Articles | Volume 18, issue 1
https://doi.org/10.5194/cp-18-103-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-18-103-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Holocene palaeoceanography of the Northeast Greenland shelf
Teodora Pados-Dibattista
CORRESPONDING AUTHOR
Paleoceanography and Paleoclimate Group,
Department of Geoscience, Aarhus University, Aarhus, 8000,
Denmark
Arctic Research Centre, Department of Geoscience, Aarhus University, Aarhus, 8000,
Denmark
iClimate Centre, Department of Geoscience, Aarhus University, Aarhus, 8000,
Denmark
Christof Pearce
Paleoceanography and Paleoclimate Group,
Department of Geoscience, Aarhus University, Aarhus, 8000,
Denmark
Arctic Research Centre, Department of Geoscience, Aarhus University, Aarhus, 8000,
Denmark
iClimate Centre, Department of Geoscience, Aarhus University, Aarhus, 8000,
Denmark
Henrieka Detlef
Paleoceanography and Paleoclimate Group,
Department of Geoscience, Aarhus University, Aarhus, 8000,
Denmark
Arctic Research Centre, Department of Geoscience, Aarhus University, Aarhus, 8000,
Denmark
iClimate Centre, Department of Geoscience, Aarhus University, Aarhus, 8000,
Denmark
Jørgen Bendtsen
ClimateLab, Brønshøj, 2700, Denmark
Paleoceanography and Paleoclimate Group,
Department of Geoscience, Aarhus University, Aarhus, 8000,
Denmark
Arctic Research Centre, Department of Geoscience, Aarhus University, Aarhus, 8000,
Denmark
iClimate Centre, Department of Geoscience, Aarhus University, Aarhus, 8000,
Denmark
Related authors
No articles found.
Clara R. Vives, Jørgen Bendtsen, Rasmus D. Dahms, Niels Daugbjerg, Kristina V. Larsen, and Minik T. Rosing
The Cryosphere, 19, 3107–3121, https://doi.org/10.5194/tc-19-3107-2025, https://doi.org/10.5194/tc-19-3107-2025, 2025
Short summary
Short summary
Glacial rock flour (GRF) from Greenlandic glaciers transports silicate and trace metals into fjords, influencing marine biogeochemistry. Trace metal concentrations are high in riverine and low-salinity waters but decrease sharply as salinity increases, challenging estimates based on freshwater input alone. Silicate rises due to GRF weathering but declines in fjords due to mixing. Uranium and molybdenum originate from the ocean, highlighting complex trace metal and nutrient dynamics.
Lasse Z. Jensen, Julie K. Simonsen, Ada Pastor, Christof Pearce, Per Nørnberg, Lars Chresten Lund-Hansen, Kai Finster, and Tina Šantl-Temkiv
Aerosol Research, 3, 81–100, https://doi.org/10.5194/ar-3-81-2025, https://doi.org/10.5194/ar-3-81-2025, 2025
Short summary
Short summary
Our study explores particles in Arctic soils and streams that influence ice formation in clouds. By analyzing these environments, we identified specific microorganisms producing these particles. This research, which measured these particles in Arctic streams for the first time, provides new insights into their ecological role and transfer from soil to water. Our findings help us understand their production, sources, and potential impact on climate.
Joanna Davies, Kirsten Fahl, Matthias Moros, Alice Carter-Champion, Henrieka Detlef, Ruediger Stein, Christof Pearce, and Marit-Solveig Seidenkrantz
The Cryosphere, 18, 3415–3431, https://doi.org/10.5194/tc-18-3415-2024, https://doi.org/10.5194/tc-18-3415-2024, 2024
Short summary
Short summary
Here, we evaluate the use of biomarkers for reconstructing sea ice between 1880 and 2017 from three sediment cores located in a transect across the Northeast Greenland continental shelf. We find that key changes, specifically the decline in sea-ice cover identified in observational records between 1971 and 1984, align with our biomarker reconstructions. This outcome supports the use of biomarkers for longer reconstructions of sea-ice cover in this region.
Lara F. Pérez, Paul C. Knutz, John R. Hopper, Marit-Solveig Seidenkrantz, Matt O'Regan, and Stephen Jones
Sci. Dril., 33, 33–46, https://doi.org/10.5194/sd-33-33-2024, https://doi.org/10.5194/sd-33-33-2024, 2024
Short summary
Short summary
The Greenland ice sheet is highly sensitive to global warming and a major contributor to sea level rise. In Northeast Greenland, ice–ocean–tectonic interactions are readily observable today, but geological records that illuminate long-term trends are lacking. NorthGreen aims to promote scientific drilling proposals to resolve key scientific questions on past changes in the Northeast Greenland margin that further affected the broader Earth system.
Christof Pearce, Karen Søby Özdemir, Ronja Forchhammer Mathiasen, Henrieka Detlef, and Jesper Olsen
Geochronology, 5, 451–465, https://doi.org/10.5194/gchron-5-451-2023, https://doi.org/10.5194/gchron-5-451-2023, 2023
Short summary
Short summary
Reliable chronologies lie at the base of paleoclimatological reconstructions. When working with marine sediment cores, the most common dating tool for recent sediments is radiocarbon, but this requires calibration to convert it to calendar ages. This calibration requires knowledge of the marine radiocarbon reservoir age, and this is known to vary in space and time. In this study we provide 92 new radiocarbon measurements to improve our knowledge of the reservoir age around Greenland.
Alistair J. Monteath, Matthew S. M. Bolton, Jordan Harvey, Marit-Solveig Seidenkrantz, Christof Pearce, and Britta Jensen
Geochronology, 5, 229–240, https://doi.org/10.5194/gchron-5-229-2023, https://doi.org/10.5194/gchron-5-229-2023, 2023
Short summary
Short summary
Accurately dating ocean cores is challenging because the radiocarbon age of water masses varies substantially. We identify ash fragments from eruptions more than 4000 km from their source and use these time markers to develop a new age–depth model for an ocean core in Placentia Bay, North Atlantic. Our results show that the radiocarbon age of waters masses in the bay varied considerably during the last 10 000 years and highlight the potential of using ultra-distal ash deposits in this region.
Mimmi Oksman, Anna Bang Kvorning, Signe Hillerup Larsen, Kristian Kjellerup Kjeldsen, Kenneth David Mankoff, William Colgan, Thorbjørn Joest Andersen, Niels Nørgaard-Pedersen, Marit-Solveig Seidenkrantz, Naja Mikkelsen, and Sofia Ribeiro
The Cryosphere, 16, 2471–2491, https://doi.org/10.5194/tc-16-2471-2022, https://doi.org/10.5194/tc-16-2471-2022, 2022
Short summary
Short summary
One of the questions facing the cryosphere community today is how increasing runoff from the Greenland Ice Sheet impacts marine ecosystems. To address this, long-term data are essential. Here, we present multi-site records of fjord productivity for SW Greenland back to the 19th century. We show a link between historical freshwater runoff and productivity, which is strongest in the inner fjord – influenced by marine-terminating glaciers – where productivity has increased since the late 1990s.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
Cited articles
Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C., and
Clark, P. U.: Holocene climatic instability: A prominent, widespread event
8200 yr ago, Geology, 25, 483–486, 1997.
Andersen, C., Koç, N., Jennings, A. E., and Andrews, J. T.: Nonuniform
response of the major surface currents in the Nordic Seas to insolation
forcing: Implications for the Holocene climate variability,
Paleoceanography, 19, PA2003, https://doi.org/10.1029/2002PA000873, 2004.
Andrews, J. T., Smith, L. M., Preston, R., Cooper, T., and Jennings, A. E.:
Spatial and temporal patterns of iceberg rafting (IRD) along the East
Greenland margin, ca. 68 N, over the last 14 cal. Ka, J. Quaternary Sci., 12, 1–13, 1997.
Ardyna, M., Babin, M., Gosselin, M., Devred, E., Rainville, L., and
Tremblay, J.-É.: Recent Arctic Ocean sea ice loss triggers novel fall
phytoplankton blooms, Geophys. Res. Lett., 41, 6207–6212,
https://doi.org/10.1002/2014GL061047, 2014.
Arndt, J. E., Jokat, W., Dorschel, B., Myklebust, R., Dowdeswell, J. A., and
Evans, J.: A new bathymetry of the Northeast Greenland continental shelf:
Constraints on glacial and other processes, Geochem. Geophy. Geosy., 16,
3733–3753, 2015.
Arndt, J. E., Jokat, W., and Dorschel, B.: The last glaciation and
deglaciation of the Northeast Greenland continental shelf revealed by
hydro-acoustic data, Quaternary Sci. Rev., 160, 45–56, 2017.
Barber, D. C., Dyke, A., Hillaire-Marcel, C., Jennings, A. E., Andrews, J.
T., Kerwin, M. W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M. D.,
and Gagnon, J.-M.: Forcing of the cold event of 8,200 years ago by
catastrophic drainage of Laurentide lakes, Nature, 400, 344–348, 1999.
Bauch, H. A., Erlenkeuser, H., Spielhagen, R. F., Struck, U., Matthiessen,
J., Thiede, J., and Heinemeier, J.: A multiproxy reconstruction of the
evolution of deep and surface waters in the subarctic Nordic seas over the
last 30,000 yr, Quaternary Sci. Rev., 20, 659–678, 2001.
Bennike, O. L. E. and Weidick, A.: Late Quaternary history around
Nioghalvfjerdsfjorden and Jøkelbugten, North-East Greenland, Boreas,
30, 205–227, 2001.
Berger, A.: Long-term variations of caloric insolation resulting from the
Earth's orbital elements, Quaternary Res., 9, 139–167, 1978.
Blaschek, M. and Renssen, H.: The Holocene thermal maximum in the Nordic Seas: the impact of Greenland Ice Sheet melt and other forcings in a coupled atmosphere–sea-ice–ocean model, Clim. Past, 9, 1629–1643, https://doi.org/10.5194/cp-9-1629-2013, 2013.
Born, A. and Stocker, T. F.: Two stable equilibria of the Atlantic subpolar
gyre, J. Phys. Oceanogr., 44, 246–264,
https://doi.org/10.1175/JPO-D-13-073.1, 2014.
Bourke, R. H., Newton, J. L., Paquette, R. G., and Tunnicliffe, M. D.:
Circulation and water masses of the East Greenland shelf, J. Geophys. Res.,
92, 6729–6740, https://doi.org/10.1029/JC092iC07p06729, 1987.
Boyer, T. P., Garcia, H., E, Locarnini, R. A., Ricardo, A., Zweng, M. M.,
Mishonov, A. V., Reagan, J., R., Weathers, K., A., Baranova, O. K., Seidov,
D., and Smolyar, I. V.: World Ocean Atlas 2018, NOAA National Centers for
Environmental Information [data set], available at:
https://accession.nodc.noaa.gov/NCEI-WOA18 (last access: 27 January 2021), 2018.
Budéus, G., Schneider, W., and Kattner, G.: Distribution and exchange of
water masses in the Northeast Water polynya (Greenland Sea), J. Mar. Syst.,
10, 123–138, https://doi.org/10.1016/S0924-7963(96)00074-7, 1997.
Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N., and
Rahmstorf, S.: Current Atlantic Meridional Overturning Circulation weakest
in last millennium, Nat. Geosci., 14, 118–120, https://doi.org/10.1038/s41561-021-00699-z, 2021.
Cage, A. G., Pieńkowski, A. J., Jennings, A., Knudsen, K. L., and Seidenkrantz, M.-S.: Comparative analysis of six common foraminiferal species of the genera Cassidulina, Paracassidulina, and Islandiella from the Arctic–North Atlantic domain, J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, 2021.
Clark, P. U., Marshall, S. J., Clarke, G. K., Hostetler, S. W., Licciardi,
J. M., and Teller, J. T.: Freshwater forcing of abrupt climate change during
the last glaciation, Science, 293, 283–287, 2001.
Clark, P. U., Pisias, N. G., Stocker, T. F., and Weaver, A. J.: The role of
the thermohaline circulation in abrupt climate change, Nature, 415,
863–869, 2002.
Consolaro, C., Rasmussen, T. L., and Panieri, G.: Palaeoceanographic and
environmental changes in the eastern Fram Strait during the last 14,000
years based on benthic and planktonic foraminifera, Mar. Micropaleontol.,
139, 84–101, 2018.
Cronin, T. M., Dwyer, G. S., Kamiya, T., Schwede, S., and Willard, D. A.:
Medieval warm period, little ice age and 20th century temperature
variability from Chesapeake Bay, Global Planet. Change, 36, 17–29,
2003.
Danish Meteorological Institute (DMI) and NSIDC: Arctic Sea Ice Charts from
the Danish Meteorological Institute, 1893–1995, edited by: Underhill, V. and
Fetterer, F., National Snow and Ice Data Center, Boulder, Colorado USA,
2012.
El bani Altuna, N., Rasmussen, T. L., Ezat, M. M., Vadakkepuliyambatta, S.,
Groeneveld, J., and Greaves, M.: Deglacial bottom water warming intensified
Arctic methane seepage in the NW Barents Sea, Communications Earth &
Environment, 2, 188, https://doi.org/10.1038/s43247-021-00264-x, 2021.
Ellison, C. R. W., Chapman, M. R., and Hall, I. R.: Surface and deep ocean
interactions during the cold climate event 8200 years ago, Science,
312, 1929–1932, https://doi.org/10.1126/science.1127213, 2006.
Estrade, P., Marchesiello, P., Colin De Verdiere, A., and Roy, C.:
Cross-shelf structure of coastal upwelling: A two-dimensional extension of
Ekman's theory and a mechanism for inner shelf upwelling shut down, J. Mar.
Res., 66, 589–616, https://doi.org/10.1357/002224008787536790, 2008.
Farmer, J. R., Sigman, D. M., Granger, J., Underwood, O. M., Fripiat, F.,
Cronin, T. M., Martínez-García, A., and Haug, G. H.: Arctic Ocean
stratification set by sea level and freshwater inputs since the last ice
age, Nat. Geosci., 14, 684–689, https://doi.org/10.1038/s41561-021-00789-y,
2021.
Feyling-Hanssen, R. W.: The stratigraphy of the Quaternary Clyde Foreland
Formation, Baffin Island, illustrated by the distribution of benthic
foraminifera, Boreas, 5, 77–94, 1976.
Feyling-Hanssen, R. W.: Microbiostratigraphy of young Cenozoic marine
deposits of Qivituq Peninsula, Baffin Island, Mar. Micropaleontol., 5,
153–184, 1980.
Feyling-Hanssen, R., Funder, S., and Petersen, K. S.: The Lodin Elv
Formation; a Plio-Pleistocene occurrence in Greenland, B. Geol. Soc. Den.,
31, 81–106, 1983.
Funder, S., Bennike, O., Böcher, J., Israelson, C., Strand Petersen, K.,
and Símonarson, L. A.: Late Pliocene Greenland–The Kap København
Formation in North Greenland, B. Geol. Soc. Den., 48, 117–134, 2001.
Giraudeau, J., Jennings, A. E., and Andrews, J. T.: Timing and mechanisms of
surface and intermediate water circulation changes in the Nordic Seas over
the last 10,000 cal years: a view from the North Iceland shelf, Quaternary
Sci. Rev., 23, 2127–2139, 2004.
Giraudeau, J., Grelaud, M., Solignac, S., Andrews, J. T., Moros, M., and
Jansen, E.: Millennial-scale variability in Atlantic water advection to the
Nordic Seas derived from Holocene coccolith concentration records,
Quaternary Sci. Rev., 29, 1276–1287, 2010.
Green, K. E.: Ecology of some Arctic foraminifera, Micropaleontol., 6,
57–78, 1960.
Hald, M. and Korsun, S.: Distribution of modern benthic foraminifera from
fjords of Svalbard, European Arctic, J. Foramin. Res., 27, 101–122, 1997.
Hald, M., Andersson, C., Ebbesen, H., Jansen, E., Klitgaard-Kristensen, D.,
Risebrobakken, B., Salomonsen, G. R., Sarnthein, M., Sejrup, H. P., and
Telford, R. J.: Variations in temperature and extent of Atlantic Water in
the northern North Atlantic during the Holocene, Quaternary Sci. Rev.,
26, 3423–3440, 2007.
Hall, I. R., Bianchi, G. G., and Evans, J. R.: Centennial to millennial
scale Holocene climate-deep water linkage in the North Atlantic, Quaternary
Sci. Rev., 23, 1529–1536, 2004.
Hansen, K. E., Giraudeau, J., Wacker, L., Pearce, C., and Seidenkrantz, M.-S.: Reconstruction of Holocene oceanographic conditions in eastern Baffin Bay, Clim. Past, 16, 1075–1095, https://doi.org/10.5194/cp-16-1075-2020, 2020.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin,
W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B.,
Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner,
L. C.: Marine20 – The Marine Radiocarbon Age Calibration Curve (0–55,000
Cal BP), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68,
2020.
Hillaire-Marcel, C., De Vernal, A., Bilodeau, G., and Weaver, A. J.: Absence
of deep-water formation in the Labrador Sea during the last interglacial
period, Nature, 410, 1073–1077, 2001.
Hillaire-Marcel, C., De Vernal, A., and Piper, D. J.: Lake Agassiz final
drainage event in the northwest North Atlantic, Geophys. Res. Lett., 34, L15601, https://doi.org/10.1029/2007GL030396,
2007.
Hoffman, J. S., Carlson, A. E., Winsor, K., Klinkhammer, G. P., LeGrande, A.
N., Andrews, J. T., and Strasser, J. C.: Linking the 8.2 ka event and its
freshwater forcing in the Labrador Sea, Geophys. Res. Lett., 39, L18703, https://doi.org/10.1029/2012GL053047, 2012.
Hurrell, J. W. and Deser, C.: North Atlantic climate variability: the role
of the North Atlantic Oscillation, J. Marine Syst., 79, 231–244, 2010.
Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M.: An overview of
the North Atlantic oscillation, Geophysical Monograph-American Geophysical
Union, 134, 1–36, 2003.
Ionita, M., Scholz, P., Lohmann, G., Dima, M., and Prange, M.: Linkages
between atmospheric blocking, sea ice export through Fram Strait and the
Atlantic meridional overturning circulation, Sci. Rep.-UK, 6, 32881,
https://doi.org/10.1038/srep32881, 2016.
Jansen, E., Andersson, C., Moros, M., Nisancioglu, K. H., Nyland, B. F., and
Telford, R. J.: The Early to Mid-Holocene Thermal Optimum in the North
Atlantic, in: Natural Climate Variability and Global Warming, edited by:
Battarbee, R. W. and Binney, H. A., Wiley Blackwell, 123–137,
https://doi.org/10.1002/9781444300932.ch5, 2008.
Jennings, A. E. and Helgadottir, G.: Foraminiferal assemblages from the
fjords and shelf of eastern Greenland, J. Foramin. Res., 24, 123–144,
1994.
Jennings, A. E., Knudsen, K. L., Hald, M., Hansen, C. V., and Andrews, J.
T.: A mid-Holocene shift in Arctic sea-ice variability on the East Greenland
Shelf, The Holocene, 12, 49–58, 2002.
Jennings, A. E., Weiner, N. J., Helgadottir, G., and Andrews, J. T.: Modern
foraminiferal faunas of the southwestern to northern Iceland shelf:
oceanographic and environmental controls, J. Foramin. Res., 34, 180–207,
2004.
Jennings, A., Andrews, J., and Wilson, L.: Holocene environmental evolution
of the SE Greenland Shelf North and South of the Denmark Strait: Irminger
and East Greenland current interactions, Quaternary Sci. Rev., 30,
980–998, 2011.
Jennings, A., Andrews, J., Reilly, B., Walczak, M., Jakobsson, M., Mix, A.,
Stoner, J., Nicholls, K. W., and Cheseby, M.: Modern foraminiferal
assemblages in northern Nares Strait, Petermann Fjord, and beneath Petermann
ice tongue, NW Greenland, Arct. Antarct. Alp. Res., 52, 491–511, 2020.
Johannessen, O. M.: Brief overview of the physical oceanography, in: The
Nordic Seas, edited by: Hurdle, B. G., Springer-Verlag, New York,
https://doi.org/10.1007/978-1-4615-8035-5_4, 1986.
Kaufmann, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J.
T., Bartlein, P. J., Brubaker, L. B., Coats, L. L., Cwynar, L. C., Duvall,
M. L., Dyke, A. S., Edwards, M. E., Eisner, W. R., Gajewski, K.,
Geirsdóttir, A., Hu, F. S., Jennings, A. E., Kaplan, M. R., Kerwin, M.
W., Lozhkin, A. V., MacDonald, G. M., Miller, G. H., Mock, C. J., Oswald, W.
W., Otto-Bliesner, B. L., Porinchu, D. F., Rühland, K., Smol, J. P.,
Steig, E. J., and Wolfe, B. B.: Holocene thermal maximum in the western
Arctic (0–180∘ W), Quaternary Sci. Rev., 23, 529–560, 2004.
Keigwin, L. D., Sachs, J. P., Rosenthal, Y., and Boyle, E. A.: The 8200 year
B.P. event in the slope water system, western subpolar North Atlantic,
Paleoceanography, 20, PA2003, https://doi.org/10.1029/2004PA001074, 2005.
Kirillov, S., Dmitrenko, I., Tremblay, B., Gratton, Y., Barber, D., and
Rysgaard, S.: Upwelling of Atlantic Water along the Canadian Beaufort Sea
continental slope: Favorable atmospheric conditions and seasonal and
interannual variations, J. Clim., 29, 4509–4523,
https://doi.org/10.1175/JCLI-D-15-0804.1, 2016.
Knudsen, K. L. and Seidenkrantz, M. S.: Stainforthia feylingi new species from arctic to
subarctic environments, previously recorded as Stainforthia schreibersiana (Czjzek), Cushman Foundation
for Foraminiferal Research Special Publication, 32, 5–13, 1994.
Knudsen, M. F., Seidenkrantz, M. S., Jacobsen, B. H., and Kuijpers, A.:
Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years,
Nat. Commun., 2, 1–8, 2011.
Koç, N., Jansen, E., and Haflidason, H.: Paleoceanographic
reconstructions of surface ocean conditions in the Greenland, Iceland and
Norwegian seas through the last 14 ka based on diatoms, Quaternary Sci.
Rev., 12, 115–140, 1993.
Kolling, H. M., Stein, R., Fahl, K., Perner, K., and Moros, M.: Short-term
variability in late Holocene sea ice cover on the East Greenland Shelf and
its driving mechanisms, Palaeogeogr. Palaeocl., 485, 336–350, 2017.
Korsun, S. and Hald, M.: Seasonal dynamics of benthic foraminifera in a
glacially fed fjord of Svalbard, European Arctic, J. Foramin. Res., 30,
251–271, 2000.
Kwok, R.: Recent changes in Arctic Ocean sea ice motion associated with the
North Atlantic Oscillation, Geophys. Res. Lett., 27, 775–778, 2000.
Lagoe, M. B.: Recent Benthic foraminifera from the Central Arctic Ocean, J.
Foramin. Res., 7, 106–129, 1979.
Larsen, N. K., Levy, L. B., Carlson, A. E., Buizert, C., Olsen, J., Strunk,
A., Bjørk, A. A., and Skov, D. S.: Instability of the Northeast Greenland
Ice Stream over the last 45,000 years, Nat. Commun., 9, 1–8, 2018.
Lloyd, J. M.: Modern distribution of benthic foraminifera from Disko Bugt,
West Greenland, J. Foramin. Res., 36, 315–331, 2006.
Mackensen, A. and Hald, M.: Cassidulina teretis Tappan and C. laevigata D'Orbigny: their modern and Late
Quaternary distribution in Northern seas, J. Foramin. Res., 18, 16–24,
1988.
Mackensen, A. and Schmiedl, G.: Brine formation recorded by stable isotopes
of recent benthic foraminifera in Storfjorden, Svalbard:
palaeoceanographical implications, Boreas, 45, 552–556, https://doi.org/10.1111/bor.12174, 2016.
Mayer, C., Reeh, N., Jung-Rothenhäusler, F., Huybrechts, P., and Oerter,
H.: The subglacial cavity and implied dynamics under Nioghalvfjerdsfjorden
Glacier, NE-Greenland, Geophys. Res. Lett., 27, 2289–2292, 2000.
Moossen, H., Bendle, J., Seki, O., Quillmann, U., and Kawamura, K.: North
Atlantic Holocene climate evolution recorded by high-resolution terrestrial
and marine biomarker records, Quaternary Sci. Rev., 129, 111e127, https://doi.org/10.1016/j.quascirev.2015.10.013, 2015.
Moros, M., Jansen, E., Oppo, D. W., Giraudeau, J., and Kuijpers, A.:
Reconstruction of the late-Holocene changes in the Sub-Arctic Front position
at the Reykjanes Ridge, north Atlantic, The Holocene, 22, 877–886, 2012.
Müller, J., Werner, K., Stein, R., Fahl, K., Moros, M., and Jansen, E.:
Holocene cooling culminates in sea ice oscillations in Fram Strait,
Quaternary Sci. Rev., 47, 1–14, 2012.
Mysak, L. A.: Patterns of Arctic Circulation, Nature, 293, 1269–1270,
https://doi.org/10.1126/science.1064217, 2001.
Oppo, D. W., McManus, J. F., and Cullen, J. L.: Deepwater variability in the
Holocene epoch, Nature, 422, 277–277, 2003.
Orme, L. C., Miettinen, A., Divine, D., Husum, K., Pearce, C., Van
Nieuwenhove, N., Born, A., Mohan, R., and Seidenkrantz, M. S.: Subpolar
North Atlantic sea surface temperature since 6 ka BP: Indications of
anomalous ocean-atmosphere interactions at 4-2 ka BP, Quaternary Sci. Rev.,
194, 128–142, 2018.
Pados-Dibattista, T., Pearce, C., Detlef, H., Brendtsen, J., and Seidenkrantz, M.-S.: Benthic foraminiferal abundances, stable isotopes and XRF data from the Northeast Greenland shelf, sediment core DA17-NG-ST7-73G, PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA.934100, 2021.
Pedersen, L. T., Gudmandsen, P., and Skriver, H.: North-East Water – A remote
sensing study, Report 545, Electromagnetic Institute, Technical University
of Denmark, 1993.
Perner, K., Moros, M., Lloyd, J. M., Kuijpers, A., Telford, R. J., and
Harff, J.: Centennial scale benthic foraminiferal record of late Holocene
oceanographic variability in Disko Bugt, West Greenland, Quaternary Sci.
Rev., 30, 2815–2826, 2011.
Perner, K., Moros, M., Jennings, A., Lloyd, J. M., and Knudsen, K. L.:
Holocene palaeoceanographic evolution off West Greenland, The Holocene,
23, 374–387, 2012.
Perner, K., Moros, M., Lloyd, J. M., Jansen, E., and Stein, R.: Mid to late
Holocene strengthening of the East Greenland Current linked to warm
subsurface Atlantic water, Quaternary Sci. Rev., 129, 296–307, 2015.
Perner, K., Jennings, A. E., Moros, M., Andrews, J. T., and Wacker, L.:
Interaction between warm Atlantic-sourced waters and the East Greenland
Current in northern Denmark Strait (68 N) during the last 10 600 cal a BP,
J. Quaternary Sci., 31, 472–483, 2016.
Quadfasel, D., Gascard, J. C., and Koltermann, K. P.: Large-scale
oceanography in Fram Strait during the 1984 marginal ice zone experiment, J.
Geophys. Res.-Oceans, 92, 6719–6728, 1987.
Rahmstorf, S.: Bifurcations of the Atlantic thermohaline circulation in
response to changes in the hydrological cycle, Nature, 378, 145–149,
1995.
Ramsey, C. B.: Deposition models for chronological records, Quaternary Sci.
Rev., 27, 42–60, 2008.
Ran, L., Jiang, H., Knudsen, K. L., Eiríksson, J., and Gu, Z.: Diatom
response to the Holocene climatic optimum on the North Icelandic shelf, Mar.
Micropaleontol., 60, 226–241, 2006.
Rasmussen, S. O., Vinther, B. M., Clausen, H. B., and Andersen, K. K.: Early
Holocene climate oscillations recorded in three Greenland ice cores,
Quaternary Sci. Rev., 26, 1907–1914,
https://doi.org/10.1016/j.quascirev.2007.06.015, 2007.
Reimer, P. J. and Reimer, R. W.: A marine reservoir correction database and
on-line interface, Radiocarbon, 43, 461–463, 2001.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Backwell, P. G., Ramsey,
C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P.
M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.
J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B.,
Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal
BP, Radiocarbon, 55, 1869–1887,
https://doi.org/10.2458/azu_js_rc.55.16947,
2013.
Ren, J., Jiang, H., Seidenkrantz, M. S., and Kuijpers, A.: A Diatom-Based
Reconstruction of Early Holocene Hydrographic and Climatic Change in a
Southwest Greenland Fjord, Mar. Micropaleontol., 70, 166–176,
https://doi.org/10.1016/j.marmicro.2008.12.003, 2009.
Renssen, H., Goosse, H., and Muscheler, R.: Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing, Clim. Past, 2, 79–90, https://doi.org/10.5194/cp-2-79-2006, 2006.
Risebrobakken, B., Jansen, E., Andersson, C., Mjelde, E., and Hevrøy, K.:
A high-resolution study of Holocene paleoclimatic and paleoceanographic
changes in the Nordic Seas, Paleoceanography, 18, 1017, https://doi.org/10.1029/2002PA000764, 2003.
Risebrobakken, B., Dokken, T., Smedsrud, L. H., Andersson, C., Jansen, E.,
Moros, M., and Ivanova, E. V.: Early Holocene temperature variability in the
Nordic Seas: The role of oceanic heat advection versus changes in orbital
forcing, Paleoceanography, 26, PA4206, https://doi.org/10.1029/2011PA002117,
2011.
Rudels, B.: Arctic Ocean circulation and variability – advection and external forcing encounter constraints and local processes, Ocean Sci., 8, 261–286, https://doi.org/10.5194/os-8-261-2012, 2012.
Rudels, B. and Quadfasel, D.: Convection and deep water formation in the
Arctic Ocean-Greenland Sea system, J. Marine Syst., 2, 435–450, 1991.
Rudels, B., Björk, G., Nilsson, J., Winsor, P., Lake, I., and Nohr, C.:
The interaction between waters from the Arctic Ocean and the Nordic Seas
north of Fram Strait and along the East Greenland Current: results from the
Arctic Ocean-02 Oden expedition, J. Marine Syst., 55, 1–30, 2005.
Rytter, F., Knudsen, K. L., Seidenkrantz, M. S., and Eiríksson, J.:
Modern distribution of benthic foraminifera on the North Icelandic shelf and
slope, J. Foramin. Res., 32, 217–244, 2002.
Sachs, J. P.: Cooling of Northwest Atlantic slope waters during the Holocene,
Geophys. Res. Lett., 34, L03609, https://doi.org/10.1029/2006GL028495,
2007.
Sarnthein, M., Van Kreveld, S., Erlenkeuser, H., Grootes, P. M., Kucera, M.,
Pflaumann, U., and Schulz, M.: Centinnal-to-millenial-scale periodicities of
Holocene climate and sediment injections off the western Barents shelf, 75
N, Boreas, 32, 447–461, 2003.
Schaffer, J., von Appen, W. J., Dodd, P. A., Hofstede, C., Mayer, C., de
Steur, L., and Kanzow, T.: Warm water pathways toward Nioghalvfjerdsfjorden
Glacier, Northeast Greenland. J. Geophys. Res.-Oceans, 122, 4004–4020,
2017.
Schneider, W. and Budéus, G.: The northeast water polynya (Greenland
Sea), Polar Biol., 14, 1–9, 1994.
Schneider, W. and Budéus, G.: Summary of the Northeast Water polynya
formation and development (Greenland Sea), J. Marine Syst., 10,
107–122, 1997.
Seidenkrantz, M. S.: Cassidulina teretis Tappan and Cassidulina neoteretis new species (Foraminifera): stratigraphic
markers for deep sea and outer shelf areas, J. Micropalaeontol., 14,
145–157, 1995.
Seidenkrantz, M. S.: Benthic foraminifera as palaeo sea-ice indicators in
the subarctic realm – examples from the Labrador Sea – Baffin Bay region,
Quaternary Sci. Rev., 79, 135–144, https://doi.org/10.1016/j.quascirev.2013.03.014, 2013.
Seidenkrantz, M. S., Aagaard-Sørensen, S., Sulsbrück, H., Kuijpers,
A., Jensen, K. G., and Kunzendorf, H.: Hydrography and climate of the last
4400 years in a SW Greenland fjord: implications for Labrador Sea
palaeoceanography, The Holocene, 17, 387–401, 2007.
Seidenkrantz, M. S., Roncaglia, L., Fischel, A., Heilmann-Clausen, C.,
Kuijpers, A., and Moros, M.: Variable North Atlantic climate seesaw patterns
documented by a late Holocene marine record from Disko Bugt, West Greenland,
Mar. Micropaleontol., 68, 66–83, 2008.
Seidenkrantz, M. S., Ebbesen, H., Aagaard-Sørensen, S., Moros, M., Lloyd,
J. M., Olsen, J., Knudsen, M. F., and Kuijpers, A.: Early Holocene
large-scale meltwater discharge from Greenland documented by foraminifera
and sediment parameters, Palaeogeogr. Palaeocl., 391, 71–81, 2013.
Seidenkrantz, M.-S., Andersen, J. R., Andresen, K. J., Bendtsen, J., Brice,
C., Ellegaard, M., Eriksen, L. N., Gariboldi, K., Le Duc, C., Mathiasen, A.
M., Nielsen, T., Ofstad, S., Pearce, C., Rasmussen, T. L., Ribeiro, S.,
Rysgaard, S., Røy, H., Scholze, C., Schultz, M., and Wangner, D. J.:
NorthGreen2017 – a Marine Research Expedition to NE Greenland Onboard `R/V
1029 Dana' September 17 to October 1, Cruise Report, Aarhus University,
Aarhus, Denmark, 53 pp., 2018.
Seidenkrantz, M.-S., Kuijpers, A., Olsen, J., Pearce, C., Lindblom, S.,
Ploug, J., Przybyło, P., and Snowball, I.: Southwest Greenland shelf
glaciation during MIS 4 more extensive than during the Last Glacial Maximum,
Sci. Rep.-UK, 9, 15617, https://doi.org/10.1038/s41598-019-51983-3, 2019.
Ślubowska, M. A., Koç, N., Rasmussen, T. L., and
Klitgaard-Kristensen, D.: Changes in the flow of Atlantic water into the
Arctic Ocean since the last deglaciation: Evidence from the northern
Svalbard continental margin, 80∘ N, Paleoceanography, 20, PA401,
https://doi.org/10.1029/2005PA001141, 2005.
Ślubowska-Woldengen, M., Rasmussen, T. L., Koc, N.,
Klitgaard-Kristensen, D., Nilsen, F., and Solheim, A.: Advection of Atlantic
Water to the western and northern Svalbard shelf since 17,500 cal yr BP,
Quaternary Sci. Rev., 26, 463–478, 2007.
Solomina, O. N., Bradley, R. S., Hodgson, D. A., Ivy-Ochs, S., Jomelli, V.,
Mackintosh, A. N., Nesje, A., Owen, L. A., Wanner, H., Wiles, G. C., and
Young, N. E.: Holocene glacier fluctuations, Quaternary Sci. Rev., 111, 9–34,
https://doi.org/10.1016/j.quascirev.2014.11.018, 2015.
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and
Barrett, A. P.: The Arctic's rapidly shrinking sea ice cover: a research
synthesis, Clim. Change, 110, 1005–1027, 2012.
Syring, N., Stein, R., Fahl, K., Vahlenkamp, M., Zehnich, M., Spielhagen, R.
F., and Niessen, F.: Holocene changes in sea-ice cover and polynya formation
along the eastern North Greenland shelf: New insights from biomarker
records, Quaternary Sci. Rev., 231, 106173, https://doi.org/10.1016/j.quascirev.2020.106173, 2020a.
Syring, N., Lloyd, J. M., Stein, R., Fahl, K., Roberts, D. H., Callard, L.,
and O'Cofaigh, C.: Holocene Interactions Between Glacier Retreat, Sea Ice
Formation, and Atlantic Water Advection at the Inner Northeast Greenland
Continental Shelf, Paleoceanogr. Paleocl., 35,
e2020PA004019, https://doi.org/10.1029/2020PA004019, 2020b.
Telesiński, M. M., Spielhagen, R. F., and Bauch, H. A.: Water mass evolution of the Greenland Sea since late glacial times, Clim. Past, 10, 123–136, https://doi.org/10.5194/cp-10-123-2014, 2014a.
Telesiński, M. M., Spielhagen, R. F., and Lind, E. M.: A high-resolution
Lateglacial and Holocene palaeoceanographic record from the Greenland Sea,
Boreas, 43, 273–285, 2014b.
Thornalley, D. J., Elderfield, H., and McCave, I. N.: Holocene oscillations
in temperature and salinity of the surface subpolar North Atlantic, Nature,
457, 711–714, 2009.
Van Nieuwenhove, N., Pearce, C., Knudsen, M. F., Røy, H., and
Seidenkrantz, M. S.: Meltwater and seasonality influence on Subpolar Gyre
circulation during the Holocene, Palaeogeogr. Palaeocl., 502, 104–118, 2018.
Vare, L. L., Masse, G., Gregory, T. R., Smart, C. W., and Belt, S. T.: Sea
ice variations in the central Canadian Arctic Archipelago during the
Holocene, Quaternary Sci. Rev., 28, 1354–1366, 2009.
Vinje, T. E.: Sea Ice Conditions in the European Sector of the Marginal Seas
of the Arctic 1966–75, 1975, Norwegian Polar Institut, 163–174, 1977.
Walker, M., Head, M. J., Berkelhammer, M., Björck, S., Cheng, H.,
Cwynar, L., Fisher, D., Gkinis, V., Long, A., Lowe, J., Newnham, R.,
Rasmussen, S. O., and Weiss, H.: Formal ratification of the subdivision of
the Holocene Series/Epoch (Quaternary System/Period): two new Global
Boundary Stratotype Sections and Points (GSSPs) and three new
stages/subseries, Episodes, 41, 213–223,
https://doi.org/10.18814/epiiugs/2018/018016, 2018.
Wangner, D. J., Jennings, A. E., Vermassen, F., Dyke, L. M., Hogan, K. A.,
Schmidt, S., Kjær, K. H., Knudsen, M. F., and Andresen, C. S.: A
2000-year record of ocean influence on Jakobshavn Isbræ calving
activity, based on marine sediment cores, The Holocene, 28, 1731–1744,
2018.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt,
J. E., Rovere, M., Chayes, D., Ferrini, V. and Wigley, R.: A new digital
bathymetric model of the world's oceans, Earth Space Sci., 2,
331–345, 2015.
Weiss, H.: 4.2 ka BP megadrought and the Akkadian collapse, in: Megadrought
and Collapse: from early agriculture to Angkor, edited by: Weiss, H., Oxford
University Press, Oxford, 93–160, 2017.
Werner, K., Spielhagen, R. F., Bauch, D., Hass, H. C., and Kandiano, E.:
Atlantic Water advection versus sea-ice advances in the eastern Fram Strait
during the last 9 ka: Multiproxy evidence for a two-phase Holocene,
Paleoceanography, 28, 283–295, 2013.
Werner, K., Müller, J., Husum, K., Spielhagen, R. F., Kandiano, E. S.,
and Polyak, L.: Holocene sea subsurface and surface water masses in the Fram
Strait–Comparisons of temperature and sea-ice reconstructions, Quaternary
Sci. Rev., 147, 194–209, 2016.
Wilson, N. J. and Straneo, F.: Water exchange between the continental shelf
and the cavity beneath Nioghalvfjerdsbræ (79 North Glacier), Geophys.
Res. Lett., 42, 7648–7654, 2015.
Wollenburg, J. E. and Kuhnt, W.: The response of benthic foraminifers to
carbon flux and primary production in the Arctic Ocean, Mar.
Micropaleontol., 40, 189–231, 2000.
Wollenburg, J. E. and Mackensen, A.: Living benthic foraminifera from the
central Arctic Ocean: Faunal composition, standing stock and diversity, Mar.
Micropaleontol., 34, 153–185, 1998.
Zehnich, M., Spielhagen, R. F., Bauch, H. A., Forwick, M., Hass, H. C.,
Palme, T., Stein, R., and Syring, N.: Environmental variability off NE
Greenland (western Fram Strait) during the past 10,600 years, The Holocene,
30, 1752–1766, 2020.
Short summary
We carried out foraminiferal, stable isotope, and sedimentological analyses of a marine sediment core retrieved from the Northeast Greenland shelf. This region is highly sensitive to climate variability because it is swept by the East Greenland Current, which is the main pathway for sea ice and cold waters that exit the Arctic Ocean. The palaeoceanographic reconstruction reveals significant variations in the water masses and in the strength of the East Greenland Current over the last 9400 years.
We carried out foraminiferal, stable isotope, and sedimentological analyses of a marine sediment...