Planet. Change, 111, 199–225, https://doi.org/10.1016/j.gloplacha.2013.09.013, 2013.
Schöne, B. R. and Fiebig, J.: Seasonality in the North Sea during the
Allerød and Late Medieval Climate Optimum using bivalve sclerochronology,
Int. J. Earth Sci., 98, 83–98, https://doi.org/10.1007/s00531-008-0363-7, 2009.
Schöne, B. R., Fiebig, J., Pfeiffer, M., Gleß, R., Hickson, J.,
Johnson, A. L. A., Dreyer, W., and Oschmann, W.: Climate records from a
bivalved Methuselah (Arctica islandica, Mollusca; Iceland), Palaeogeogr. Palaeocl., 228, 130–148, https://doi.org/10.1016/j.palaeo.2005.03.049, 2005.
Shackleton, N. J.: Attainment of isotopic equilibrium between ocean water
and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial, Colloques Internationaux du Centre National de la Recherche Scientifique, 219, 203–209, 1974.
Slupik, A. A., Wesselingh, F. P., Janse, A. C., and Reumer, J. W. F.: The
stratigraphy of the Neogene-Quaternary succession in the southwest
Netherlands from the Schelphoek borehole (42G4-11/42G0022) – a sequence
stratigraphic approach, Neth. J. Geosci., 86, 317–332, https://doi.org/10.1017/S0016774600023556, 2007,
Surge, D. and Barrett, J. H.: Marine climatic seasonality during medieval
times (10th to 12th centuries) based on isotopic records in Viking Age
shells from Orkney, Scotland, Palaeogeogr. Palaeocl., 350, 236–246,
https://doi.org/10.1016/j.palaeo.2012.07.003, 2012.
Tebble, N.: British Bivalve Seashells, 2nd edn., Her Majesty's Stationary
Office, Edinburgh, UK, 212 pp., ISBN 0 11 491401 X, 1976.
Trofimova, T., Milano, S., Andersson, C., Bonitz, F. G. W., and Schöne,
B. R.: Oxygen isotope composition of Arctica islandica aragonite in the context of shell architectural organization: Implications for paleoclimate reconstructions, Geochem. Geophy. Geosy., 19, 453–470, https://doi.org/10.1002/2017GC007239, 2018.
Ullmann, C. V., Wiechert, U., and Korte, C.: Oxygen isotope fluctuations in a
modern North Sea oyster (Crassostrea gigas) compared with annual variations in seawater
temperature: Implications for palaeoclimate studies, Chem. Geol., 270,
170–176, https://doi.org/10.1016/j.chemgeo.2010.07.019, 2010.
Valentine, A., Johnson, A. L. A., Leng, M. J., Sloane, H. J., and Balson, P.
S.: Isotopic evidence of cool winter conditions in the mid-Piacenzian
(Pliocene) of the southern North Sea Basin, Palaeogeogr. Palaeocl., 309,
9–16, https://doi.org/10.1016/j.palaeo.2011.05.015, 2011.
Vandenberghe, N., Herman, J., Laga, P., Louwye, S., De Schepper, S.,
Vandenberghe, J., Bohncke, S., and Konert, W.: The stratigraphic position of
a Pliocene tidal clay deposit at Grobbendonk (Antwerp Province, Belgium),
Geol. Belg., 3, 405–17, https://doi.org/10.20341/gb.2014.040, 2000.
Van Vliet-Lanoë, B., Vandenberghe, N., Laurent, M., Laignel, B.,
Lauriat-Rage, A., Louwey, S., Mansy, J.-L., Mercier, D., Hallégouêt,
B., Laga, P., Laquement, F., Melliez, F., Michel, Y., Mougedet, G., and
Villier, J.-P.: Palaeogeographic evolution of northwestern Europe during the
Upper Cenozoic, in: Messinia event: palaeobiological and palaeoecological
approaches: edited by: Néraudeau, D. and Goubert, É., Geodiversitas,
24, 511–541, 2002.
Vignols, R. M., Valentine, A. M., Finlayson, A. G., Harper, E. M.,
Schöne, B. R., Leng, M. J., Sloane, H. J., and Johnson, A. L. A.: Marine
climate and hydrography of the Coralline Crag (early Pliocene, UK): isotopic
evidence from 16 benthic invertebrate taxa, Chem. Geol., 536, 62–83,
https://doi.org/10.1016/j.chemgeo.2018.05.034, 2019.
Wesselingh, F. P., Busschers, F. S., and Goolaerts, S.: Observations on the
Pliocene sediments exposed at Antwerp International Airport (northern
Belgium) constrain the stratigraphic position of the Broechem fauna, Geol.
Belg., 23, 315–321, https://doi.org/10.20341/gb.2020.026, 2020.
Westaway, R., Maddy, D., and Bridgland, D.: Flow in the lower continental
crust as a mechanism for the Quaternary uplift of south-east England:
constraints from the Thames terrace record, Quaternary Sci. Rev., 21,
559–603, https://doi.org/10.1016/S0277-3791(01)00040-3, 2002.
Williams, M., Haywood, A. M., Harper, E. M., Johnson, A. L. A., Knowles, T.,
Leng, M. J., Lunt, D. J., Okamura, B., Taylor, P. D., and Zalaziewicz, J.:
Pliocene climate and seasonality in North Atlantic shelf seas, Philos. T. Roy. Soc. A, 367, 85–108, https://doi.org/10.1098/rsta.2008.0224, 2009.
Williams, M., Nelson, A. E., Smellie, J. L., Leng, M. J., Johnson, A. L. A.,
Jarram, D. R., Haywood, A. M., Peck, V. L., Zalasiewicz, J., Bennett, C., and
Schöne, B. R.: Sea ice extent and seasonality for the Early Pliocene
northern Weddell Sea determined from fossil Austrochlamys bivalves, Palaeogeogr. Palaeocl., 292, 306–318, https://doi.org/10.1016/j.palaeo.2010.04.003, 2010.
Winther, N. G. and Johannessen, J. A.: North Sea circulation: Atlantic
inflow and its destination, J. Geophys. Res., 111, C12018, https://doi.org/10.1029/2005JC003310, 2006.
Witbaard, R. and Bergman, M. J. N.: The distribution and population
structure of the bivalve Arctica islandica L. in the North Sea: what possible factors are involved?, J. Sea Res., 50, 11–25, https://doi.org/10.1016/S1385-1101(03)00039-X, 2003.
Wood, A. M., Wilkinson, I. P., Maybury, C. A., and Whatley, R. C.: Neogene,
in: Ostracods in British Stratigraphy, edited by: Whittaker, J. E. and Hart,
M. B., Spec. Publ., The Micropalaeontological Society, The Geological
Society, London, UK, 411–446, ISSN 1747-602X, 2009.
Wood, A. M., Whatley, R. C., Cronin, T., and Holtz, T.: Pliocene palaeotemperature reconstruction for the southern North Sea based on Ostracoda, Quaternary Sci. Rev., 12, 747–767, https://doi.org/10.1016/0277-3791(93)90015-E, 1993.
Zhang, Z., Li, X., Guo, C., Otterå, O. H., Nisancioglu, K. H., Tan, N., Contoux, C., Ramstein, G., Feng, R., Otto-Bliesner, B. L., Brady, E., Chandan, D., Peltier, W. R., Baatsen, M. L. J., von der Heydt, A. S., Weiffenbach, J. E., Stepanek, C., Lohmann, G., Zhang, Q., Li, Q., Chandler, M. A., Sohl, L. E., Haywood, A. M., Hunter, S. J., Tindall, J. C., Williams, C., Lunt, D. J., Chan, W.-L., and Abe-Ouchi, A.: Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2, Clim. Past, 17, 529–543, https://doi.org/10.5194/cp-17-529-2021, 2021.
Short summary
Determining seasonal temperatures demands proxies that record the highest and lowest temperatures over the annual cycle. Many record neither, but oxygen isotope profiles from shells in principle record both. Oxygen isotope data from late Pliocene bivalve molluscs of the southern North Sea basin show that the seasonal temperature range was at times much higher than previously estimated and higher than now. This suggests reduced oceanic heat supply, in contrast to some previous interpretations.
Determining seasonal temperatures demands proxies that record the highest and lowest...