Articles | Volume 18, issue 5
https://doi.org/10.5194/cp-18-1109-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-1109-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Expression of the “4.2 ka event” in the southern Rocky Mountains, USA
David T. Liefert
CORRESPONDING AUTHOR
Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA
Bryan N. Shuman
Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA
Related authors
No articles found.
Bryan N. Shuman
Clim. Past, 20, 1703–1720, https://doi.org/10.5194/cp-20-1703-2024, https://doi.org/10.5194/cp-20-1703-2024, 2024
Short summary
Short summary
A gap in understanding climate variation exists at centennial to millennial scales, particularly for warm climates. Such variations challenge detection. They exceed direct observation but are geologically short. Centennial to millennial variations that may have influenced North America were examined over the past 7 kyr. Significant patterns were detected from fossil pollen and sedimentary lake level changes, indicating ecological, hydrological, and likely human significance.
Andria Dawson, John W. Williams, Marie-José Gaillard, Simon J. Goring, Behnaz Pirzamanbein, Johan Lindstrom, R. Scott Anderson, Andrea Brunelle, David Foster, Konrad Gajewski, Dan G. Gavin, Terri Lacourse, Thomas A. Minckley, Wyatt Oswald, Bryan Shuman, and Cathy Whitlock
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-6, https://doi.org/10.5194/cp-2024-6, 2024
Preprint under review for CP
Short summary
Short summary
Holocene vegetation-atmosphere interactions provide insight into intensifying land use impacts and the Holocene Conundrum- a mismatch between data- and model- inferred temperature. Using pollen records and statistical modeling, we reconstruct Holocene land cover for North America. We determine patterns and magnitudes of land cover changes across scales. We attribute land cover changes to ecological, climatic, and human drivers. These reconstructions provide benchmarks for Earth System Models.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Bryan N. Shuman, Cody Routson, Nicholas McKay, Sherilyn Fritz, Darrell Kaufman, Matthew E. Kirby, Connor Nolan, Gregory T. Pederson, and Jeannine-Marie St-Jacques
Clim. Past, 14, 665–686, https://doi.org/10.5194/cp-14-665-2018, https://doi.org/10.5194/cp-14-665-2018, 2018
Short summary
Short summary
A synthesis of 93 published records reveals that moisture availability increased over large portions of North America over the past 2000 years, the Common Era (CE). In many records, the second millennium CE tended to be wetter than the first millennium CE. The long-term changes formed the background for annual to multi-decade variations, such as "mega-droughts", and also provide a context for amplified rates of hydrologic change today.
Jennifer R. Marlon, Neil Pederson, Connor Nolan, Simon Goring, Bryan Shuman, Ann Robertson, Robert Booth, Patrick J. Bartlein, Melissa A. Berke, Michael Clifford, Edward Cook, Ann Dieffenbacher-Krall, Michael C. Dietze, Amy Hessl, J. Bradford Hubeny, Stephen T. Jackson, Jeremiah Marsicek, Jason McLachlan, Cary J. Mock, David J. P. Moore, Jonathan Nichols, Dorothy Peteet, Kevin Schaefer, Valerie Trouet, Charles Umbanhowar, John W. Williams, and Zicheng Yu
Clim. Past, 13, 1355–1379, https://doi.org/10.5194/cp-13-1355-2017, https://doi.org/10.5194/cp-13-1355-2017, 2017
Short summary
Short summary
To improve our understanding of paleoclimate in the northeastern (NE) US, we compiled data from pollen, tree rings, lake levels, testate amoeba from bogs, and other proxies from the last 3000 years. The paleoclimate synthesis supports long-term cooling until the 1800s and reveals an abrupt transition from wet to dry conditions around 550–750 CE. Evidence suggests the region is now becoming warmer and wetter, but more calibrated data are needed, especially to capture multidecadal variability.
Related subject area
Subject: Continental Surface Processes | Archive: Terrestrial Archives | Timescale: Holocene
Holocene environmental and climate evolution of central west Patagonia as reconstructed from lacustrine sediments of Meseta Chile Chico (46.5° S, Chile)
Moss kill dates and modeled summer temperature track episodic snowline lowering and ice cap expansion in Arctic Canada through the Common Era
Missing sea level rise in southeastern Greenland during and since the Little Ice Age
Reconstructing burnt area during the Holocene: an Iberian case study
Arctic glaciers and ice caps through the Holocene:a circumpolar synthesis of lake-based reconstructions
Stalagmite carbon isotopes suggest deglacial increase in soil respiration in western Europe driven by temperature change
Climate-driven desertification and its implications for the ancient Silk Road trade
Diatom-oxygen isotope record from high-altitude Lake Petit (2200 m a.s.l.) in the Mediterranean Alps: shedding light on a climatic pulse at 4.2 ka
Episodic Neoglacial expansion and rapid 20th century retreat of a small ice cap on Baffin Island, Arctic Canada, and modeled temperature change
Climate trends in northern Ontario and Québec from borehole temperature profiles
Interactions between climate change and human activities during the early to mid-Holocene in the eastern Mediterranean basins
Laurentide Ice Sheet basal temperatures during the last glacial cycle as inferred from borehole data
Evidence of a prolonged drought ca. 4200 yr BP correlated with prehistoric settlement abandonment from the Gueldaman GLD1 Cave, Northern Algeria
Glacier response to North Atlantic climate variability during the Holocene
Climatic variability and human impact during the last 2000 years in western Mesoamerica: evidence of late Classic (AD 600–900) and Little Ice Age drought events
Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives
Numerical studies on the Impact of the Last Glacial Cycle on recent borehole temperature profiles: implications for terrestrial energy balance
Holocene climate change, permafrost and cryogenic carbonate formation: insights from a recently deglaciated, high-elevation cave in the Austrian Alps
Late Glacial–Holocene climatic transition record at the Argentinian Andean piedmont between 33 and 34° S
Holocene changes in African vegetation: tradeoff between climate and water availability
Orbital changes, variation in solar activity and increased anthropogenic activities: controls on the Holocene flood frequency in the Lake Ledro area, Northern Italy
Mass-movement and flood-induced deposits in Lake Ledro, southern Alps, Italy: implications for Holocene palaeohydrology and natural hazards
A Late Glacial to Holocene record of environmental change from Lake Dojran (Macedonia, Greece)
Bunker Cave stalagmites: an archive for central European Holocene climate variability
Temperature variability at Dürres Maar, Germany during the Migration Period and at High Medieval Times, inferred from stable carbon isotopes of Sphagnum cellulose
Carolina Franco, Antonio Maldonado, Christian Ohlendorf, A. Catalina Gebhardt, María Eugenia de Porras, Amalia Nuevo-Delaunay, César Méndez, and Bernd Zolitschka
Clim. Past, 20, 817–839, https://doi.org/10.5194/cp-20-817-2024, https://doi.org/10.5194/cp-20-817-2024, 2024
Short summary
Short summary
We present a continuous record of lake sediments spanning the Holocene from central west Patagonia. By examining various indicators like elemental composition and grain size data, we found that, around ~5500 years ago, the way sediments settled in the lake changed. On a regional scale, our results suggest that rainfall, influenced by changes in the Southern Hemisphere Westerly Winds, played a key role in shaping the environment of the region for the past ~10 000 years.
Gifford H. Miller, Simon L. Pendleton, Alexandra Jahn, Yafang Zhong, John T. Andrews, Scott J. Lehman, Jason P. Briner, Jonathan H. Raberg, Helga Bueltmann, Martha Raynolds, Áslaug Geirsdóttir, and John R. Southon
Clim. Past, 19, 2341–2360, https://doi.org/10.5194/cp-19-2341-2023, https://doi.org/10.5194/cp-19-2341-2023, 2023
Short summary
Short summary
Receding Arctic ice caps reveal moss killed by earlier ice expansions; 186 moss kill dates from 71 ice caps cluster at 250–450, 850–1000 and 1240–1500 CE and continued expanding 1500–1880 CE, as recorded by regions of sparse vegetation cover, when ice caps covered > 11 000 km2 but < 100 km2 at present. The 1880 CE state approached conditions expected during the start of an ice age; climate models suggest this was only reversed by anthropogenic alterations to the planetary energy balance.
Sarah A. Woodroffe, Leanne M. Wake, Kristian K. Kjeldsen, Natasha L. M. Barlow, Antony J. Long, and Kurt H. Kjær
Clim. Past, 19, 1585–1606, https://doi.org/10.5194/cp-19-1585-2023, https://doi.org/10.5194/cp-19-1585-2023, 2023
Short summary
Short summary
Salt marsh in SE Greenland records sea level changes over the past 300 years in sediments and microfossils. The pattern is rising sea level until ~ 1880 CE and sea level fall since. This disagrees with modelled sea level, which overpredicts sea level fall by at least 0.5 m. This is the same even when reducing the overall amount of Greenland ice sheet melt and allowing for more time. Fitting the model to the data leaves ~ 3 mm yr−1 of unexplained sea level rise in SE Greenland since ~ 1880 CE.
Yicheng Shen, Luke Sweeney, Mengmeng Liu, Jose Antonio Lopez Saez, Sebastián Pérez-Díaz, Reyes Luelmo-Lautenschlaeger, Graciela Gil-Romera, Dana Hoefer, Gonzalo Jiménez-Moreno, Heike Schneider, I. Colin Prentice, and Sandy P. Harrison
Clim. Past, 18, 1189–1201, https://doi.org/10.5194/cp-18-1189-2022, https://doi.org/10.5194/cp-18-1189-2022, 2022
Short summary
Short summary
We present a method to reconstruct burnt area using a relationship between pollen and charcoal abundances and the calibration of charcoal abundance using modern observations of burnt area. We use this method to reconstruct changes in burnt area over the past 12 000 years from sites in Iberia. We show that regional changes in burnt area reflect known changes in climate, with a high burnt area during warming intervals and low burnt area when the climate was cooler and/or wetter than today.
Laura J. Larocca and Yarrow Axford
Clim. Past, 18, 579–606, https://doi.org/10.5194/cp-18-579-2022, https://doi.org/10.5194/cp-18-579-2022, 2022
Short summary
Short summary
This paper synthesizes 66 records of glacier variations over the Holocene from lake archives across seven Arctic regions. We find that summers only moderately warmer than today drove major environmental change across the Arctic in the early Holocene, including the widespread loss of glaciers. In comparison, future projections of Arctic temperature change far exceed estimated early Holocene values in most locations, portending the eventual loss of most of the Arctic's small glaciers.
Franziska A. Lechleitner, Christopher C. Day, Oliver Kost, Micah Wilhelm, Negar Haghipour, Gideon M. Henderson, and Heather M. Stoll
Clim. Past, 17, 1903–1918, https://doi.org/10.5194/cp-17-1903-2021, https://doi.org/10.5194/cp-17-1903-2021, 2021
Short summary
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Guanghui Dong, Leibin Wang, David Dian Zhang, Fengwen Liu, Yifu Cui, Guoqiang Li, Zhilin Shi, and Fahu Chen
Clim. Past, 17, 1395–1407, https://doi.org/10.5194/cp-17-1395-2021, https://doi.org/10.5194/cp-17-1395-2021, 2021
Short summary
Short summary
A compilation of the results of absolute dating and high-resolution paleoclimatic records from the Xishawo site in the Dunhuang area and historical archives reveals that two desertification events occurred at ~ 800–600 BCE and ~ 1450 CE. The later desertification event was consistent with the immediate fall in tribute trade that occurred in ~ 1450 CE, which indicates that climate change played a potentially important role in explaining the decline of the Ancient Silk Road trade.
Rosine Cartier, Florence Sylvestre, Christine Paillès, Corinne Sonzogni, Martine Couapel, Anne Alexandre, Jean-Charles Mazur, Elodie Brisset, Cécile Miramont, and Frédéric Guiter
Clim. Past, 15, 253–263, https://doi.org/10.5194/cp-15-253-2019, https://doi.org/10.5194/cp-15-253-2019, 2019
Short summary
Short summary
A major environmental change, 4200 years ago, was recorded in the lacustrine sediments of Lake Petit (Mediterranean Alps). The regime shift was described by a modification in erosion processes in the watershed and aquatic species in the lake. This study, based on the analysis of the lake water balance by using oxygen isotopes in diatoms, revealed that these environmental responses were due to a rapid change in precipitation regime, lasting ca. 500 years.
Simon L. Pendleton, Gifford H. Miller, Robert A. Anderson, Sarah E. Crump, Yafang Zhong, Alexandra Jahn, and Áslaug Geirsdottir
Clim. Past, 13, 1527–1537, https://doi.org/10.5194/cp-13-1527-2017, https://doi.org/10.5194/cp-13-1527-2017, 2017
Short summary
Short summary
Recent warming in the high latitudes has prompted the accelerated retreat of ice caps and glaciers, especially in the Canadian Arctic. Here we use the radiocarbon age of preserved plants being exposed by shrinking ice caps that once entombed them. These ages help us to constrain the timing and magnitude of climate change on southern Baffin Island over the past ~ 2000 years. Our results show episodic cooling up until ~ 1900 CE, followed by accelerated warming through present.
Carolyne Pickler, Hugo Beltrami, and Jean-Claude Mareschal
Clim. Past, 12, 2215–2227, https://doi.org/10.5194/cp-12-2215-2016, https://doi.org/10.5194/cp-12-2215-2016, 2016
Short summary
Short summary
The ground surface temperature histories of the past 500 years were reconstructed at 10 sites in northern Ontario and Quebec. The regions experienced a warming of ~1–2 K for the past 150 years, agreeing with borehole reconstructions for southern Ontario and Quebec and proxy data. Permafrost maps locate the sites in a region of discontinuous permafrost but our reconstructions suggest that the potential for permafrost was minimal to absent over the past 500 years.
Jean-Francois Berger, Laurent Lespez, Catherine Kuzucuoğlu, Arthur Glais, Fuad Hourani, Adrien Barra, and Jean Guilaine
Clim. Past, 12, 1847–1877, https://doi.org/10.5194/cp-12-1847-2016, https://doi.org/10.5194/cp-12-1847-2016, 2016
Short summary
Short summary
This paper focuses on early Holocene rapid climate changes in the Mediterranean zone, which are under-represented in continental archives, and on their impact on prehistoric societies from the eastern to central Mediterranean (central Anatolia, Cyprus, NE and NW Greece). Our study demonstrates the reality of hydrogeomorphological responses to early Holocene RCCs in valleys and alluvial fans and lake–marsh systems. We finally question their socio-economic and geographical adaptation capacities.
C. Pickler, H. Beltrami, and J.-C. Mareschal
Clim. Past, 12, 115–127, https://doi.org/10.5194/cp-12-115-2016, https://doi.org/10.5194/cp-12-115-2016, 2016
J. Ruan, F. Kherbouche, D. Genty, D. Blamart, H. Cheng, F. Dewilde, S. Hachi, R. L. Edwards, E. Régnier, and J.-L. Michelot
Clim. Past, 12, 1–14, https://doi.org/10.5194/cp-12-1-2016, https://doi.org/10.5194/cp-12-1-2016, 2016
N. L. Balascio, W. J. D'Andrea, and R. S. Bradley
Clim. Past, 11, 1587–1598, https://doi.org/10.5194/cp-11-1587-2015, https://doi.org/10.5194/cp-11-1587-2015, 2015
Short summary
Short summary
Sediment cores were collected from a lake that captures runoff from two glaciers in Greenland. Our analysis of the sediments shows that these glaciers were active over the last 9,000 years and advanced and retreated in response to regional climate changes. The data also provide a long-term perspective on the rate of 20th century glacier retreat and indicate that recent anthropogenic-driven warming has already impacted the regional cryosphere in a manner outside the range of natural variability.
A. Rodríguez-Ramírez, M. Caballero, P. Roy, B. Ortega, G. Vázquez-Castro, and S. Lozano-García
Clim. Past, 11, 1239–1248, https://doi.org/10.5194/cp-11-1239-2015, https://doi.org/10.5194/cp-11-1239-2015, 2015
Short summary
Short summary
We present results from western Mexico, where very few palaeoclimatic research sites exist. The record has good chronological resolution (ca. 20 years) and clear climatic trends during the last 2ka. The most important signals are: dry conditions during the late Classic (AD 500 to 1000), especially from AD 600 to 800, and low lake levels during the LIA, in two phases that follow Spörer and Maunder solar minima. Drier conditions are related with a lower intensity of the North American monsoon.
S. Albani, N. M. Mahowald, G. Winckler, R. F. Anderson, L. I. Bradtmiller, B. Delmonte, R. François, M. Goman, N. G. Heavens, P. P. Hesse, S. A. Hovan, S. G. Kang, K. E. Kohfeld, H. Lu, V. Maggi, J. A. Mason, P. A. Mayewski, D. McGee, X. Miao, B. L. Otto-Bliesner, A. T. Perry, A. Pourmand, H. M. Roberts, N. Rosenbloom, T. Stevens, and J. Sun
Clim. Past, 11, 869–903, https://doi.org/10.5194/cp-11-869-2015, https://doi.org/10.5194/cp-11-869-2015, 2015
Short summary
Short summary
We propose an innovative framework to organize paleodust records, formalized in a publicly accessible database, and discuss the emerging properties of the global dust cycle during the Holocene by integrating our analysis with simulations performed with the Community Earth System Model. We show how the size distribution of dust is intrinsically related to the dust mass accumulation rates and that only considering a consistent size range allows for a consistent analysis of the global dust cycle.
H. Beltrami, G. S. Matharoo, L. Tarasov, V. Rath, and J. E. Smerdon
Clim. Past, 10, 1693–1706, https://doi.org/10.5194/cp-10-1693-2014, https://doi.org/10.5194/cp-10-1693-2014, 2014
C. Spötl and H. Cheng
Clim. Past, 10, 1349–1362, https://doi.org/10.5194/cp-10-1349-2014, https://doi.org/10.5194/cp-10-1349-2014, 2014
A. E. Mehl and M. A. Zárate
Clim. Past, 10, 863–875, https://doi.org/10.5194/cp-10-863-2014, https://doi.org/10.5194/cp-10-863-2014, 2014
C. Hély, A.-M. Lézine, and APD contributors
Clim. Past, 10, 681–686, https://doi.org/10.5194/cp-10-681-2014, https://doi.org/10.5194/cp-10-681-2014, 2014
B. Vannière, M. Magny, S. Joannin, A. Simonneau, S. B. Wirth, Y. Hamann, E. Chapron, A. Gilli, M. Desmet, and F. S. Anselmetti
Clim. Past, 9, 1193–1209, https://doi.org/10.5194/cp-9-1193-2013, https://doi.org/10.5194/cp-9-1193-2013, 2013
A. Simonneau, E. Chapron, B. Vannière, S. B. Wirth, A. Gilli, C. Di Giovanni, F. S. Anselmetti, M. Desmet, and M. Magny
Clim. Past, 9, 825–840, https://doi.org/10.5194/cp-9-825-2013, https://doi.org/10.5194/cp-9-825-2013, 2013
A. Francke, B. Wagner, M. J. Leng, and J. Rethemeyer
Clim. Past, 9, 481–498, https://doi.org/10.5194/cp-9-481-2013, https://doi.org/10.5194/cp-9-481-2013, 2013
J. Fohlmeister, A. Schröder-Ritzrau, D. Scholz, C. Spötl, D. F. C. Riechelmann, M. Mudelsee, A. Wackerbarth, A. Gerdes, S. Riechelmann, A. Immenhauser, D. K. Richter, and A. Mangini
Clim. Past, 8, 1751–1764, https://doi.org/10.5194/cp-8-1751-2012, https://doi.org/10.5194/cp-8-1751-2012, 2012
R. Moschen, N. Kühl, S. Peters, H. Vos, and A. Lücke
Clim. Past, 7, 1011–1026, https://doi.org/10.5194/cp-7-1011-2011, https://doi.org/10.5194/cp-7-1011-2011, 2011
Cited articles
Adams, W. P. and Lasenby, D. C.: The Roles of Snow, Lake Ice and Lake Water
in the Distribution of Major Ions in
the Ice Cover of a Lake, Ann. Glaciol., 7, 202–207,
https://doi.org/10.3189/s0260305500006170, 1985.
Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C., and
Clark, P. U.: Holocene climatic
instability: A prominent, widespread event 8200 yr ago, Geology, 25,
483–486, https://doi.org/10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2, 1997.
Anderson, L.: Holocene record of precipitation seasonality from lake calcite
δ18O in the central Rocky Mountains,
United States, Geology, 39, 211–214, https://doi.org/10.1130/G31575.1,
2011.
Anderson, L.: Rocky Mountain hydroclimate: Holocene variability and the role
of insolation, ENSO, and the North
American Monsoon, Global Planet. Change, 92–93, 198–208,
https://doi.org/10.1016/j.gloplacha.2012.05.012, 2012.
Anderson, L., Berkelhammer, M., Barron, J. A., Steinman, B. A., Finney, B.
P., and Abbott, M. B.: Lake oxygen
isotopes as recorders of North American Rocky Mountain hydroclimate:
Holocene patterns and variability at multi-decadal to millennial time
scales, Global Planet. Change, 137, 131–148,
https://doi.org/10.1016/j.gloplacha.2015.12.021, 2016.
Anderson, R. S., Allen, C. D., Toney, J. L., Jass, R. B., and Bair, A. N.:
Holocene vegetation and fire regimes in
subalpine and mixed conifer forests, southern Rocky Mountains, USA, Int. J.
Wildland Fire, 17, 96–114, https://doi.org/10.1071/WF07028, 2008.
Arz, H. W., Lamy, F., and Pätzold, J.: A pronounced dry event recorded
around 4.2 ka in brine sediments from the
northern Red Sea, Quaternary Res., 66, 432–441,
https://doi.org/10.1016/j.yqres.2006.05.006, 2006.
Ault, T. R., George, S. S., Smerdon, J. E., Coats, S., Mankin, J. S.,
Carrillo, C. M., Cook, B. I., and Stevensong, S.:
A robust null hypothesis for the potential causes of megadrought in Western
North America, J. Climate, 31, 3–24,
https://doi.org/10.1175/JCLI-D-17-0154.1, 2018.
Bello, R. and Smith, J. D.: The Effect of Weather Variability on the Energy
Balance of a Lake in the Hudson Bay
Lowlands, Canada, INSTAAR, Univ. Color., 22, 98–107, 1990.
Bini, M., Zanchetta, G., Perşoiu, A., Cartier, R., Català, A., Cacho, I., Dean, J. R., Di Rita, F., Drysdale, R. N., Finnè, M., Isola, I., Jalali, B., Lirer, F., Magri, D., Masi, A., Marks, L., Mercuri, A. M., Peyron, O., Sadori, L., Sicre, M.-A., Welc, F., Zielhofer, C., and Brisset, E.: The 4.2 ka BP Event in the Mediterranean region: an overview, Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, 2019.
Booth, R. K., Jackson, S. T., Forman, S. L., Kutzbach, J. E., Bettis, E. A.,
Kreig, J., and Wright, D. K.: A severe
centennial-scale drought in mid-continental North America 4200 years ago and
apparent global linkages, Holocene, 15, 321–328,
https://doi.org/10.1191/0959683605hl825ft, 2005.
Bradley, R. S. and Bakke, J.: Is there evidence for a 4.2 ka BP event in the northern North Atlantic region?, Clim. Past, 15, 1665–1676, https://doi.org/10.5194/cp-15-1665-2019, 2019.
Brunelle, A., Minckley, T. A., Lips, E., and Burnett, P.: A record of
Lateglacial/Holocene environmental change
from a high-elevation site in the Intermountain West, USA, J. Quaternary Sci.,
28, 103–112, https://doi.org/10.1002/jqs.2600, 2013.
Carter, V. A., Brunelle, A., Minckley, T. A., Dennison, P. E., and Power, M.
J.: Regionalization of fire regimes in
the Central Rocky Mountains, USA, Quaternary Res., 80, 406–416,
https://doi.org/10.1016/j.yqres.2013.07.009, 2013.
Carter, V. A., Brunelle, A., Minckley, T. A., Shaw, J. D., DeRose, R. J., and Brewer, S.: Climate variability and fire effects on quaking aspen in the central Rocky Mountains, USA, J. Biogeogr., 44, 1280–1293, https://doi.org/10.1111/jbi.12932, 2017.
Carter, V. A., Shinker, J. J., and Preece, J.: Drought and vegetation change in the central Rocky Mountains and western Great Plains: potential climatic mechanisms associated with megadrought conditions at 4200 cal yr BP, Clim. Past, 14, 1195–1212, https://doi.org/10.5194/cp-14-1195-2018, 2018.
Clark, P. U., Webb, R. S., and Keigwin, L. D.: Mechanisms of global climate
change at millennial time scales, American Geophysical Union, Washington, DC, ISBN 978-1-118-66474-2, https://doi.org/10.1029/GM112, 1999.
Dean, J. R., Jones, M. D., Leng, M. J., Noble, S. R., Metcalfe, S. E.,
Sloane, H. J., Sahy, D., Eastwood, W. J., and
Roberts, C. N.: Eastern Mediterranean hydroclimate over the late glacial and
Holocene, reconstructed from the sediments of Nar lake, central Turkey,
using stable isotopes and carbonate mineralogy, Quaternary Sci. Rev., 124,
162–174, https://doi.org/10.1016/j.quascirev.2015.07.023, 2015.
Dean, W. E.: Rates, timing, and cyclicity of Holocene eolian activity in
north-central United States: Evidence from
varved lake sediments, Geology, 25, 331–334,
https://doi.org/10.1130/0091-7613(1997)025<0331:RTACOH>2.3.CO;2, 1997.
Dean, W. E.: The carbon cycle and biogeochemical dynamics in lake sediments,
J. Paleolimnol., 21, 375–393,
https://doi.org/10.1023/A:1008066118210, 1999.
Deininger, M., McDermott, F., Mudelsee, M., Werner, M., Frank, N., and
Mangini, A.: Coherency of late Holocene
European speleothem δ18O records linked to North Atlantic Ocean
circulation, Clim. Dynam., 49, 595–618,
https://doi.org/10.1007/s00382-016-3360-8, 2017.
Denniston, R. F., Gonzalez, L. A., Baker, R. G., Asmerom, Y., Reagan, M. K., Edwards, R. L., and Alexander, E. C.: Speleothem evidence for Holocene fluctuations of the prairie-forest ecotone, Holocene 6, 671–676, 1992
Di Rita, F. and Magri, D.: The 4.2 ka event in the vegetation record of the central Mediterranean, Clim. Past, 15, 237–251, https://doi.org/10.5194/cp-15-237-2019, 2019.
Drummond, C. N., Patterson, W. P., and Walker, J. C. G.: Climatic forcing of
carbon-oxygen isotopic covariance in
temperate-region marl lakes, Geology, 23, 1031–1034, https://doi.org/10.1130/0091-7613(1995)023<1031:cfocoi>2.3.co;2, 1995.
Feiler, E. J., Scott, R., and Koehler, A.: Late Quaternary Paleoenvironments
of the White River Plateau, Colorado, U.S.A., Arctic Alpine Res., 29, 53–62, http://www.jstor.org/stable/1551836 (last access: June 2021), 1997.
Forman, S. L., Oglesby, R., and Webb, R. S.: Temporal and spatial patterns
of Holocene dune activity on the Great
Plains of North America: Megadroughts and climate links, Glob. Planet.
Change, 29, 1–29, https://doi.org/10.1016/S0921-8181(00)00092-8, 2001.
Fronval, T., Jensen, N. B., and Buchardt, B.: Oxygen isotope disequilibrium
precipitation of calcite in Lake Arreso,
Denmark, Geology, 23, 463–466, https://doi.org/10.1130/0091-7613(1995)023<0463:OIDPOC>2.3.CO;2, 1995.
Gibson, J. J., Birks, S. J., Yi, Y., Moncur, M. C., and McEachern, P. M.:
Stable isotope mass balance of fifty lakes
in central Alberta: Assessing the role of water balance parameters in
determining trophic status and lake level, J. Hydrol. Reg. Stud., 6, 13–25,
https://doi.org/10.1016/j.ejrh.2016.01.034, 2016.
Halfen, A. F. and Johnson, W. C.: A review of Great Plains dune field
chronologies, Aeolian Res., 10, 135–160,
https://doi.org/10.1016/j.aeolia.2013.03.001, 2013.
Halfen, A. F., Fredlund, G. G., and Mahan, S. A.: Holocene stratigraphy and
chronology of the Casper Dune Field,
Casper, Wyoming, USA, Holocene, 20, 773–783,
https://doi.org/10.1177/0959683610362812, 2010.
Henderson, A. K. and Shuman, B. N.: Hydrogen and oxygen isotopic
compositions of lake water in the western
United States, Geol. Soc. Am. Bull., 121, 1179–1189,
https://doi.org/10.1130/B26441.1, 2009.
Holmes, J. A. and Chivas, A. R.: Ostracod shell chemistry – overview,
Geophys. Un. Geophys. Monogr. Ser.,
131, 185–204, 2002.
Houston, R. S. and Karlstrom, K. E.: Geologic map of Precambrian metasedimentary rocks of the Medicine Bow Mountains, Albany and Carbon counties, Wyoming, U.S. Geol. Surv. Misc. Investig. Map, I-2280. Sc, https://doi.org/10.3133/i2280, 1992.
Huang, C. C., Pang, J., Zha, X., Su, H., and Jia, Y.: Extraordinary floods
related to the climatic event at 4200 a BP
on the Qishuihe River, middle reaches of the Yellow River, China, Quaternary Sci.
Rev., 30, 460–468, https://doi.org/10.1016/j.quascirev.2010.12.007, 2011.
Jalali, B., Sicre, M.-A., Azuara, J., Pellichero, V., and Combourieu-Nebout, N.: Influence of the North Atlantic subpolar gyre circulation on the 4.2 ka BP event, Clim. Past, 15, 701–711, https://doi.org/10.5194/cp-15-701-2019, 2019.
Jiménez-Moreno, G., Anderson, R. S., Shuman, B. N., and Yackulic, E.:
Forest and lake dynamics in response to
temperature, North American monsoon and ENSO variability during the Holocene
in Colorado (USA), Quaternary Sci. Rev., 211, 59–72,
https://doi.org/10.1016/j.quascirev.2019.03.013, 2019.
Johnson, B. G., Jiménez-Moreno, G., Eppes, M. C., Diemer, J. A., and
Stone, J. R.: A multiproxy record of
postglacial climate variability from a shallowing, 12-m deep sub-alpine bog
in the southeastern San Juan Mountains of Colorado, USA, Holocene, 23, 1028–1038,
https://doi.org/10.1177/0959683613479682, 2013.
Kahle, D. and Wickham, H.: ggmap: Spatial Visualization with ggplot2, R J.,
5, 144–161, 2013.
Konecky, B. L., McKay, N. P., Churakova (Sidorova), O. V., Comas-Bru, L., Dassié, E. P., DeLong, K. L., Falster, G. M., Fischer, M. J., Jones, M. D., Jonkers, L., Kaufman, D. S., Leduc, G., Managave, S. R., Martrat, B., Opel, T., Orsi, A. J., Partin, J. W., Sayani, H. R., Thomas, E. K., Thompson, D. M., Tyler, J. J., Abram, N. J., Atwood, A. R., Cartapanis, O., Conroy, J. L., Curran, M. A., Dee, S. G., Deininger, M., Divine, D. V., Kern, Z., Porter, T. J., Stevenson, S. L., von Gunten, L., and Iso2k Project Members: The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate, Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, 2020.
Lamb, H. F., Leng, M. J., Telford, R. J., Ayenew, T., and Umer, M.: Oxygen
and carbon isotope composition of
authigenic carbonate from an Ethiopian lake: A climate record of the last
2000 years, Holocene, 17, 517–526, https://doi.org/10.1177/0959683607076452, 2007.
Leng, M. J. and Marshall, J. D.: Palaeoclimate interpretation of stable
isotope data from lake sediment archives,
Quaternary Sci. Rev., 23, 811–831,
https://doi.org/10.1016/j.quascirev.2003.06.012, 2004.
Li, Y. X., Yu, Z., and Kodama, K. P.: Sensitive moisture response to
Holocene millennial-scale climate variations in
the Mid-Atlantic region, USA, Holocene, 17, 3–8,
https://doi.org/10.1177/0959683606069386, 2007.
Liefert, D. T. and Shuman, B. N.: Highway 130 Lake, Wyoming 11,700 Year Stable Isotope and Carbonate Data, NOAA [data set], https://doi.org/10.25921/dtev-ht06, 2022.
Liefert, D. T., Shuman, B. N., Parsekian, A. D., and Mercer, J. J.: Why Are
Some Rocky Mountain Lakes
Ephemeral?, Water Resour. Res., 54, 5245–5263,
https://doi.org/10.1029/2017WR022261, 2018.
Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L., and Brewer, S.:
Reconciling divergent trends and
millennial variations in Holocene temperatures, Nature, 554, 92–96,
https://doi.org/10.1038/nature25464, 2018.
Marsicek, J. P., Shuman, B., Brewer, S., Foster, D. R., and Oswald, W. W.:
Moisture and temperature changes
associated with the mid-Holocene Tsuga decline in the northeastern United
States, Quaternary Sci. Rev., 80, 129–142,
https://doi.org/10.1016/j.quascirev.2013.09.001, 2013.
Mason, J. P., Swinehart, J. B., and Loope, D. B.: Holocene history of
lacustrine and marsh sediments in a dune
blocked drainage, Southwestern Nebraska Sand Hills, U.S.A., J. Paleolimnol.,
17, 67–83, https://doi.org/10.1023/A:1007917110965, 1997.
Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K.
A., Meeker, L. D., Meyerson, E. A., Gasse,
F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F.,
Staubwasser, M., Schneider, R. R., and Steig, E. J.: Holocene climate
variability, Quaternary Res., 62, 243–255,
https://doi.org/10.1016/j.yqres.2004.07.001, 2004.
McKay, N. P., Emile-Geay, J., and Khider, D.: geoChronR – an R package to model, analyze, and visualize age-uncertain data, Geochronology, 3, 149–169, https://doi.org/10.5194/gchron-3-149-2021, 2021.
Mensing, S., Korfmacher, J., Minckley, T., and Musselman, R.: A 15,000 year
record of vegetation and climate
change from a treeline lake in the Rocky Mountains, Wyoming, USA, Holocene, 22,
739–748, https://doi.org/10.1177/0959683611430339, 2012.
Minckley, T. A., Shriver, R. K., and Shuman, B.: Resilience and regime
change in a southern Rocky Mountain
ecosystem during the past 17 000 years TL, Ecol. Monogr., 82,
49–68, https://doi.org/10.1890/11-0283.1, 2012.
Mock, C.: Climate controls and spatial variations of precipitation in the
western United States, J. Climate, 9, 1111–1125, 1996.
Morrill, C., Meador, E., Livneh, B., Liefert, D. T., and Shuman, B. N.:
Quantitative model-data comparison of mid
Holocene lake-level change in the central Rocky Mountains, Clim. Dynam., 53, 1077–1094, https://doi.org/10.1007/s00382-019-04633-3, 2019.
Musselman, R. C., Connell, B. H., Conrad, M. A., Dufford, R. G., Fox, D. G.,
Haines, J. D., Hasfurther, V. C., Hopper, R. W. E., Humphries, H. C., Kerr, G. L., Kondratieff, B. C., Parks, G., Regan, C. M., Rochette, E. A., Schoettle, A. W., Simmons, C. L., Sommerfeld, R. A., Vertucci, F. A., Walthall, P. M., Wetstein, J., Wooldridge, G. L., and Zeller, K. F.: The Glacier Lakes Ecosystem Experiments Site, US Department of Agriculture, Forest Service, https://doi.org/10.2737/RM-GTR-249, 1992.
Nakamura, A., Yokoyama, Y., Maemoku, H., Yagi, H., Okamura, M., Matsuoka,
H., Miyake, N., Osada, T.,
Adhikari, D. P., Dangol, V., Ikehara, M., Miyairi, Y., and Matsuzaki, H.:
Weak monsoon event at 4.2 ka recorded in sediment from Lake Rara, Himalayas,
Quaternary Int., 397, 349–359, https://doi.org/10.1016/j.quaint.2015.05.053,
2016.
Newby, P. E., Shuman, B. N., Donnelly, J. P., Karnauskas, K. B., and
Marsicek, J.: Centennial-to-millennial
hydrologic trends and variability along the North Atlantic Coast, USA,
during the Holocene, Geophys. Res. Lett., 41, 4300–4307,
https://doi.org/10.1002/2014GL060183, 2014.
Nolan, C.: Using Co-Located Lake and Bog Records to Improve Inferences on Late Quaternary Climate and Ecology, University of Arizona, https://repository.arizona.edu/handle/10150/633144 (last access: June 2021), 2020.
Parnell, A. C., Haslett, J., Allen, J. R. M., Buck, C. E., and Huntley, B.:
A flexible approach to assessing
synchroneity of past events using Bayesian reconstructions of sedimentation
history, Quaternary Sci. Rev., 27, 1872–1885,
https://doi.org/10.1016/j.quascirev.2008.07.009, 2008.
Preece, J. R., Shinker, J. J., Riebe, C. S., and Minckley, T. A.: Elevation-dependent precipitation response to El Niño-Southern oscillation revealed in headwater basins of the US central Rocky Mountains, Int. J. Climatol., 21, 1199–1210, https://doi.org/10.1002/joc.6790, 2021.
Railsback, L. B., Liang, F., Brook, G. A., Voarintsoa, N. R. G., Sletten, H.
R., Marais, E., Hardt, B., Cheng, H., and
Edwards, R. L.: The timing, two-pulsed nature, and variable climatic
expression of the 4.2 ka event: A review and new high-resolution stalagmite
data from Namibia, Quaternary Sci. Rev., 186, 78–90,
https://doi.org/10.1016/j.quascirev.2018.02.015, 2018.
Ran, M. and Chen, L.: The 4.2 ka BP climatic event and its cultural
responses, Quaternary Int., 521, 158–167,
https://doi.org/10.1016/j.quaint.2019.05.030, 2019.
Rautio, A. and Korkka-Niemi, K.: Characterization of groundwater-lake water
interactions at Pyhäjärvi, a lake in
SW Finland, Boreal Environ. Res., 16, 363–380, 2011.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C.E., Cheng, H., Edwards, R. L., Friedrich, M., and Grootes, P. M.: IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Renssen, H., Goosse, H., and Muscheler, R.: Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing, Clim. Past, 2, 79–90, https://doi.org/10.5194/cp-2-79-2006, 2006.
Roberts, N., Jones, M. D., Benkaddour, A., Eastwood, W. J., Filippi, M. L.,
Frogley, M. R., Lamb, H. F., Leng, M.
J., Reed, J. M., Stein, M., Stevens, L., Valero-Garcés, B., and
Zanchetta, G.: Stable isotope records of Late Quaternary climate and
hydrology from Mediterranean lakes: the ISOMED synthesis, Quaternary Sci. Rev., 27, 2426–2441,
https://doi.org/10.1016/j.quascirev.2008.09.005, 2008.
Roland, T. P., Caseldine, C. J., Charman, D. J., Turney, C. S. M., and
Amesbury, M. J.: Was there a “4.2 ka event” in
Great Britain and Ireland? Evidence from the peatland record, Quaternary Sci.
Rev., 83, 11–27, https://doi.org/10.1016/j.quascirev.2013.10.024, 2014.
Rosenberry, D. O. and LaBaugh, J. W.: Field Techniques for Estimating Water
Fluxes Between Surface Water and
Ground Water, Report, Geological Survey (U.S.), https://doi.org/10.3133/tm4D2, 2008.
Scuderi, L. A., Yang, X., Ascoli, S. E., and Li, H.: The 4.2 ka BP Event in northeastern China: a geospatial perspective, Clim. Past, 15, 367–375, https://doi.org/10.5194/cp-15-367-2019, 2019.
Shapley, M. D., Ito, E., and Donovan, J. J.: Authigenic calcium carbonate
flux in groundwater-controlled lakes:
Implications for lacustrine paleoclimate records, Geochim. Cosmochim. Ac.,
69, 2517–2533, https://doi.org/10.1016/j.gca.2004.12.001, 2005.
Shapley, M. D., Ito, E., and Donovan, J. J.: Isotopic evolution and climate
paleorecords: Modeling boundary effects
in groundwater-dominated lakes, J. Paleolimnol., 39, 17–33,
https://doi.org/10.1007/s10933-007-9092-3, 2008.
Shinker, J. J.: Visualizing spatial heterogeneity of western U.S. climate
variability, Earth Interact., 14, 1–15,
https://doi.org/10.1175/2010EI323.1, 2010.
Shuman, B., Henderson, A. K., Colman, S. M., Stone, J. R., Fritz, S. C.,
Stevens, L. R., Power, M. J., and Whitlock,
C.: Holocene lake-level trends in the Rocky Mountains, U.S.A., Quaternary Sci.
Rev., 28, 1861–1879, https://doi.org/10.1016/j.quascirev.2009.03.003, 2009.
Shuman, B., Pribyl, P., Minckley, T. A., and Shinker, J. J.: Rapid hydrologic shifts and prolonged droughts in Rocky Mountain headwaters during the Holocene, Geophys. Res. Lett., 37, L06701, https://doi.org/10.1029/2009GL042196, 2010.
Shuman, B. N. and Burrell, S. A.: Centennial to millennial hydroclimatic
fluctuations in the humid northeast United
States during the Holocene, Quaternary Res., 88, 514–524,
https://doi.org/10.1017/qua.2017.62, 2017.
Shuman, B. N. and Serravezza, M.: Patterns of hydroclimatic change in the Rocky Mountains and surrounding regions since the last glacial maximum, Quaternary Sci. Rev., 173, 58–77, https://doi.org/10.1016/j.quascirev.2017.08.012, 2017.
Shuman, B. N., Carter, G. E., Hougardy, D. D., Powers, K., and Shinker, J.
J.: A north-south moisture dipole at
multi-century scales in the Central and Southern Rocky Mountains, U.S.A.,
during the late Holocene, Rocky Mt. Geol., 49, 33–49,
https://doi.org/10.2113/gsrocky.49.1.33, 2014.
Shuman, B. N., Pribyl, P., and Buettner, J.: Hydrologic changes in Colorado
during the mid-Holocene and Younger
Dryas, Quaternary Res., 84, 187–199,
https://doi.org/10.1016/j.yqres.2015.07.004, 2015.
Shuman, B. N., Marsicek, J., Oswald, W. W., and Foster, D. R.: Predictable
hydrological and ecological responses
to Holocene North Atlantic variability, P. Natl. Acad. Sci. USA,
116, 5985–5990, https://doi.org/10.1073/pnas.1814307116, 2019.
Steinman, B. A. and Abbott, M. B.: Isotopic and hydrologic responses of
small, closed lakes to climate variability:
Hydroclimate reconstructions from lake sediment oxygen isotope records and
mass balance models, Geochim. Cosmochim. Ac., 105, 342–359,
https://doi.org/10.1016/j.gca.2012.11.027, 2013.
Steinman, B. A., Abbott, M. B., Nelson, D. B., Stansell, N. D., Finney, B.
P., Bain, D. J., and Rosenmeier, M. F.:
Isotopic and hydrologic responses of small, closed lakes to climate
variability: Comparison of measured and modeled lake level and sediment core
oxygen isotope records, Geochim. Cosmochim. Ac., 105, 455–471,
https://doi.org/10.1016/j.gca.2012.11.026, 2012.
Stewart, R. B. and Rouse, W. R.: A Simple Method for Determining the
Evaporation From Shallow Lakes and
Ponds, Water Resour. Res., 12, 623–628,
https://doi.org/10.1029/WR012i004p00623, 1976.
Stokes, S. and Gaylord, D. R.: Optical Dating of Holocene Dune Sands in the
Ferris Dune Field, Wyoming, Quaternary
Res., 39, 274–281, 1993.
Talbot, M. R.: A review of the palaeohydrological interpretation of carbon
and oxygen isotpic rations in pimary
lacustrine carbonates, Chem. Geol., 80, 261–279,
1990.
Talbot, M. R. and Kelts, K.: Paleolimnological signatures from carbon and
oxygen isotopic ratios in carbonates from organic-rich lacustrine sediments, Lacustrine Explor. Case Stud. Mod. Analog., 50, 99–112, https://doi.org/10.1306/M50523C6, 1990.
Tan, L. C., An, Z. S., Cai, Y. J., and Long, H.: Hydrological representation of the 4.2 ka BP event in China and its global linkages, Geol. Rev., 54, 94–104, 2008.
Thompson, R. S., Whitlock, C., Bartlein, P. J., Harrison, S. P., and Geoffrey
Spaulding, W.: Climatic Changes in the Western United States since 18,000 yr B.P., in: Global Climates since the Last Glacial Maximum, edited by: Wright Jr., H. E., Kutzbach, J. E., Webb III, T., Ruddiman, W. F., Street-Perrott, F. A., and Bartlein, P. J., University of Minnesota Press, 468–513, 1993.
Tyler, J. J., Leng, M. J., and Arrowsmith, C.: Seasonality and the isotope
hydrology of Lochnagar, a Scottish
mountain lake: Implications for palaeoclimate research, Holocene, 17, 717–727,
https://doi.org/10.1177/0959683607080513, 2007.
Von Grafenstein, U., Erlenkeuser, H., Müller, J., Jouzel, J., and
Johnsen, S.: The cold event 8200 years ago
documented in oxygen isotope records of precipitation in Europe and
Greenland, Clim. Dynam., 14, 73–81, https://doi.org/10.1007/s003820050210,
1998.
Walker, M., Gibbard, P., Head, M. J., Berkelhammer, M., Björck, S.,
Cheng, H., Cwynar, L. C., Fisher, D., Gkinis,
V., Long, A., Lowe, J., Newnham, R., Rasmussen, S. O., and Weiss, H.: Formal
Subdivision of the Holocene Series/Epoch: A Summary, J. Geol. Soc. India,
93, 135–141, https://doi.org/10.1007/s12594-019-1141-9, 2019.
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., and Li, X.: The Holocene Asian monsoon: links to solar changes and North Atlantic climate, Science, 308, 854–857, https://doi.org/10.1126/science.1106296, 2005.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U.,
Flückiger, J., Goosse, H., Grosjean, M., Joos, F.,
Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina,
O., Stocker, T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late
Holocene climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828,
https://doi.org/10.1016/j.quascirev.2008.06.013, 2008.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.:
Structure and origin of Holocene cold events,
Quaternary Sci. Rev., 30, 3109–3123,
https://doi.org/10.1016/j.quascirev.2011.07.010, 2011.
Wanner, H., Wanner, H., Mercolli, L., Mercolli, L., Grosjean, M., Grosjean,
M., and Ritz, S. P.: Holocene climate
variability and change; a data-based review, J. Geol. Soc. Lond., 172,
254–263, https://doi.org/10.1144/jgs2013-101, 2015.
Weiss, H.: Climate change and cultural evolution across the world, Past
Glob. Chang. Mag., 24, 62–63,
https://doi.org/10.22498/pages.24.2.55, 2016.
Weiss, H.: Interactive comment on “Is there evidence for a 4.2 ka BP event
in the northern North Atlantic region?”
by R. Bradley and J. Bakke, Clim. Past,
https://doi.org/10.5194/cp-2018-162-RC2, 2019.
Whitlock, C. and Bartlein, P. J.: Spatial Variations of Holocene Climatic
Change in the Yellowstone Region, Quaternary
Res., 39, 231–238, 1993.
Wise, E. K.: Spatiotemporal variability of the precipitation dipole transition zone in the western United States, Geophys. Res. Lett., 37, L07706, https://doi.org/10.1029/2009gl042193, 2010.
Xiao, J., Zhang, S., Fan, J., Wen, R., Zhai, D., Tian, Z., and Jiang, D.: The 4.2 ka BP event: multi-proxy records from a closed lake in the northern margin of the East Asian summer monsoon, Clim. Past, 14, 1417–1425, https://doi.org/10.5194/cp-14-1417-2018, 2018.
Yan, M. and Liu, J.: Physical processes of cooling and mega-drought during the 4.2 ka BP event: results from TraCE-21ka simulations, Clim. Past, 15, 265–277, https://doi.org/10.5194/cp-15-265-2019, 2019.
Zhang, H., Cheng, H., Cai, Y., Spötl, C., Kathayat, G., Sinha, A., Edwards, R. L., and Tan, L.: Hydroclimatic variations in southeastern China during the 4.2 ka event reflected by stalagmite records, Clim. Past, 14, 1805–1817, https://doi.org/10.5194/cp-14-1805-2018, 2018.
Zhu, C., Lettenmaier, D. P., and Cavazos, T.: Role of antecedent land
surface conditions on North American
monsoon rainfall variability, J. Climate, 18, 3104–3121,
https://doi.org/10.1175/JCLI3387.1, 2005.
Short summary
A large drought potentially occurred roughly 4200 years ago, but its impacts and significance are unclear. We find new evidence in carbonate oxygen isotopes from a mountain lake in southeastern Wyoming, southern Rocky Mountains, of an abrupt reduction in effective moisture (precipitation–evaporation) or snowpack from approximately 4200–4000 years ago. The drought's prominence among a growing number of sites in the North American interior suggests it was a regionally substantial climate event.
A large drought potentially occurred roughly 4200 years ago, but its impacts and significance...