Articles | Volume 18, issue 5
https://doi.org/10.5194/cp-18-1203-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1203-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sclerochronological evidence of pronounced seasonality from the late Pliocene of the southern North Sea basin and its implications
Andrew L. A. Johnson
CORRESPONDING AUTHOR
School of Built and Natural Environment, University of Derby, Derby, DE22 1GB, UK
Annemarie M. Valentine
School of Geography and Environmental Science, Nottingham Trent University, Southwell, NG25 0QF, UK
Bernd R. Schöne
Institute of Geosciences, University of Mainz, 55128 Mainz, Germany
Melanie J. Leng
National Environmental Isotope Facility, British Geological Survey, Keyworth, NG12 5GG, UK
Stijn Goolaerts
OD Earth & History of Life and Scientific Heritage Service, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
Related authors
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Guilhem Türk, Christoph J. Gey, Bernd R. Schöne, Marius G. Floriancic, James W. Kirchner, Loic Leonard, Laurent Gourdol, Richard Keim, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2025-1530, https://doi.org/10.5194/egusphere-2025-1530, 2025
Short summary
Short summary
How landscape features affect water storage and release in catchments remains poorly understood. Here we used water stable isotopes in 12 streams to assess the fraction of precipitation reaching streamflow in less than 2 weeks. More recent precipitation was found when streamflow was high and the fraction was linked to the geology (i.e. high when impermeable, low when permeable). Such information is key for better anticipating streamflow responses to a changing climate.
Guilhem Türk, Christoph Johannes Gey, Bernd Reinhard Schöne, and Laurent Pfister
EGUsphere, https://doi.org/10.5194/egusphere-2024-4169, https://doi.org/10.5194/egusphere-2024-4169, 2025
Short summary
Short summary
Past stream flow dynamics can be assessed using the stable isotopes of oxygen (O16/O18) in streams and precipitation from various proxy sources. Here, we show how they are retrieved in precipitation for ~150 years using temperature records and an atmospheric circulation classification scheme. Our robust and assumption-lean approach compares to model performances in the literature, demonstrating atmospheric controls of the temperature influence on precipitation O16/O18 compositions.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Valentin Siebert, Brivaëla Moriceau, Lukas Fröhlich, Bernd R. Schöne, Erwan Amice, Beatriz Beker, Kevin Bihannic, Isabelle Bihannic, Gaspard Delebecq, Jérémy Devesa, Morgane Gallinari, Yoan Germain, Émilie Grossteffan, Klaus Peter Jochum, Thierry Le Bec, Manon Le Goff, Céline Liorzou, Aude Leynaert, Claudie Marec, Marc Picheral, Peggy Rimmelin-Maury, Marie-Laure Rouget, Matthieu Waeles, and Julien Thébault
Earth Syst. Sci. Data, 15, 3263–3281, https://doi.org/10.5194/essd-15-3263-2023, https://doi.org/10.5194/essd-15-3263-2023, 2023
Short summary
Short summary
This article presents an overview of the results of biological, chemical and physical parameters measured at high temporal resolution (sampling once and twice per week) during environmental monitoring that took place in 2021 in the Bay of Brest. We strongly believe that this dataset could be very useful for other scientists performing sclerochronological investigations, studying biogeochemical cycles or conducting various ecological research projects.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Mark A. Stevenson, Suzanne McGowan, Emma J. Pearson, George E. A. Swann, Melanie J. Leng, Vivienne J. Jones, Joseph J. Bailey, Xianyu Huang, and Erika Whiteford
Biogeosciences, 18, 2465–2485, https://doi.org/10.5194/bg-18-2465-2021, https://doi.org/10.5194/bg-18-2465-2021, 2021
Short summary
Short summary
We link detailed stable isotope and biomarker analyses from the catchments of three Arctic upland lakes on Disko Island (West Greenland) to a recent dated sediment core to understand how carbon cycling has changed over the past ~500 years. We find that the carbon deposited in sediments in these upland lakes is predominately sourced from in-lake production due to the catchment's limited terrestrial vegetation and elevation and that recent increases in algal production link with climate change.
Cited articles
Alexandroff, S. J., Butler, P. G., Hollyman, P. R., Schöne, B. R., and
Scourse, J. D.: Late Holocene seasonal temperature variability of the
western Scottish shelf (St Kilda) recorded in fossil shells of the bivalve
Glycymeris glycymeris, Palaeogeogr. Palaeocl., 562, 110146, https://doi.org/10.1016/j.palaeo.2020.110146, 2021.
Arthur, M. A., Williams, D. F., and Jones, D. S.: Seasonal
temperature-salinity changes and thermocline development in the mid-Atlantic
Bight as recorded by the isotopic composition of bivalves, Geology, 11,
655–659, https://doi.org/10.1130/0091-7613(1983)11<655:STCATD>2.0.CO;2, 1983.
Bachem, P. E., Risebrobakken, B., De Schepper, S., and McClymont, E. L.: Highly variable Pliocene sea surface conditions in the Norwegian Sea, Clim. Past, 13, 1153–1168, https://doi.org/10.5194/cp-13-1153-2017, 2017.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the
oxygen isotopic composition of planktonic foraminifera: Experimental results
and revised paleotemperature equations, Paleoceanography, 13, 150–160,
https://doi.org/10.1029/98PA00070, 1998.
Bice, K. L., Arthur, M. A., and Marincovich, L.: Late Paleocene Arctic Ocean
shallow-marine temperatures from mollusc stable isotopes, Paleoceanography,
11, 241–249, https://doi.org/10.1029/96PA00813, 1996.
Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P., and Yan, M.: Seasonal origin
of the thermal maxima at the Holocene and the last interglacial, Nature,
589, 548–553, https://doi.org/10.1038/s41586-020-03155-x, 2021.
Briard, J., Pucéat, E., Vennin, E., Daëronc, M., Chavagnac, V.,
Jaillet, R., Merle, D., and de Rafélis, M.: Seawater paleotemperature and
paleosalinity evolution in neritic environments of the Mediterranean margin:
Insights from isotope analysis of bivalve shells, Palaeogeogr. Palaeocl.,
543, 109582, https://doi.org/10.1016/j.palaeo.2019.109582, 2020.
Buchardt, B. and Simonarson, L. A.: Isotopic palaeotemperatures from the
Tjörnes Beds in Iceland: evidence of Pliocene cooling, Palaeogeogr.
Palaeocl., 189, 71–95, https://doi.org/10.1016/S0031-0182(02)00594-1, 2003.
Caldarescu, D. E., Sadatzki, H., Andersson, C., Schäfer, P., Fortunato,
H., and Meckler, A. N.: Clumped isotope thermometry in bivalve shells: A tool
for reconstructing seasonal upwelling, Geochim. Cosmochim. Ac., 294,
174–191, https://doi.org/10.1016/j.gca.2020.11.019, 2021.
Chauvaud, L., Thébault, J., Clavier, J., Lorrain, A., and Strand, Ø.:
What's hiding behind ontogenetic δ13C variations in mollusk
shells? New insights from the Great Scallop (Pecten maximus), Estuar. Coast., 34, 211–220, https://doi.org/10.1007/s12237-010-9267-4, 2011.
Coplen, T. B., Kendall, C., and Hopple, J.: Comparison of stable isotope
reference samples, Nature, 302, 236–238, https://doi.org/10.1038/302236a0, 1983.
Crippa, G., Angiolini, L., Bottini, C., Erba, E., Felletti, F., Frigerio,
C., Hennissen, J. A. I., Leng, M. J., Petrizzo, M. R., Raffi, I., Raineri,
G., and Stephenson, M. H.: Seasonality fluctuations recorded in fossil
bivalves during the early Pleistocene: Implications for climate change,
Palaeogeogr. Palaeocl., 446, 234–251, https://doi.org/10.1016/j.palaeo.2016.01.029, 2016.
Dearing Crampton-Flood, E., Noorbergen, L. J., Smits, D., Boschman, R. C., Donders, T. H., Munsterman, D. K., ten Veen, J., Peterse, F., Lourens, L., and Sinninghe Damsté, J. S.: A new age model for the Pliocene of the southern North Sea basin: a multi-proxy climate reconstruction, Clim. Past, 16, 523–541, https://doi.org/10.5194/cp-16-523-2020, 2020.
Deckers, J., Louwye, S., and Goolaerts, S.: The internal division of the
Pliocene Lillo Formation: correlation between Cone Penetration Tests and
lithostratigraphic type sections, Geol. Belg., 23, 333–343, https://doi.org/10.20341/gb.2020.027, 2020.
DeLong, K. L., Quinn, T. M., and Taylor, F. W.: Reconstructing
twentieth-century sea surface temperature variability in the southwest
Pacific: A replication study using multiple coral records from New Caledonia, Paleoceanography, 22, PA4212, https://doi.org/10.1029/2007PA001444, 2007.
DeLong, K. L., Flannery, J. A., Maupin, C. R., Poore, R. Z., and Quinn, T. M.: A coral calibration and replication study of two massive corals from the Gulf of Mexico, Palaeogeogr. Palaeocl., 307, 117–128, https://doi.org/10.1016/j.palaeo.2011.05.005, 2011.
De Meuter, F. and Laga, P.: Lithostratigraphy and biostratigraphy based on
benthonic Foraminifera of the Neogene deposits of northern Belgium, Bulletin
van de Belgische Vereniging voor Geologie, 85, 133–152, 1976.
de Nooijer, W., Zhang, Q., Li, Q., Zhang, Q., Li, X., Zhang, Z., Guo, C., Nisancioglu, K. H., Haywood, A. M., Tindall, J. C., Hunter, S. J., Dowsett, H. J., Stepanek, C., Lohmann, G., Otto-Bliesner, B. L., Feng, R., Sohl, L. E., Chandler, M. A., Tan, N., Contoux, C., Ramstein, G., Baatsen, M. L. J., von der Heydt, A. S., Chandan, D., Peltier, W. R., Abe-Ouchi, A., Chan, W.-L., Kamae, Y., and Brierley, C. M.: Evaluation of Arctic warming in mid-Pliocene climate simulations, Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, 2020.
De Schepper, S., Head, M. J., and Louwye, S.: Pliocene dinoflagellate cyst
stratigraphy, palaeoecology and sequence stratigraphy of the Tunnel-Canal
Dock, Belgium, Geol. Mag., 146, 92–112, https://doi.org/10.1017/S0016756808005438, 2009.
de Winter, N. J., Ullmann, C. V., Sørensen, A. M., Thibault, N., Goderis, S., Van Malderen, S. J. M., Snoeck, C., Goolaerts, S., Vanhaecke, F., and Claeys, P.: Shell chemistry of the boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates and life cycle of an extinct Cretaceous oyster, Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, 2020a.
de Winter, N. J., Vellekoop, J., Clark, A. J., Stassen, P., Speijer, R. P., and Claeys, P.: The giant marine gastropod Campanile giganteum (Lamarck, 1804) as a high-resolution archive of seasonality in the Eocene greenhouse world, Geochem. Geophy. Geosy., 21, e2019GC008794, https://doi.org/10.1029/2019GC008794, 2020b.
de Winter, N. J., Agterhuis, T., and Ziegler, M.: Optimizing sampling strategies in high-resolution paleoclimate records, Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, 2021.
Dowsett, H., Robinson, M., Haywood, A., Salzmann, U., Hill, D., Sohl, L.,
Chandler, M., Williams, M., Foley, K., and Stoll, D.: The PRISM3D
paleoenvironmental reconstruction, Stratigraphy, 7, 123–129, 2010.
Dowsett, H. J. Haywood, A. M., Valdes, P. J., Robinson, M. M., Lunt, D. J.,
Hill, D., Stoll, D. K., and Foley, K. M.: Sea surface temperatures of the
mid-Piacenzian Warm Period: A comparison of PRISM3 and HadCM3, Palaeogeogr.
Palaeocl., 309, 83–91, https://doi.org/10.1016/j.palaeo.2011.03.016, 2011.
Dowsett, H. J., Robinson, M. M., Stoll, D. K., Foley, K. M., Johnson, A. L.
A., Williams, M., and Riesselman, C. R.: The PRISM (Pliocene palaeoclimate)
reconstruction: time for a paradigm shift, Philos. T. Roy. Soc. A, 371,
20120524, https://doi.org/10.1098/rsta.2012.0524, 2013.
Dowsett, H. J., Robinson, M. M., Foley, K. M., Herbert, T. D.,
Otto-Bliesner, B. L., and Spivey, W.: The mid-Piacenzian of the North
Atlantic Ocean, Stratigraphy, 16, 119–144, https://doi.org/10.29041/strat.16.3.119-144, 2019.
Dowsett, H. J., Robinson, M. M., Foley, K. M., and Herbert, T. D.: The
Yorktown Formation: Improved stratigraphy, chronology, and paleoclimate
interpretations from the U.S. Mid-Atlantic Coastal Plain, Geosciences, 11,
486, https://doi.org/10.3390/geosciences11120486, 2021.
Featherstone, A. M., Butler, P. G., Schöne, B. R., Peharda, M., and
Thébault, J.: A 45-year sub-annual reconstruction of seawater
temperature in the Bay of Brest, France, using the shell oxygen isotope
composition of the bivalve Glycymeris glycymeris, Holocene, 30, 3–12, https://doi.org/10.1177/0959683619865592, 2020.
Fenger, T., Surge, D., Schöne, B. R., and Milner, N.: Sclerochronology
and geochemical variation in limpet shells (Patella vulgata): A new archive to reconstruct coastal sea surface temperature, Geochem. Geophy. Geosy., 8, Q07001,
https://doi.org/10.1029/2006GC001488, 2007.
Füllenbach, C. S., Schöne, B. R., and Mertz-Kraus., R.:
Strontium/lithium ratio in shells of Cerastoderma edule (Bivalvia) – A new potential temperature proxy for brackish environments, Chem. Geol., 417, 341–355, https://doi.org/10.1016/j.chemgeo.2015.10.030, 2015.
Funnell, B. M.: Plio-Pleistocene palaeogeography of the southern North Sea
Basin (3.75–0.60 Ma), Quaternary Sci. Rev., 15, 391–405, https://doi.org/10.1016/0277-3791(96)00022-4, 1996.
Gaemers, P. A. M.: Enkele paleo-ecologische opmerkingen over de Pliocene
afzettingen in de tunnelput nabij Kallo, België, provincie
Oost-Vlaanderen. Deel 2, Mededelingen van de Werkgroep voor Tertiare en
Kwartaire Geologie, 12, 43–49, 1975.
Gaemers, P. A. M. and Schwarzhans, W.: Fisch-Otolithen aus dem Pliozän
von Antwerpen (Belgien) und Ouwerkerk (Niederlande) und aus dem
Plio-Pleistozän der Westerschelde (Niederlande), Leidse Geologische
Mededelingen, 49, 207–257, 1973.
Garcia-March, J. R., Surge, D., Lees, J. M., and Kersting, D. K.: Ecological
information and water mass properties in the Mediterranean recorded by
stable isotope ratios in Pinna nobilis shells, J. Geophys. Res., 116, G02009, https://doi.org/10.1029/2010JG001461, 2011.
Gibbard, P. L. and Lewin, J.: Filling the North Sea Basin: Cenozoic sediment
sources and river styles (André Dumont medallist lecture 2014), Geol.
Belg., 19, 201–217, https://doi.org/10.20341/gb.2015.017, 2016.
Gillikin, D. P., Lorrain, A., Navez, J., Taylor, J. W., Keppens, E.,
Baeyens, W., and Dehairs, F.: Strong biological controls on ratios in aragonitic marine bivalve shells, Geochem. Geophy. Geosy., 6, Q05009, https://doi.org/10.1029/2004GC000874, 2005.
Goodwin, D. H., Schöne, B. R., and Dettman, D. L.: Resolution and
fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk
shells: Models and observations, Palaios, 18, 110–125, https://doi.org/10.1669/0883-1351(2003)18<110:RAFOOI>2.0.CO;2, 2003.
Grossman, E. L. and Ku, T.: Oxygen and carbon isotope fractionation in
biogenic aragonite: Temperature effects, Chemical Geology: Isotope Geoscience section, 59, 59–74, https://doi.org/10.1016/0009-2541(86)90044-6, 1986.
Hacquaert, N.: Palynologisch onderzoek van de cenozoische mariene zanden
(Scalidisien en Merxemian) van het Hansadok te Antwerpen,
Natuurwetenschappelijk Tijdschrift, 42, 65–112, 1960.
Harwood, A. J. P., Dennis, P. F., Marca, A. D., Pilling, G. M., and Millner,
R. S.: The oxygen isotope composition of water masses within the North Sea,
Estuar. Coast. Shelf S., 78, 353–359, https://doi.org/10.1016/j.ecss.2007.12.010, 2008.
Haywood, A. M., Sellwood, B. W., and Valdes, P. J.: Regional warming:
Pliocene (3 Ma) paleoclimate of Europe and the Mediterranean, Geology, 28,
1063–1066, 2000.
Hennissen, J. A. I., Head, M. J., De Schepper, S., and Groeneveld, J.:
Increased seasonality during the intensification of Northern Hemisphere
glaciation at the Pliocene-Pleistocene boundary ∼2.6 Ma,
Quaternary Sci. Rev., 129, 321–332,
https://doi.org/10.1016/j.quascirev.2015.10.010, 2015.
Hennissen, J. A. I., Head, M. J., De Schepper, S., and Groeneveld, J.:
Dinoflagellate cyst paleoecology during the Pliocene–Pleistocene climatic
transition in the North Atlantic, Palaeogeogr. Palaeocl., 470, 81–108,
https://doi.org/10.1016/j.palaeo.2016.12.023, 2017.
Hickson, J. A., Johnson, A. L. A., Heaton, T. H. E., and Balson, P. S.: The
shell of the Queen Scallop Aequipecten opercularis (L.) as a promising tool for palaeoenvironmental reconstruction: evidence and reasons for equilibrium stable-isotope incorporation, Palaeogeogr. Palaeocl., 154, 325–337, https://doi.org/10.1016/S0031-0182(99)00120-0, 1999.
Hickson, J. A., Johnson, A. L. A., Heaton, T. H. E., and Balson, P. S.: Late
Holocene environment of the southern North Sea from the stable isotopic
composition of Queen Scallop shells, Palaeontol. Electron., 3, 11 pp., https://palaeo-electronica.org/2000_2/scallop/issue2_00.htm (last access: 17 May 2022), 2000.
Höche, N., Peharda, M., Walliser, E. O., and Schöne, B. R.:
Morphological variations of crossed-lamellar ultrastructures of Glycymeris bimaculata (Bivalvia) serve as a marine temperature proxy, Estuar. Coast. Shelf S., 237, 106658, https://doi.org/10.1016/j.ecss.2020.106658, 2020.
Höche, N., Walliser, E. O., de Winter, N. J., Witbaard, R., and
Schöne, B. R.: Temperature-induced microstructural changes in shells of
laboratory-grown Arctica islandica (Bivalvia), PloS ONE, 16, e0247968, https://doi.org/10.1371/journal.pone.0247968, 2021.
Howarth, M. J., Dyer, K. R., Joint, I. R., Hydes, D. J., Purdie, D. A.,
Edmunds, H., Jones, J. E., Lowry, R. K., Moffat, T. J., Pomroy, A. J., and
Proctor, R.: Seasonal cycles and their spatial variability, Philos. T. Roy.
Soc. A, 343, 383–403, https://doi.org/10.1098/rsta.1993.0054, 1993.
Huyghe, D., Emmanuel, L., de Rafelis, M., Renard, M., Ropert, M.,
Labourdette, N., and Lartaud, F.: Oxygen isotope disequilibrium in the
juvenile portion of oyster shells biases seawater temperature
reconstructions, Estuar. Coast. Shelf Sci., 240, 106777, https://doi.org/10.1016/j.ecss.2020.106777, 2020.
Huyghe, D., Daëron, M., de Rafelis, M., Blamart, D., Sébilo, M.,
Paulet, Y.-M., and Lartaud, F.: Clumped isotopes in modern marine bivalves,
Geochim. Cosmochim. Ac., 316, 41–58, https://doi.org/10.1016/j.gca.2021.09.019, 2022.
Ivany, L. C. and Judd, E. J.: Deciphering temperature seasonality in Earth's
ancient oceans, Annu. Rev. Earth Planet. Sci., 50, 123–152, https://doi.org/10.1146/annurev-earth-032320-095156, 2022.
Ivany, L. C., Wilkinson, B. H., and Jones, D. S.: Using stable isotope data
to resolve rate and duration of growth throughout ontogeny: An example from
the surf clam, Spisula solidissima, Palaios, 18, 126–137, https://doi.org/10.1669/0883-1351(2003)18<126:USIDTR>2.0.CO;2, 2003.
Ivany, L. C., Wilkinson, B. H., Lohmann, K. C., Johnson, E. R., McElroy, B.
J., and Cohen, G. J.: Intra-annual isotopic variation in Venericardia bivalves: Implications for early Eocene temperature, seasonality, and salinity on the US Gulf Coast, J. Sediment. Res., 74, 7–19, https://doi.org/10.1306/052803740007, 2004.
Johnson, A. L. A., Hickson, J. A., Bird, A., Schöne, B. R., Balson, P.
S., Heaton, T. H. E., and Williams, M.: Comparative sclerochronology of
modern and mid-Pliocene (c. 3.5 Ma) Aequipecten opercularis (Mollusca, Bivalvia): an insight into past and future climate change in the north-east Atlantic region, Palaeogeogr. Palaeocl., 284, 164–179, https://doi.org/10.1016/j.palaeo.2009.0.022, 2009.
Johnson, A. L. A., Valentine, A., Leng, M. J., Sloane, H. J., Schöne, B.
R., and Balson, P. S.: Isotopic temperatures from the Early and Mid-Pliocene
of the US Middle Atlantic Coastal Plain, and their implications for the
cause of regional marine climate change, Palaios, 32, 250–269, https://doi.org/10.2110/palo.2016.080, 2017.
Johnson, A. L. A., Valentine, A. M., Leng, M. J., Schöne, B. R., and
Sloane, H. J.: Life history, environment and extinction of the scallop
Carolinapecten eboreus (Conrad) in the Plio-Pleistocene of the US eastern seaboard, Palaios, 34, 49–70, https://doi.org/10.2110/palo.2018.056, 2019.
Johnson, A. L. A., Harper, E. M., Clarke, A., Featherstone, A. C., Heywood,
D. J., Richardson, K. E, Spink, J. O., and Thornton, L. A. H.: Growth rate,
extinction and survival amongst late Cenozoic bivalves of the North
Atlantic, Hist. Biol., 33, 802–813, https://doi.org/10.1080/08912963.2019.1663839, 2021a.
Johnson, A. L. A., Valentine, A. M., Schöne, B. R., Leng, M. J., Sloane,
H. J., and Janeković, I.: Growth-increment characteristics and isotopic
(δ18O) temperature record of sub-thermocline Aequipecten opercularis (Mollusca:Bivalvia): evidence from modern Adriatic forms and an application to early Pliocene examples from eastern England, Palaeogeogr. Palaeocl., 561, 110046, https://doi.org/10.1016/j.palaeo.2020.110046, 2021b.
Johnson, A. L. A., Valentine, A. M., Schöne, B. R., Leng, M. J., Sloane,
H. J., and Goolaerts, S.: Raw data for “Sclerochronological evidence of
pronounced seasonality from the late Pliocene of the southern North Sea
Basin, and its implications”, Version 1, Zenodo [data set], https://doi.org/10.5281/zenodo.5585630, 2021c.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475,
https://doi.org/10.1016/S0016-7037(97)00169-5, 1997.
Kim, S.-T., O'Neil, J. R., Hillaire-Marcel, C., and Mucci, A.: Oxygen isotope
fractionation between synthetic aragonite and water: Influence of
temperature and Mg2+ concentration, Geochim. Cosmochim. Ac., 71,
4704–4715, https://doi.org/10.1016/j.gca.2007.04.019, 2007.
Knowles, T., Taylor, P. D., Williams, M., Haywood, A. M., and Okamura, B.:
Pliocene seasonality across the North Atlantic inferred from cheilostome
bryozoans, Palaeogeogr. Palaeocl., 77, 226–235, https://doi.org/10.1016/j.palaeo.2009.04.006, 2009.
Krantz, D. E., Williams, D. F., and Jones, D. S.: Ecological and
paleoenvironmental information using stable isotope profiles from living and
fossil molluscs, Palaeogeogr. Palaeocl., 58, 249–266, https://doi.org/10.1016/0031-0182(87)90064-2, 1987.
Laga, P.: Stratigrafie van de mariene Plio-Pleistocene afzettingen uit de
omgeving van Antwerpen met een bijzondere studie van de foraminiferen, PhD
thesis, Katholieke Universiteit Leuven, Belgium, 252 pp., 1972.
Lane, A. and Prandle, D.: Inter-annual variability in the temperature of the
North Sea, Cont. Shelf Res., 16, 1489–1507, https://doi.org/10.1016/0278-4343(96)00001-5, 1996.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene–Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography,
20, 522–533, https://doi.org/10.1029/2004PA001071, 2005.
Lloyd, R. M.: Variations in the oxygen and carbon isotope ratios of Florida
Bay mollusks and their environmental significance, J. Geol., 72, 84–111,
1964.
Lorrain, A., Paulet, Y.-M., Chauvaud, L., Dunbar, R., Mucciarone, D., and
Fontugne, M.: δ13C variation in scallop shells: Increasing
metabolic carbon contribution with body size?, Geochim. Cosmochim. Ac., 68,
3509–3519, https://doi.org/10.1016/j.gca.2004.01.025, 2004.
Louwye, S. and De Schepper, S.: The Miocene-Pliocene hiatus in the southern
North Sea Basin (northern Belgium) revealed by dinoflagellate cysts, Geol.
Mag., 147, 760–776, https://doi.org/10.1017/S0016756810000191, 2010.
Louwye, S., Head, M. J., and De Schepper, S.: Dinoflagellate cyst
stratigraphy and palaeoecology of the Pliocene in northern Belgium, southern
North Sea Basin, Geol. Mag., 141, 353–378, https://doi.org/10.1017/S0016756804009136, 2004.
Louwye, S., Deckers, J., and Vandenberghe, N.: The Pliocene Lillo, Poederlee,
Merksplas, Mol and Kieseloolite Formations in northern Belgium: a synthesis,
Geol. Belg., 23, 297–313, https://doi.org/10.20341/gb.2020.016, 2020.
Lunt, D. J., Haywood, A. M., Schmidt, G. A., Salzmann, U., Valdes, P. J., and
Dowsett, H. J.: Earth system sensitivity inferred from Pliocene modelling
and data, Nat. Geosci., 3, 60–64, https://doi.org/10.1038/ngeo706, 2010.
Marchais, V., Richard, J., Jolivet, A., Flye-Sainte-Marie, J., Thébault,
J., Jean, F., Richard, P., Paulet, Y.-M., Clavier, J., and Chauvaud, L.:
Coupling experimental and field-based approaches to decipher carbon sources
in the shell of the great scallop, Pecten maximus (L.), Geochim. Cosmochim. Ac., 168, 58–69, https://doi.org/10.1016/j.gca.2015.07.010, 2015.
Markulin, K., Peharda, M., Mertz-Kraus, R., Schöne, B. R., Uvanović,
H., Kovač, Z., and Janeković, I.: Trace and minor element records in
aragonitic bivalve shells as environmental proxies, Chem. Geol., 507,
120–133, https://doi.org/10.1016/j.chemgeo.2019.01.008, 2019.
Marquet, R.: The Neogene Amphineura and Bivalvia (Protobranchia and
Pteriomorphia) from Kallo and Doel (Oost-Vlaanderen, Belgium), Palaeontos,
2, 1–99, 2002.
Marquet, R.: Ecology and evolution of Pliocene bivalves from the Antwerp
Basin, Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, 74, 205–212, 2004.
Marquet, R.: The Neogene Bivalvia (Heterodonta and Anomalodesmata) and
Scaphopoda from Kallo and Doel (Oost-Vlaanderen, Belgium), Palaeontos, 6,
1–142, 2005.
Marquet, R. and Herman, J.: The stratigraphy of the Pliocene in Belgium,
Palaeofocus, 2, 1–39, 2009.
Mettam, C., Johnson, A. L. A., Nunn, E. V., and Schöne, B. R.: Stable
isotope (δ18O and δ13C) sclerochronology of
Callovian (Middle Jurassic) bivalves (Gryphaea (Bilobissa) dilobotes) and belemnites (Cylindroteuthis pusoziana) from the Peterborough Member of the Oxford Clay Formation (Cambridgeshire, England): evidence of palaeoclimate, water depth and belemnite behaviour, Palaeogeogr. Palaeocl., 399, 187–201, https://doi.org/10.1016/j.palaeo.2014.01.010, 2014.
Mette, M. J., Whitney, N. M., Ballew, J., and Wanamaker, A. D.: Unexpected
isotopic variability in biogenic aragonite: A user issue or proxy problem?,
Chem. Geol., 483, 286–294, https://doi.org/10.1016/j.chemgeo.2018.02.027, 2018.
Moon, L. R., Judd, E. J., Thomas, J., and Ivany, L. C.: Out of the oven and
into the fire: Unexpected preservation of the seasonal δ18O cycle
following heating experiments on shell carbonate, Palaeogeogr. Palaeocl.,
562, 110115, https://doi.org/10.1016/j.palaeo.2020.110115, 2021.
Munsterman, D. K., ten Veen, J. H., Menkovic, A., Deckers, J., Witmans, N.,
Verhaegen, J., Kersthold-Boegehold, S. J., van de Ven, T., and Busschers, F.:
An updated and revised stratigraphic framework for the Miocene and earliest
Pliocene strata of the Roer Valley Graben and adjacent blocks, Neth. J.
Geosci., 98, E8, https://doi.org/10.1017/njg.2019.10, 2020.
Murray, J. W.: Palaeogene and Neogene, in: Atlas of Palaeogeography and
Lithofacies, edited by: Cope, J. C. W., Ingham, J. K., and Rawson, P. F.,
The Geological Society, London, UK, Memoir 13, 141–147, 1992.
Nooitgedacht, C. W., van der Lubbe, H. J. L., Ziegler, M., and Staudigel, P.
T.: Internal water facilitates thermal resetting of clumped isotopes in
biogenic aragonite, Geochem. Geophy. Geosy., 22, e2021GC009730, https://doi.org/10.1029/2021GC009730, 2021.
Norton, P. E. P.: Paleoecology of the Mollusca of the Tjörnes sequence,
Iceland, Boreas, 4, 97–110, 1975.
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K.: Oxygen isotope
fractionation in divalent metal carbonates, J. Chem. Phys., 51, 5547–5558,
1969.
Overeem, I., Weltje, G. J., Bishop-Kay, C., and Kroonenberg, S. B.: The Late
Cenozoic Eridanos delta system in the Southern North Sea Basin: a climate
signal in sediment supply?, Basin Res., 13, 293–312, https://doi.org/10.1046/j.1365-2117.2001.00151.x, 2001.
Owen, R., Kennedy, H., and Richardson, C.: Isotopic partitioning between
scallop shell calcite and seawater: Effect of shell growth rate, Geochim.
Comochim. Ac., 66, 1727–1737, https://doi.org/10.1016/S0016-7037(01)00882-1, 2002a.
Owen, R., Kennedy, H., and Richardson, C.: Experimental investigation into
partitioning of stable isotopes between scallop (Pecten maximus) shell calcite and sea water, Palaeogeogr. Palaeocl., 185, 163–174, https://doi.org/10.1016/S0031-0182(02)00297-3, 2002b.
Panitz, S., Salzmann, U., Risebrobakken, B., De Schepper, S., Pound, M. J.,
Haywood, A. M., Dolan, A. M., and Lunt, D. J.: Orbital, tectonic and
oceanographic controls on Pliocene climate and atmospheric circulation in
Arctic Norway, Global Planet. Change, 161, 183–193, https://doi.org/10.1016/j.gloplacha.2017.12.022, 2018.
Peharda, M., Crnčević, M., Bušelić, I., Richardson, C. A.,
and Ezgeta-Balić, D.: Growth and longevity of Glycymeris nummaria (Linnaeus, 1758) from the eastern Adriatic, Croatia, J. Shellfish Res., 31, 947–950, https://doi.org/10.2983/035.031.0406, 2012.
Peharda, M., Thébault, J., Markulin, K., Schöne, B. R.,
Janeković, I., and Chauvaud, L.: Contrasting shell growth strategies in
two Mediterranean bivalves revealed by oxygen-isotope ratio geochemistry:
The case of Pecten jacobaeus and Glycymeris pilosa, Chem. Geol., 526, 23–35, https://doi.org/10.1016/j.chemgeo.2017.09.029, 2019a.
Peharda, M., Walliser, E. O., Markulin, K., Purroy, A., Uvanović, H., Janeković, I., Župan, I., Vilibić, I., and Schöne, B. R.: Glycymeris pilosa (Bivalvia) – A high-potential geochemical archive of the environmental variability in the Adriatic Sea, Mar. Environ. Res., 150, 104759, https://doi.org/10.1016/j.marenvres.2019.104759, 2019b.
Raffi, S., Stanley, S. M., and Marasti, R.: Biogeographic patterns and
Plio-Pleistocene extinction of Bivalvia in the Mediterranean and southern
North Sea, Paleobiology, 11, 368–388, https://doi.org/10.1017/S0094837300011684, 1985.
Reynolds, D. J., Hall, I. R., Slater, S. M., Scourse, J. D., Halloran, P. R.,
and Sayer, M. D. J.: Reconstructing past seasonal to multicentennial-scale
variability in the NE Atlantic Ocean using the long-lived marine bivalve
mollusk Glycymeris glycymeris, Paleoceanography, 32, 1153–1173, https://doi.org/10.1002/2017PA003154, 2017.
Robinson, M. M.: New quantitative evidence of extreme warmth in the Pliocene
Arctic, Stratigraphy, 6, 265–275, 2009.
Robinson, M. M., Dowsett, H. J., Foley, K. M., and Riesselman, C. R.: PRISM
marine sites: The history of PRISM sea surface temperature estimation, U.S.
Geological Survey Open-File Report, 2018–1148, 49 pp., https://doi.org/10.3133/ofr20181148, 2018.
Royer, C., Thébault, J., Chauvaud, L., and Olivier, F.: Structural
analysis and paleoenvironmental potential of dog cockle shells (Glycymeris glycymeris) in Brittany, northwest France, Palaeogeogr. Palaeocl., 373, 123–132, https://doi.org/10.1016/j.palaeo.2012.01.033, 2013.
Schöne, B. R.: The curse of physiology–challenges and opportunities in
the interpretation of geochemical data from mollusk shells, Geo-Mar. Lett.,
28, 269–285, https://doi.org/10.1007/s00367-008-0114-6, 2008.
Schöne, B. R.: Arctica islandica (Bivalvia): A unique paleoenvironmental archive of the northern North Atlantic Ocean, Global Planet. Change, 111, 199–225, https://doi.org/10.1016/j.gloplacha.2013.09.013, 2013.
Schöne, B. R. and Fiebig, J.: Seasonality in the North Sea during the
Allerød and Late Medieval Climate Optimum using bivalve sclerochronology,
Int. J. Earth Sci., 98, 83–98, https://doi.org/10.1007/s00531-008-0363-7, 2009.
Schöne, B. R., Fiebig, J., Pfeiffer, M., Gleß, R., Hickson, J.,
Johnson, A. L. A., Dreyer, W., and Oschmann, W.: Climate records from a
bivalved Methuselah (Arctica islandica, Mollusca; Iceland), Palaeogeogr. Palaeocl., 228, 130–148, https://doi.org/10.1016/j.palaeo.2005.03.049, 2005.
Shackleton, N. J.: Attainment of isotopic equilibrium between ocean water
and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial, Colloques Internationaux du Centre National de la Recherche Scientifique, 219, 203–209, 1974.
Slupik, A. A., Wesselingh, F. P., Janse, A. C., and Reumer, J. W. F.: The
stratigraphy of the Neogene-Quaternary succession in the southwest
Netherlands from the Schelphoek borehole (42G4-11/42G0022) – a sequence
stratigraphic approach, Neth. J. Geosci., 86, 317–332, https://doi.org/10.1017/S0016774600023556, 2007,
Surge, D. and Barrett, J. H.: Marine climatic seasonality during medieval
times (10th to 12th centuries) based on isotopic records in Viking Age
shells from Orkney, Scotland, Palaeogeogr. Palaeocl., 350, 236–246,
https://doi.org/10.1016/j.palaeo.2012.07.003, 2012.
Tebble, N.: British Bivalve Seashells, 2nd edn., Her Majesty's Stationary
Office, Edinburgh, UK, 212 pp., ISBN 0 11 491401 X, 1976.
Trofimova, T., Milano, S., Andersson, C., Bonitz, F. G. W., and Schöne,
B. R.: Oxygen isotope composition of Arctica islandica aragonite in the context of shell architectural organization: Implications for paleoclimate reconstructions, Geochem. Geophy. Geosy., 19, 453–470, https://doi.org/10.1002/2017GC007239, 2018.
Ullmann, C. V., Wiechert, U., and Korte, C.: Oxygen isotope fluctuations in a
modern North Sea oyster (Crassostrea gigas) compared with annual variations in seawater
temperature: Implications for palaeoclimate studies, Chem. Geol., 270,
170–176, https://doi.org/10.1016/j.chemgeo.2010.07.019, 2010.
Valentine, A., Johnson, A. L. A., Leng, M. J., Sloane, H. J., and Balson, P.
S.: Isotopic evidence of cool winter conditions in the mid-Piacenzian
(Pliocene) of the southern North Sea Basin, Palaeogeogr. Palaeocl., 309,
9–16, https://doi.org/10.1016/j.palaeo.2011.05.015, 2011.
Vandenberghe, N., Herman, J., Laga, P., Louwye, S., De Schepper, S.,
Vandenberghe, J., Bohncke, S., and Konert, W.: The stratigraphic position of
a Pliocene tidal clay deposit at Grobbendonk (Antwerp Province, Belgium),
Geol. Belg., 3, 405–17, https://doi.org/10.20341/gb.2014.040, 2000.
Van Vliet-Lanoë, B., Vandenberghe, N., Laurent, M., Laignel, B.,
Lauriat-Rage, A., Louwey, S., Mansy, J.-L., Mercier, D., Hallégouêt,
B., Laga, P., Laquement, F., Melliez, F., Michel, Y., Mougedet, G., and
Villier, J.-P.: Palaeogeographic evolution of northwestern Europe during the
Upper Cenozoic, in: Messinia event: palaeobiological and palaeoecological
approaches: edited by: Néraudeau, D. and Goubert, É., Geodiversitas,
24, 511–541, 2002.
Vignols, R. M., Valentine, A. M., Finlayson, A. G., Harper, E. M.,
Schöne, B. R., Leng, M. J., Sloane, H. J., and Johnson, A. L. A.: Marine
climate and hydrography of the Coralline Crag (early Pliocene, UK): isotopic
evidence from 16 benthic invertebrate taxa, Chem. Geol., 536, 62–83,
https://doi.org/10.1016/j.chemgeo.2018.05.034, 2019.
Wesselingh, F. P., Busschers, F. S., and Goolaerts, S.: Observations on the
Pliocene sediments exposed at Antwerp International Airport (northern
Belgium) constrain the stratigraphic position of the Broechem fauna, Geol.
Belg., 23, 315–321, https://doi.org/10.20341/gb.2020.026, 2020.
Westaway, R., Maddy, D., and Bridgland, D.: Flow in the lower continental
crust as a mechanism for the Quaternary uplift of south-east England:
constraints from the Thames terrace record, Quaternary Sci. Rev., 21,
559–603, https://doi.org/10.1016/S0277-3791(01)00040-3, 2002.
Williams, M., Haywood, A. M., Harper, E. M., Johnson, A. L. A., Knowles, T.,
Leng, M. J., Lunt, D. J., Okamura, B., Taylor, P. D., and Zalaziewicz, J.:
Pliocene climate and seasonality in North Atlantic shelf seas, Philos. T. Roy. Soc. A, 367, 85–108, https://doi.org/10.1098/rsta.2008.0224, 2009.
Williams, M., Nelson, A. E., Smellie, J. L., Leng, M. J., Johnson, A. L. A.,
Jarram, D. R., Haywood, A. M., Peck, V. L., Zalasiewicz, J., Bennett, C., and
Schöne, B. R.: Sea ice extent and seasonality for the Early Pliocene
northern Weddell Sea determined from fossil Austrochlamys bivalves, Palaeogeogr. Palaeocl., 292, 306–318, https://doi.org/10.1016/j.palaeo.2010.04.003, 2010.
Winther, N. G. and Johannessen, J. A.: North Sea circulation: Atlantic
inflow and its destination, J. Geophys. Res., 111, C12018, https://doi.org/10.1029/2005JC003310, 2006.
Witbaard, R. and Bergman, M. J. N.: The distribution and population
structure of the bivalve Arctica islandica L. in the North Sea: what possible factors are involved?, J. Sea Res., 50, 11–25, https://doi.org/10.1016/S1385-1101(03)00039-X, 2003.
Wood, A. M., Wilkinson, I. P., Maybury, C. A., and Whatley, R. C.: Neogene,
in: Ostracods in British Stratigraphy, edited by: Whittaker, J. E. and Hart,
M. B., Spec. Publ., The Micropalaeontological Society, The Geological
Society, London, UK, 411–446, ISSN 1747-602X, 2009.
Wood, A. M., Whatley, R. C., Cronin, T., and Holtz, T.: Pliocene palaeotemperature reconstruction for the southern North Sea based on Ostracoda, Quaternary Sci. Rev., 12, 747–767, https://doi.org/10.1016/0277-3791(93)90015-E, 1993.
Zhang, Z., Li, X., Guo, C., Otterå, O. H., Nisancioglu, K. H., Tan, N., Contoux, C., Ramstein, G., Feng, R., Otto-Bliesner, B. L., Brady, E., Chandan, D., Peltier, W. R., Baatsen, M. L. J., von der Heydt, A. S., Weiffenbach, J. E., Stepanek, C., Lohmann, G., Zhang, Q., Li, Q., Chandler, M. A., Sohl, L. E., Haywood, A. M., Hunter, S. J., Tindall, J. C., Williams, C., Lunt, D. J., Chan, W.-L., and Abe-Ouchi, A.: Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2, Clim. Past, 17, 529–543, https://doi.org/10.5194/cp-17-529-2021, 2021.
Short summary
Determining seasonal temperatures demands proxies that record the highest and lowest temperatures over the annual cycle. Many record neither, but oxygen isotope profiles from shells in principle record both. Oxygen isotope data from late Pliocene bivalve molluscs of the southern North Sea basin show that the seasonal temperature range was at times much higher than previously estimated and higher than now. This suggests reduced oceanic heat supply, in contrast to some previous interpretations.
Determining seasonal temperatures demands proxies that record the highest and lowest...