Articles | Volume 17, issue 2
https://doi.org/10.5194/cp-17-753-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-753-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the biological pump efficiency of the Last Glacial Maximum ocean using δ13C
Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, 5007, Norway
Jörg Schwinger
NORCE Norwegian Research Centre and Bjerknes Centre for Climate Research, Bergen, 5838, Norway
Ulysses S. Ninnemann
Department of Earth Science, University of Bergen and Bjerknes Centre for Climate Research, Bergen, 5007, Norway
Aurich Jeltsch-Thömmes
Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Ingo Bethke
Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, 5007, Norway
Christoph Heinze
Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, 5007, Norway
Related authors
Anne L. Morée, Fabrice Lacroix, William W. L. Cheung, and Thomas L. Frölicher
EGUsphere, https://doi.org/10.5194/egusphere-2024-3090, https://doi.org/10.5194/egusphere-2024-3090, 2024
Short summary
Short summary
Using novel Earth system model simulations and applying the Aerobic Growth Index, we show that only about half of the habitat loss for marine species is realized when temperature stabilization is initially reached. The maximum habitat loss happens over a century after peak warming in an overshoot scenario peaking at 2 °C before stabilizing at 1.5 °C. We also emphasize that species adaptation may play a key role in mitigating the long-term impacts of temperature stabilization and overshoot.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Anne L. Morée, Tayler M. Clarke, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 20, 2425–2454, https://doi.org/10.5194/bg-20-2425-2023, https://doi.org/10.5194/bg-20-2425-2023, 2023
Short summary
Short summary
Ocean temperature and oxygen shape marine habitats together with species’ characteristics. We calculated the impacts of projected 21st-century warming and oxygen loss on the contemporary habitat volume of 47 marine species and described the drivers of these impacts. Most species lose less than 5 % of their habitat at 2 °C of global warming, but some species incur losses 2–3 times greater than that. We also calculate which species may be most vulnerable to climate change and why this is the case.
Anne L. Morée and Jörg Schwinger
Earth Syst. Sci. Data, 12, 2971–2985, https://doi.org/10.5194/essd-12-2971-2020, https://doi.org/10.5194/essd-12-2971-2020, 2020
Short summary
Short summary
This dataset consists of eight variables needed in ocean modelling and is made to support modelers of the Last Glacial Maximum (LGM; 21 000 years ago) ocean. The LGM is a time of specific interest for climate researchers. The data are based on the results of state-of-the-art climate models and are the best available estimate of these variables for the LGM. The dataset shows clear spatial patterns but large uncertainties and is presented in a way that facilitates applications in any ocean model.
Jerry F. Tjiputra, Jörg Schwinger, Mats Bentsen, Anne L. Morée, Shuang Gao, Ingo Bethke, Christoph Heinze, Nadine Goris, Alok Gupta, Yan-Chun He, Dirk Olivié, Øyvind Seland, and Michael Schulz
Geosci. Model Dev., 13, 2393–2431, https://doi.org/10.5194/gmd-13-2393-2020, https://doi.org/10.5194/gmd-13-2393-2020, 2020
Short summary
Short summary
Ocean biogeochemistry plays an important role in determining the atmospheric carbon dioxide concentration. Earth system models, which are regularly used to study and project future climate change, generally include an ocean biogeochemistry component. Prior to their application, such models are rigorously validated against real-world observations. In this study, we evaluate the ability of the ocean biogeochemistry in the Norwegian Earth System Model version 2 to simulate various datasets.
Anne L. Morée, Jörg Schwinger, and Christoph Heinze
Biogeosciences, 15, 7205–7223, https://doi.org/10.5194/bg-15-7205-2018, https://doi.org/10.5194/bg-15-7205-2018, 2018
Short summary
Short summary
Changes in the distribution of the carbon isotope 13C can be used to study the climate system if the governing processes (ocean circulation and biogeochemistry) are understood. We show the Southern Ocean importance for the global 13C distribution and that changes in 13C can be strongly influenced by biogeochemistry. Interpretation of 13C as a proxy for climate signals needs to take into account the effects of changes in biogeochemistry in addition to changes in ocean circulation.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Brendan R. Carter, Jörg Schwinger, Rolf Sonnerup, Andrea J. Fassbender, Jonathan D. Sharp, and Larissa M. Dias
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-560, https://doi.org/10.5194/essd-2024-560, 2024
Preprint under review for ESSD
Short summary
Short summary
We infer ocean gas exchange and circulation from ocean tracer measurements and use this to create code to estimate the amount of carbon dioxide dissolved in the ocean that is there due to human emissions of CO2 into the atmosphere. The code works across the ocean depths for the past, present, or future from information about the location, temperature, and saltiness of the seawater. We produce a data product with estimates throughout the ocean throughout the last ~300 and next ~500 years.
Benjamin Mark Sanderson, Victor Brovkin, Rosie Fisher, David Hohn, Tatiana Ilyina, Chris Jones, Torben Koenigk, Charles Koven, Hongmei Li, David Lawrence, Peter Lawrence, Spencer Liddicoat, Andrew Macdougall, Nadine Mengis, Zebedee Nicholls, Eleanor O'Rourke, Anastasia Romanou, Marit Sandstad, Jörg Schwinger, Roland Seferian, Lori Sentman, Isla Simpson, Chris Smith, Norman Steinert, Abigail Swann, Jerry Tjiputra, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3356, https://doi.org/10.5194/egusphere-2024-3356, 2024
Short summary
Short summary
This study investigates how climate models warm in response to simplified carbon emissions trajectories, refining understanding of climate reversibility and commitment. Metrics are defined for warming response to cumulative emissions and for the cessation or ramp-down to net-zero and net-negative levels. Results indicate that previous concentration-driven experiments may have overstated zero emissions commitment due to emissions rates exceeding historical levels.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-519, https://doi.org/10.5194/essd-2024-519, 2024
Preprint under review for ESSD
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
William Eric Chapman, Francine Schevenhoven, Judith Berner, Noel Keenlyside, Ingo Bethke, Ping-Gin Chiu, Alok Gupta, and Jesse Nusbaumer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2682, https://doi.org/10.5194/egusphere-2024-2682, 2024
Short summary
Short summary
We introduce the first state-of-the-art atmosphere-connected supermodel, where two advanced atmospheric models share information in real-time to form a new dynamical system. By synchronizing the models, particularly in storm track regions, we achieve better predictions without losing variability. This approach maintains key climate patterns and reduces bias in some variables compared to traditional models, demonstrating a useful technique for improving atmospheric simulations.
Anne L. Morée, Fabrice Lacroix, William W. L. Cheung, and Thomas L. Frölicher
EGUsphere, https://doi.org/10.5194/egusphere-2024-3090, https://doi.org/10.5194/egusphere-2024-3090, 2024
Short summary
Short summary
Using novel Earth system model simulations and applying the Aerobic Growth Index, we show that only about half of the habitat loss for marine species is realized when temperature stabilization is initially reached. The maximum habitat loss happens over a century after peak warming in an overshoot scenario peaking at 2 °C before stabilizing at 1.5 °C. We also emphasize that species adaptation may play a key role in mitigating the long-term impacts of temperature stabilization and overshoot.
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Nil Irvalı, Ulysses S. Ninnemann, Are Olsen, Neil L. Rose, David J. R. Thornalley, Tor L. Mjell, and François Counillon
Geochronology, 6, 449–463, https://doi.org/10.5194/gchron-6-449-2024, https://doi.org/10.5194/gchron-6-449-2024, 2024
Short summary
Short summary
Marine sediments are excellent archives for reconstructing past changes in climate and ocean circulation. Yet, dating uncertainties, particularly during the 20th century, pose major challenges. Here we propose a novel chronostratigraphic approach that uses anthropogenic signals, such as the oceanic 13C Suess effect and spheroidal carbonaceous fly-ash particles, to reduce age model uncertainties in high-resolution marine archives over the 20th century.
Markus Adloff, Aurich Jeltsch-Thömmes, Frerk Pöppelmeier, Thomas F. Stocker, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1754, https://doi.org/10.5194/egusphere-2024-1754, 2024
Short summary
Short summary
We used an Earth system model to simulate how different processes changed the amount of carbon in the ocean and atmosphere over the last eight glacial cycles. We found that the effects of interactive marine sediments enlarge the carbon fluxes that result from these processes, especially in the ocean. Comparison with proxy data showed that no single process explains the global carbon cycle changes over glacial cycles, but individual processes can dominate regional and proxy-specific changes.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Markus Adloff, Frerk Pöppelmeier, Aurich Jeltsch-Thömmes, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 20, 1233–1250, https://doi.org/10.5194/cp-20-1233-2024, https://doi.org/10.5194/cp-20-1233-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an ocean current that transports heat into the North Atlantic. Over the ice age cycles, AMOC strength and its spatial pattern varied. We tested the role of heat forcing for these AMOC changes by simulating the temperature changes of the last eight glacial cycles. In our model, AMOC shifts between four distinct circulation modes caused by heat and salt redistributions that reproduce reconstructed long-term North Atlantic SST changes.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024, https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Short summary
Carbon cycle feedback metrics are employed to assess phases of positive and negative CO2 emissions. When emissions become negative, we find that the model disagreement in feedback metrics increases more strongly than expected from the assumption that the uncertainties accumulate linearly with time. The geographical patterns of such metrics over land highlight that differences in response between tropical/subtropical and temperate/boreal ecosystems are a major source of model disagreement.
Michelle J. Curran, Christophe Colin, Megan Murphy O’Connor, Ulysses S. Ninnemann, and Audrey Morley
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-101, https://doi.org/10.5194/cp-2023-101, 2024
Revised manuscript under review for CP
Short summary
Short summary
Our multi-proxy examination of an abrupt climate event during peak MIS11 reveals new evidence that the reorganisation of Polar and Atlantic Waters at subpolar latitudes is central mechanistically for the stability of North Atlantic Deep Water formation. We conclude that high-magnitude AMOC variability is possible without the addition of freshwater or Icebergs to deep water formation regions challenging established knowledge of AMOC sensitivity and stability during warm climates.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Anne L. Morée, Tayler M. Clarke, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 20, 2425–2454, https://doi.org/10.5194/bg-20-2425-2023, https://doi.org/10.5194/bg-20-2425-2023, 2023
Short summary
Short summary
Ocean temperature and oxygen shape marine habitats together with species’ characteristics. We calculated the impacts of projected 21st-century warming and oxygen loss on the contemporary habitat volume of 47 marine species and described the drivers of these impacts. Most species lose less than 5 % of their habitat at 2 °C of global warming, but some species incur losses 2–3 times greater than that. We also calculate which species may be most vulnerable to climate change and why this is the case.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Shuang Gao, Jörg Schwinger, Jerry Tjiputra, Ingo Bethke, Jens Hartmann, Emilio Mayorga, and Christoph Heinze
Biogeosciences, 20, 93–119, https://doi.org/10.5194/bg-20-93-2023, https://doi.org/10.5194/bg-20-93-2023, 2023
Short summary
Short summary
We assess the impact of riverine nutrients and carbon (C) on projected marine primary production (PP) and C uptake using a fully coupled Earth system model. Riverine inputs alleviate nutrient limitation and thus lessen the projected PP decline by up to 0.7 Pg C yr−1 globally. The effect of increased riverine C may be larger than the effect of nutrient inputs in the future on the projected ocean C uptake, while in the historical period increased nutrient inputs are considered the largest driver.
Jörg Schwinger, Ali Asaadi, Norman Julius Steinert, and Hanna Lee
Earth Syst. Dynam., 13, 1641–1665, https://doi.org/10.5194/esd-13-1641-2022, https://doi.org/10.5194/esd-13-1641-2022, 2022
Short summary
Short summary
We test whether climate change can be partially reversed if CO2 is removed from the atmosphere to compensate for too large past and near-term emissions by using idealized model simulations of overshoot pathways. On a timescale of 100 years, we find a high degree of reversibility if the overshoot size remains small, and we do not find tipping points even for intense overshoots. We caution that current Earth system models are most likely not able to skilfully model tipping points in ecosystems.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ingo Bethke, Yiguo Wang, François Counillon, Noel Keenlyside, Madlen Kimmritz, Filippa Fransner, Annette Samuelsen, Helene Langehaug, Lea Svendsen, Ping-Gin Chiu, Leilane Passos, Mats Bentsen, Chuncheng Guo, Alok Gupta, Jerry Tjiputra, Alf Kirkevåg, Dirk Olivié, Øyvind Seland, Julie Solsvik Vågane, Yuanchao Fan, and Tor Eldevik
Geosci. Model Dev., 14, 7073–7116, https://doi.org/10.5194/gmd-14-7073-2021, https://doi.org/10.5194/gmd-14-7073-2021, 2021
Short summary
Short summary
The Norwegian Climate Prediction Model version 1 (NorCPM1) is a new research tool for performing climate reanalyses and seasonal-to-decadal climate predictions. It adds data assimilation capability to the Norwegian Earth System Model version 1 (NorESM1) and has contributed output to the Decadal Climate Prediction Project (DCPP) as part of the sixth Coupled Model Intercomparison Project (CMIP6). We describe the system and evaluate its baseline, reanalysis and prediction performance.
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, https://doi.org/10.5194/bg-18-3823-2021, 2021
Short summary
Short summary
In this study we analyse surface ocean dimethylsulfide (DMS) concentration and flux to the atmosphere from four CMIP6 Earth system models over the historical and ssp585 simulations.
Our analysis of contemporary (1980–2009) climatologies shows that models better reproduce observations in mid to high latitudes. The models disagree on the sign of the trend of the global DMS flux from 1980 onwards. The models agree on a positive trend of DMS over polar latitudes following sea-ice retreat dynamics.
Hanna Lee, Helene Muri, Altug Ekici, Jerry Tjiputra, and Jörg Schwinger
Earth Syst. Dynam., 12, 313–326, https://doi.org/10.5194/esd-12-313-2021, https://doi.org/10.5194/esd-12-313-2021, 2021
Short summary
Short summary
We assess how three different geoengineering methods using aerosol affect land ecosystem carbon storage. Changes in temperature and precipitation play a large role in vegetation carbon uptake and storage, but our results show that increased levels of CO2 also play a considerable role. We show that there are unforeseen regional consequences under geoengineering applications, and these consequences should be taken into account in future climate policies before implementing them.
Frerk Pöppelmeier, Jeemijn Scheen, Aurich Jeltsch-Thömmes, and Thomas F. Stocker
Clim. Past, 17, 615–632, https://doi.org/10.5194/cp-17-615-2021, https://doi.org/10.5194/cp-17-615-2021, 2021
Short summary
Short summary
The stability of the Atlantic Meridional Overturning Circulation (AMOC) critically depends on its mean state. We simulate the response of the AMOC to North Atlantic freshwater perturbations under different glacial boundary conditions. We find that a closed Bering Strait greatly increases the AMOC's sensitivity to freshwater hosing. Further, the shift from mono- to bistability strongly depends on the chosen boundary conditions, with weaker circulation states exhibiting more abrupt transitions.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Anne L. Morée and Jörg Schwinger
Earth Syst. Sci. Data, 12, 2971–2985, https://doi.org/10.5194/essd-12-2971-2020, https://doi.org/10.5194/essd-12-2971-2020, 2020
Short summary
Short summary
This dataset consists of eight variables needed in ocean modelling and is made to support modelers of the Last Glacial Maximum (LGM; 21 000 years ago) ocean. The LGM is a time of specific interest for climate researchers. The data are based on the results of state-of-the-art climate models and are the best available estimate of these variables for the LGM. The dataset shows clear spatial patterns but large uncertainties and is presented in a way that facilitates applications in any ocean model.
Vivek K. Arora, Anna Katavouta, Richard G. Williams, Chris D. Jones, Victor Brovkin, Pierre Friedlingstein, Jörg Schwinger, Laurent Bopp, Olivier Boucher, Patricia Cadule, Matthew A. Chamberlain, James R. Christian, Christine Delire, Rosie A. Fisher, Tomohiro Hajima, Tatiana Ilyina, Emilie Joetzjer, Michio Kawamiya, Charles D. Koven, John P. Krasting, Rachel M. Law, David M. Lawrence, Andrew Lenton, Keith Lindsay, Julia Pongratz, Thomas Raddatz, Roland Séférian, Kaoru Tachiiri, Jerry F. Tjiputra, Andy Wiltshire, Tongwen Wu, and Tilo Ziehn
Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, https://doi.org/10.5194/bg-17-4173-2020, 2020
Short summary
Short summary
Since the preindustrial period, land and ocean have taken up about half of the carbon emitted into the atmosphere by humans. Comparison of different earth system models with the carbon cycle allows us to assess how carbon uptake by land and ocean differs among models. This yields an estimate of uncertainty in our understanding of how land and ocean respond to increasing atmospheric CO2. This paper summarizes results from two such model intercomparison projects that use an idealized scenario.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Jerry F. Tjiputra, Jörg Schwinger, Mats Bentsen, Anne L. Morée, Shuang Gao, Ingo Bethke, Christoph Heinze, Nadine Goris, Alok Gupta, Yan-Chun He, Dirk Olivié, Øyvind Seland, and Michael Schulz
Geosci. Model Dev., 13, 2393–2431, https://doi.org/10.5194/gmd-13-2393-2020, https://doi.org/10.5194/gmd-13-2393-2020, 2020
Short summary
Short summary
Ocean biogeochemistry plays an important role in determining the atmospheric carbon dioxide concentration. Earth system models, which are regularly used to study and project future climate change, generally include an ocean biogeochemistry component. Prior to their application, such models are rigorously validated against real-world observations. In this study, we evaluate the ability of the ocean biogeochemistry in the Norwegian Earth System Model version 2 to simulate various datasets.
Aurich Jeltsch-Thömmes and Fortunat Joos
Clim. Past, 16, 423–451, https://doi.org/10.5194/cp-16-423-2020, https://doi.org/10.5194/cp-16-423-2020, 2020
Short summary
Short summary
Perturbations in atmospheric CO2 and in its isotopic composition, e.g., in response to carbon release from the land biosphere or from fossil fuel burning, evolve differently in time. We use an Earth system model of intermediate complexity to show that fluxes to and from the solid Earth play an important role in removing these perturbations from the atmosphere over thousands of years.
Lise S. Graff, Trond Iversen, Ingo Bethke, Jens B. Debernard, Øyvind Seland, Mats Bentsen, Alf Kirkevåg, Camille Li, and Dirk J. L. Olivié
Earth Syst. Dynam., 10, 569–598, https://doi.org/10.5194/esd-10-569-2019, https://doi.org/10.5194/esd-10-569-2019, 2019
Short summary
Short summary
Differences between a 1.5 and a 2.0 °C warmer global climate than 1850 conditions are discussed based on a suite of global atmosphere-only, fully coupled, and slab-ocean runs with the Norwegian Earth System Model. Responses, such as the Arctic amplification of global warming, are stronger with the fully coupled and slab-ocean configurations. While ice-free Arctic summers are rare under 1.5 °C warming in the slab-ocean runs, they are estimated to occur 18 % of the time under 2.0 °C warming.
Christoph Heinze, Veronika Eyring, Pierre Friedlingstein, Colin Jones, Yves Balkanski, William Collins, Thierry Fichefet, Shuang Gao, Alex Hall, Detelina Ivanova, Wolfgang Knorr, Reto Knutti, Alexander Löw, Michael Ponater, Martin G. Schultz, Michael Schulz, Pier Siebesma, Joao Teixeira, George Tselioudis, and Martin Vancoppenolle
Earth Syst. Dynam., 10, 379–452, https://doi.org/10.5194/esd-10-379-2019, https://doi.org/10.5194/esd-10-379-2019, 2019
Short summary
Short summary
Earth system models for producing climate projections under given forcings include additional processes and feedbacks that traditional physical climate models do not consider. We present an overview of climate feedbacks for key Earth system components and discuss the evaluation of these feedbacks. The target group for this article includes generalists with a background in natural sciences and an interest in climate change as well as experts working in interdisciplinary climate research.
Chuncheng Guo, Kerim H. Nisancioglu, Mats Bentsen, Ingo Bethke, and Zhongshi Zhang
Clim. Past, 15, 1133–1151, https://doi.org/10.5194/cp-15-1133-2019, https://doi.org/10.5194/cp-15-1133-2019, 2019
Short summary
Short summary
We present an equilibrium simulation of the climate of Marine Isotope Stage 3, with an IPCC-class model with a relatively high model resolution and a long integration. The simulated climate resembles a warm interstadial state, as indicated by reconstructions of Greenland temperature, sea ice extent, and AMOC. Sensitivity experiments to changes in atmospheric CO2 levels and ice sheet size show that the model is in a relatively stable climate state without multiple equilibria.
Aurich Jeltsch-Thömmes, Gianna Battaglia, Olivier Cartapanis, Samuel L. Jaccard, and Fortunat Joos
Clim. Past, 15, 849–879, https://doi.org/10.5194/cp-15-849-2019, https://doi.org/10.5194/cp-15-849-2019, 2019
Short summary
Short summary
A long-standing question in climate science is concerned with what processes contributed to the increase in atmospheric CO2 after the last ice age. From the range of possible processes we try to constrain the change in carbon storage in the land biosphere. By combining ice core and marine sediment data in a modeling framework we show that the carbon storage in the land biosphere increased largely after the last ice age. This will help to further understand processes at work in the Earth system.
Christoph Heinze and Klaus Hasselmann
Biogeosciences, 16, 751–753, https://doi.org/10.5194/bg-16-751-2019, https://doi.org/10.5194/bg-16-751-2019, 2019
Chuncheng Guo, Mats Bentsen, Ingo Bethke, Mehmet Ilicak, Jerry Tjiputra, Thomas Toniazzo, Jörg Schwinger, and Odd Helge Otterå
Geosci. Model Dev., 12, 343–362, https://doi.org/10.5194/gmd-12-343-2019, https://doi.org/10.5194/gmd-12-343-2019, 2019
Short summary
Short summary
In this paper, we describe and evaluate a new variant of the Norwegian Earth System Model (NorESM). It is a computationally efficient model that is designed for experiments such as paleoclimate, carbon cycle, and large ensemble simulations. The model, with various recent code updates, shows improved climate performance compared to the CMIP5 version of NorESM, while the model resolution remains similar.
Augustin Kessler, Eirik Vinje Galaasen, Ulysses Silas Ninnemann, and Jerry Tjiputra
Clim. Past, 14, 1961–1976, https://doi.org/10.5194/cp-14-1961-2018, https://doi.org/10.5194/cp-14-1961-2018, 2018
Short summary
Short summary
We analyze the changes in oceanic carbon dynamics, using a state-of-the-art Earth system model, by comparing two quasi-equilibrium states: the early, warm Eemian (125 ka) versus the cooler, late Eemian (115 ka). Our results suggest a considerably weaker ocean dissolved inorganic carbon storage at 125 ka, an alteration of the deep-water geometry and ventilation in the South Atlantic, and heterogeneous changes in phosphate availability and carbon export between the Pacific and Atlantic basins.
Anne L. Morée, Jörg Schwinger, and Christoph Heinze
Biogeosciences, 15, 7205–7223, https://doi.org/10.5194/bg-15-7205-2018, https://doi.org/10.5194/bg-15-7205-2018, 2018
Short summary
Short summary
Changes in the distribution of the carbon isotope 13C can be used to study the climate system if the governing processes (ocean circulation and biogeochemistry) are understood. We show the Southern Ocean importance for the global 13C distribution and that changes in 13C can be strongly influenced by biogeochemistry. Interpretation of 13C as a proxy for climate signals needs to take into account the effects of changes in biogeochemistry in addition to changes in ocean circulation.
Alf Kirkevåg, Alf Grini, Dirk Olivié, Øyvind Seland, Kari Alterskjær, Matthias Hummel, Inger H. H. Karset, Anna Lewinschal, Xiaohong Liu, Risto Makkonen, Ingo Bethke, Jan Griesfeller, Michael Schulz, and Trond Iversen
Geosci. Model Dev., 11, 3945–3982, https://doi.org/10.5194/gmd-11-3945-2018, https://doi.org/10.5194/gmd-11-3945-2018, 2018
Short summary
Short summary
A new aerosol treatment is described and tested in a global climate model. With updated emissions, aerosol chemistry, and microphysics compared to its predecessor, black carbon (BC) mass concentrations aloft better fit observations, surface concentrations of BC and sea salt are less biased, and sulfate and mineral dust slightly more, while the results for organics are inconclusive. Man-made aerosols now yield a stronger cooling effect on climate that is strong compared to results from IPCC.
Fahad Saeed, Ingo Bethke, Stefan Lange, Ludwig Lierhammer, Hideo Shiogama, Dáithí A. Stone, Tim Trautmann, and Carl-Friedrich Schleussner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-107, https://doi.org/10.5194/gmd-2018-107, 2018
Revised manuscript has not been submitted
Christoph Heinze, Tatiana Ilyina, and Marion Gehlen
Biogeosciences, 15, 3521–3539, https://doi.org/10.5194/bg-15-3521-2018, https://doi.org/10.5194/bg-15-3521-2018, 2018
Short summary
Short summary
The ocean becomes increasingly acidified through uptake of additional man-made CO2 from the atmosphere. This is impacting ecosystems. In order to find out whether reduced biological production of calcium carbonate shell material of biota is occurring at a large scale, we carried out a model study simulating the changes in oceanic 230Th concentrations with reduced availability of calcium carbonate particles in the water. 230Th can serve as a useful magnifying glass for acidification impacts.
Bryan C. Lougheed, Brett Metcalfe, Ulysses S. Ninnemann, and Lukas Wacker
Clim. Past, 14, 515–526, https://doi.org/10.5194/cp-14-515-2018, https://doi.org/10.5194/cp-14-515-2018, 2018
Short summary
Short summary
Palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past rapid climate change, but only a small proportion of the ocean is suitable for such reconstructions using the existing state of the art, i.e. the age–depth approach. We use dual radiocarbon (14C) and stable isotope analysis on single foraminifera to bypass the long-standing age–depth approach, thus facilitating past ocean chemistry reconstructions from vast, previously untapped ocean areas.
Camille Li, Clio Michel, Lise Seland Graff, Ingo Bethke, Giuseppe Zappa, Thomas J. Bracegirdle, Erich Fischer, Ben J. Harvey, Trond Iversen, Martin P. King, Harinarayan Krishnan, Ludwig Lierhammer, Daniel Mitchell, John Scinocca, Hideo Shiogama, Dáithí A. Stone, and Justin J. Wettstein
Earth Syst. Dynam., 9, 359–382, https://doi.org/10.5194/esd-9-359-2018, https://doi.org/10.5194/esd-9-359-2018, 2018
Short summary
Short summary
This study investigates the midlatitude atmospheric circulation response to 1.5°C and 2.0°C of warming using modelling experiments run for the HAPPI project (Half a degree Additional warming, Prognosis & Projected Impacts). While the chaotic nature of the atmospheric flow dominates in these low-end warming scenarios, some local changes emerge. Case studies explore precipitation impacts both for regions that dry (Mediterranean) and regions that get wetter (Europe, North American west coast).
Jörg Schwinger, Jerry Tjiputra, Nadine Goris, Katharina D. Six, Alf Kirkevåg, Øyvind Seland, Christoph Heinze, and Tatiana Ilyina
Biogeosciences, 14, 3633–3648, https://doi.org/10.5194/bg-14-3633-2017, https://doi.org/10.5194/bg-14-3633-2017, 2017
Short summary
Short summary
Transient global warming under the high emission scenario RCP8.5 is amplified by up to 6 % if a pH dependency of marine DMS production is assumed. Importantly, this additional warming is not spatially homogeneous but shows a pronounced north–south gradient. Over the Antarctic continent, the additional warming is almost twice the global average. In the Southern Ocean we find a small DMS–climate feedback that counteracts the original reduction of DMS production due to ocean acidification.
Teresa Beaty, Christoph Heinze, Taylor Hughlett, and Arne M. E. Winguth
Biogeosciences, 14, 781–797, https://doi.org/10.5194/bg-14-781-2017, https://doi.org/10.5194/bg-14-781-2017, 2017
Short summary
Short summary
In this study HAMOCC2.0 is used to address how mechanisms of oxygen minimum zone (OMZ) expansion respond to changes in CO2 radiative forcing within the model. Atmospheric pCO2 is increased at a rate of 1 % annually until stabilized. Our study suggests that expansion in the Pacific Ocean within the model is controlled largely by changes in particulate organic carbon export (POC). The vertical expansion of the OMZs in the Atlantic and Indian oceans is linked to reduced oxygen solubility.
Daniel Mitchell, Krishna AchutaRao, Myles Allen, Ingo Bethke, Urs Beyerle, Andrew Ciavarella, Piers M. Forster, Jan Fuglestvedt, Nathan Gillett, Karsten Haustein, William Ingram, Trond Iversen, Viatcheslav Kharin, Nicholas Klingaman, Neil Massey, Erich Fischer, Carl-Friedrich Schleussner, John Scinocca, Øyvind Seland, Hideo Shiogama, Emily Shuckburgh, Sarah Sparrow, Dáithí Stone, Peter Uhe, David Wallom, Michael Wehner, and Rashyd Zaaboul
Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, https://doi.org/10.5194/gmd-10-571-2017, 2017
Short summary
Short summary
This paper provides an experimental design to assess impacts of a world that is 1.5 °C warmer than at pre-industrial levels. The design is a new way to approach impacts from the climate community, and aims to answer questions related to the recent Paris Agreement. In particular the paper provides a method for studying extreme events under relatively high mitigation scenarios.
Massimo Cassiani, Andreas Stohl, Dirk Olivié, Øyvind Seland, Ingo Bethke, Ignacio Pisso, and Trond Iversen
Geosci. Model Dev., 9, 4029–4048, https://doi.org/10.5194/gmd-9-4029-2016, https://doi.org/10.5194/gmd-9-4029-2016, 2016
Short summary
Short summary
FLEXPART is a community model used by many scientists. Here, an alternative FLEXPART model version has been developed, tailored to use with the output data generated by the Norwegian Earth System Model (NorESM1-M). The model provides an advanced tool to analyse and diagnose atmospheric transport properties of the climate model NorESM. To validate the model, several tests were performed that offered the possibility to investigate some aspects of offline global dispersion modelling.
Veronika Eyring, Peter J. Gleckler, Christoph Heinze, Ronald J. Stouffer, Karl E. Taylor, V. Balaji, Eric Guilyardi, Sylvie Joussaume, Stephan Kindermann, Bryan N. Lawrence, Gerald A. Meehl, Mattia Righi, and Dean N. Williams
Earth Syst. Dynam., 7, 813–830, https://doi.org/10.5194/esd-7-813-2016, https://doi.org/10.5194/esd-7-813-2016, 2016
Short summary
Short summary
We argue that the CMIP community has reached a critical juncture at which many baseline aspects of model evaluation need to be performed much more efficiently to enable a systematic and rapid performance assessment of the large number of models participating in CMIP, and we announce our intention to implement such a system for CMIP6. At the same time, continuous scientific research is required to develop innovative metrics and diagnostics that help narrowing the spread in climate projections.
Christoph Heinze, Babette A. A. Hoogakker, and Arne Winguth
Clim. Past, 12, 1949–1978, https://doi.org/10.5194/cp-12-1949-2016, https://doi.org/10.5194/cp-12-1949-2016, 2016
Short summary
Short summary
Sensitivities of sediment tracers to changes in carbon cycle parameters were determined with a global ocean model. The sensitivities were combined with sediment and ice core data. The results suggest a drawdown of the sea surface temperature by 5 °C, an outgassing of the land biosphere by 430 Pg C, and a strengthening of the vertical carbon transfer by biological processes at the Last Glacial Maximum. A glacial change in marine calcium carbonate production can neither be proven nor rejected.
Jörg Schwinger, Nadine Goris, Jerry F. Tjiputra, Iris Kriest, Mats Bentsen, Ingo Bethke, Mehmet Ilicak, Karen M. Assmann, and Christoph Heinze
Geosci. Model Dev., 9, 2589–2622, https://doi.org/10.5194/gmd-9-2589-2016, https://doi.org/10.5194/gmd-9-2589-2016, 2016
Short summary
Short summary
We present an evaluation of the ocean carbon cycle stand-alone configuration of the Norwegian Earth System Model. A re-tuning of the ecosystem parameterisation improves surface tracer fields between versions 1 and 1.2 of the model. Focus is placed on the evaluation of newly implemented parameterisations of the biological carbon pump (i.e. the sinking of particular organic carbon). We find that the model previously underestimated the carbon transport into the deep ocean below 2000 m depth.
Roland Séférian, Marion Gehlen, Laurent Bopp, Laure Resplandy, James C. Orr, Olivier Marti, John P. Dunne, James R. Christian, Scott C. Doney, Tatiana Ilyina, Keith Lindsay, Paul R. Halloran, Christoph Heinze, Joachim Segschneider, Jerry Tjiputra, Olivier Aumont, and Anastasia Romanou
Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, https://doi.org/10.5194/gmd-9-1827-2016, 2016
Short summary
Short summary
This paper explores how the large diversity in spin-up protocols used for ocean biogeochemistry in CMIP5 models contributed to inter-model differences in modeled fields. We show that a link between spin-up duration and skill-score metrics emerges from both individual IPSL-CM5A-LR's results and an ensemble of CMIP5 models. Our study suggests that differences in spin-up protocols constitute a source of inter-model uncertainty which would require more attention in future intercomparison exercises.
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
C. Heinze, S. Meyer, N. Goris, L. Anderson, R. Steinfeldt, N. Chang, C. Le Quéré, and D. C. E. Bakker
Earth Syst. Dynam., 6, 327–358, https://doi.org/10.5194/esd-6-327-2015, https://doi.org/10.5194/esd-6-327-2015, 2015
Short summary
Short summary
Rapidly rising atmospheric CO2 concentrations caused by human actions over the past 250 years have raised cause for concern that changes in Earth’s climate system may progress at a much faster pace and larger extent than during the past 20,000 years. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems. Major future ocean carbon research challenges are discussed.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlström, S. C. Doney, H. Graven, C. Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. Viovy, S. Zaehle, N. Zeng, A. Arneth, G. Bonan, L. Bopp, J. G. Canadell, F. Chevallier, P. Ciais, R. Ellis, M. Gloor, P. Peylin, S. L. Piao, C. Le Quéré, B. Smith, Z. Zhu, and R. Myneni
Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, https://doi.org/10.5194/bg-12-653-2015, 2015
M. Gehlen, R. Séférian, D. O. B. Jones, T. Roy, R. Roth, J. Barry, L. Bopp, S. C. Doney, J. P. Dunne, C. Heinze, F. Joos, J. C. Orr, L. Resplandy, J. Segschneider, and J. Tjiputra
Biogeosciences, 11, 6955–6967, https://doi.org/10.5194/bg-11-6955-2014, https://doi.org/10.5194/bg-11-6955-2014, 2014
Short summary
Short summary
This study evaluates potential impacts of pH reductions on North Atlantic deep-sea ecosystems in response to latest IPCC scenarios.Multi-model projections of pH changes over the seafloor are analysed with reference to a critical threshold based on palaeo-oceanographic studies, contemporary observations and model results. By 2100 under the most severe IPCC CO2 scenario, pH reductions occur over ~23% of deep-sea canyons and ~8% of seamounts – including seamounts proposed as marine protected areas.
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner
Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, https://doi.org/10.5194/bg-11-3547-2014, 2014
C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.-H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle
Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, https://doi.org/10.5194/essd-6-235-2014, 2014
C. M. Hoppe, H. Elbern, and J. Schwinger
Geosci. Model Dev., 7, 1025–1036, https://doi.org/10.5194/gmd-7-1025-2014, https://doi.org/10.5194/gmd-7-1025-2014, 2014
L. Bopp, L. Resplandy, J. C. Orr, S. C. Doney, J. P. Dunne, M. Gehlen, P. Halloran, C. Heinze, T. Ilyina, R. Séférian, J. Tjiputra, and M. Vichi
Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, https://doi.org/10.5194/bg-10-6225-2013, 2013
M. Bentsen, I. Bethke, J. B. Debernard, T. Iversen, A. Kirkevåg, Ø. Seland, H. Drange, C. Roelandt, I. A. Seierstad, C. Hoose, and J. E. Kristjánsson
Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, https://doi.org/10.5194/gmd-6-687-2013, 2013
C. Le Quéré, R. J. Andres, T. Boden, T. Conway, R. A. Houghton, J. I. House, G. Marland, G. P. Peters, G. R. van der Werf, A. Ahlström, R. M. Andrew, L. Bopp, J. G. Canadell, P. Ciais, S. C. Doney, C. Enright, P. Friedlingstein, C. Huntingford, A. K. Jain, C. Jourdain, E. Kato, R. F. Keeling, K. Klein Goldewijk, S. Levis, P. Levy, M. Lomas, B. Poulter, M. R. Raupach, J. Schwinger, S. Sitch, B. D. Stocker, N. Viovy, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 5, 165–185, https://doi.org/10.5194/essd-5-165-2013, https://doi.org/10.5194/essd-5-165-2013, 2013
R. Wanninkhof, G. -H. Park, T. Takahashi, C. Sweeney, R. Feely, Y. Nojiri, N. Gruber, S. C. Doney, G. A. McKinley, A. Lenton, C. Le Quéré, C. Heinze, J. Schwinger, H. Graven, and S. Khatiwala
Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, https://doi.org/10.5194/bg-10-1983-2013, 2013
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
J. F. Tjiputra, C. Roelandt, M. Bentsen, D. M. Lawrence, T. Lorentzen, J. Schwinger, Ø. Seland, and C. Heinze
Geosci. Model Dev., 6, 301–325, https://doi.org/10.5194/gmd-6-301-2013, https://doi.org/10.5194/gmd-6-301-2013, 2013
Related subject area
Subject: Climate Modelling | Archive: Marine Archives | Timescale: Millenial/D-O
Atlantic circulation changes across a stadial–interstadial transition
Carbon isotopes and Pa∕Th response to forced circulation changes: a model perspective
Pseudo-proxy evaluation of climate field reconstruction methods of North Atlantic climate based on an annually resolved marine proxy network
Glacial fluctuations of the Indian monsoon and their relationship with North Atlantic climate: new data and modelling experiments
A coupled climate model simulation of Marine Isotope Stage 3 stadial climate
Claire Waelbroeck, Jerry Tjiputra, Chuncheng Guo, Kerim H. Nisancioglu, Eystein Jansen, Natalia Vázquez Riveiros, Samuel Toucanne, Frédérique Eynaud, Linda Rossignol, Fabien Dewilde, Elodie Marchès, Susana Lebreiro, and Silvia Nave
Clim. Past, 19, 901–913, https://doi.org/10.5194/cp-19-901-2023, https://doi.org/10.5194/cp-19-901-2023, 2023
Short summary
Short summary
The precise geometry and extent of Atlantic circulation changes that accompanied rapid climate changes of the last glacial period are still unknown. Here, we combine carbon isotopic records from 18 Atlantic sediment cores with numerical simulations and decompose the carbon isotopic change across a cold-to-warm transition into remineralization and circulation components. Our results show that the replacement of southern-sourced by northern-sourced water plays a dominant role below ~ 3000 m depth.
Lise Missiaen, Nathaelle Bouttes, Didier M. Roche, Jean-Claude Dutay, Aurélien Quiquet, Claire Waelbroeck, Sylvain Pichat, and Jean-Yves Peterschmitt
Clim. Past, 16, 867–883, https://doi.org/10.5194/cp-16-867-2020, https://doi.org/10.5194/cp-16-867-2020, 2020
Maria Pyrina, Sebastian Wagner, and Eduardo Zorita
Clim. Past, 13, 1339–1354, https://doi.org/10.5194/cp-13-1339-2017, https://doi.org/10.5194/cp-13-1339-2017, 2017
C. Marzin, N. Kallel, M. Kageyama, J.-C. Duplessy, and P. Braconnot
Clim. Past, 9, 2135–2151, https://doi.org/10.5194/cp-9-2135-2013, https://doi.org/10.5194/cp-9-2135-2013, 2013
J. Brandefelt, E. Kjellström, J.-O. Näslund, G. Strandberg, A. H. L. Voelker, and B. Wohlfarth
Clim. Past, 7, 649–670, https://doi.org/10.5194/cp-7-649-2011, https://doi.org/10.5194/cp-7-649-2011, 2011
Cited articles
Adkins J. F.: The role of deep ocean circulation in setting glacial
climates, Paleoceanography, 28, 539–561, https://doi.org/10.1002/palo.20046, 2013.
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A
new, mechanistic model for organic carbon fluxes in the ocean based on the
quantitative association of POC with ballast minerals, Deep-Sea Res Pt. II,
49, 219–236, https://doi.org/10.1016/S0967-0645(01)00101-1, 2001.
Assmann, K. M., Bentsen, M., Segschneider, J., and Heinze, C.: An isopycnic ocean carbon cycle model, Geosci. Model Dev., 3, 143–167, https://doi.org/10.5194/gmd-3-143-2010, 2010.
Bach, L. T., Stange, P., Taucher, J., Achterberg, E. P., Alguero-Muniz, M.,
Horn, H., Esposito, M., and Riebesell, U.: The Influence of Plankton
Community Structure on Sinking Velocity and Remineralization Rate of Marine
Aggregates, Global Biogeochemical Cy., 33, 971–994, https://doi.org/10.1029/2019gb006256,
2019.
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013.
Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K., and
Severinghaus, J.: Mean global ocean temperatures during the last glacial
transition, Nature, 553, 39–44, https://doi.org/10.1038/nature25152, 2018.
Bernardello, R., Marinov, I., Palter, J. B., Sarmiento, J. L., Galbraith, E.
D., and Slater, R. D.: Response of the Ocean Natural Carbon Storage to
Projected Twenty-First-Century Climate Change, J. Climate, 27,
2033–2053, https://doi.org/10.1175/JCLI-D-13-00343.1, 2014.
Bopp, L., Kohfeld Karen, E., Le Quéré, C., and Aumont, O.: Dust
impact on marine biota and atmospheric CO2 during glacial periods,
Paleoceanography, 18, 1046, https://doi.org/10.1029/2002PA000810, 2003.
Bopp, L., Resplandy, L., Untersee, A., Le Mezo, P., and Kageyama, M.: Ocean
(de)oxygenation from the Last Glacial Maximum to the twenty-first century:
insights from Earth System models, Philos. T. R. Soc. A, 375,
20160323, https://doi.org/10.1098/rsta.2016.0323, 2017.
Bouttes, N., Paillard, D., Roche, D. M., Brovkin, V., and Bopp, L.: Last
Glacial Maximum CO2 and δ13C successfully reconciled,
Geophys. Res. Lett., 38, L02705, https://doi.org/10.1029/2010GL044499, 2011.
Braconnot, P., Harrison, S., Kageyama, M., Bartlein, P., Masson-Delmotte,
V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate
models using palaeoclimatic data, Nat. Clim. Change, 2, 417–424,
https://doi.org/10.1038/nclimate1456, 2012.
Broecker, W. S.: “NO”, a conservative water-mass tracer, Earth
Planet. Sci. Lett., 23, 100–107, https://doi.org/10.1016/0012-821X(74)90036-3, 1974.
Broecker, W. S.: Glacial to interglacial changes in ocean chemistry,
Prog. Oceanogr., 11, 151–197, https://doi.org/10.1016/0079-6611(82)90007-6, 1982.
Broecker, W. S. and McGee, D.: The 13C record for atmospheric
CO2: What is it trying to tell us?, Earth Planet. Sci.
Lett., 368, 175–182, https://doi.org/10.1016/j.epsl.2013.02.029, 2013.
Broecker, W. S. and Peng, T.-H.: Carbon Cycle: 1985 Glacial to Interglacial
Changes in the Operation of the Global Carbon Cycle, Radiocarbon, 28,
309–327, https://doi.org/10.1017/S0033822200007414, 1986.
Brovkin, V., Ganopolski, A., Archer, D., and Rahmstorf, S.: Lowering of
glacial atmospheric CO2 in response to changes in oceanic circulation
and marine biogeochemistry, Paleoceanography, 22, Pa4202,
https://doi.org/10.1029/2006pa001380, 2007.
Buchanan, P. J., Matear, R. J., Lenton, A., Phipps, S. J., Chase, Z., and Etheridge, D. M.: The simulated climate of the Last Glacial Maximum and insights into the global marine carbon cycle, Clim. Past, 12, 2271–2295, https://doi.org/10.5194/cp-12-2271-2016, 2016.
Burckel, P., Waelbroeck, C., Luo, Y., Roche, D. M., Pichat, S., Jaccard, S. L., Gherardi, J., Govin, A., Lippold, J., and Thil, F.: Changes in the geometry and strength of the Atlantic meridional overturning circulation during the last glacial (20–50 ka), Clim. Past, 12, 2061–2075, https://doi.org/10.5194/cp-12-2061-2016, 2016.
Burke, A., Stewart, A. L., Adkins, J. F., Ferrari, R., Jansen, M. F., and
Thompson, A. F.: The glacial mid-depth radiocarbon bulge and its
implications for the overturning circulation, Paleoceanography, 30,
1021–1039, https://doi.org/10.1002/2015PA002778, 2015.
Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B.,
Fohlmeister, J., Frank, N., Andersen, M. B., and Deininger, M.: Strong and
deep Atlantic meridional overturning circulation during the last glacial
cycle, Nature, 517, 73–76, https://doi.org/10.1038/nature14059, 2014.
Chowdhury, P. and Behera, M. R.: Evaluation of CMIP5 and CORDEX derived
wave climate in Indian Ocean, Clim. Dynam., 52, 4463–4482,
https://doi.org/10.1007/s00382-018-4391-0, 2019.
Costa, K. M., McManus, J. F., Anderson, R. F., Ren, H., Sigman, D. M.,
Winckler, G., Fleisher, M. Q., Marcantonio, F., and Ravelo, A. C.: No iron
fertilization in the equatorial Pacific Ocean during the last ice age,
Nature, 529, 519–522, https://doi.org/10.1038/nature16453, 2016.
Craig, H.: Isotopic standards for carbon and oxygen and correction factors
for mass-spectrometric analysis of carbon dioxide, Geochim.
Cosmochim. Ac., 12, 133–149, https://doi.org/10.1016/0016-7037(57)90024-8, 1957.
Crucifix, M.: Distribution of carbon isotopes in the glacial ocean: A model
study, Paleoceanography, 20, PA4020, https://doi.org/10.1029/2005PA001131, 2005.
Danabasoglu, G., Yeager, S. G., Bailey, D., Behrens, E., Bentsen, M., Bi,
D., Biastoch, A., Böning, C., Bozec, A., Canuto, V. M., Cassou, C.,
Chassignet, E., Coward, A. C., Danilov, S., Diansky, N., Drange, H.,
Farneti, R., Fernandez, E., Fogli, P. G., Forget, G., Fujii, Y., Griffies,
S. M., Gusev, A., Heimbach, P., Howard, A., Jung, T., Kelley, M., Large, W.
G., Leboissetier, A., Lu, J., Madec, G., Marsland, S. J., Masina, S.,
Navarra, A., George Nurser, A. J., Pirani, A., y Mélia, D. S., Samuels,
B. L., Scheinert, M., Sidorenko, D., Treguier, A.-M., Tsujino, H., Uotila,
P., Valcke, S., Voldoire, A., and Wang, Q.: North Atlantic simulations in
Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean
states, Ocean Model., 73, 76–107, https://doi.org/10.1016/j.ocemod.2013.10.005, 2014.
De Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and
Iudicone, D.: Mixed layer depth over the global ocean: An examination of
profile data and a profile-based climatology, J. Geophys.
Res.-Oceans, 109, C12003, https://doi.org/10.1029/2004JC002378, 2004.
De La Rocha, C. L. and Passow, U.: Factors influencing the sinking of POC
and the efficiency of the biological carbon pump, Deep-Sea Res. Pt. II, 54,
639–658, https://doi.org/10.1016/j.dsr2.2007.01.004, 2007.
DeVries, T., Primeau, F., and Deutsch, C.: The sequestration efficiency of
the biological pump, Geophys. Res. Lett., 39, L13601,
https://doi.org/10.1029/2012GL051963, 2012.
Donohue, K. A., Tracey, K. L., Watts, D. R., Chidichimo, M. P., and
Chereskin, T. K.: Mean Antarctic Circumpolar Current transport measured in
Drake Passage, Geophys. Res. Lett., 43, 11760–11767,
https://doi.org/10.1002/2016GL070319, 2016.
Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo,
D., and Kallel, N.: Deepwater source variations during the last climatic
cycle and their impact on the global deepwater circulation,
Paleoceanography, 3, 343–360, https://doi.org/10.1029/PA003i003p00343, 1988.
Edwards, N. R., Willmott, A. J., and Killworth, P. D.: On the Role of
Topography and Wind Stress on the Stability of the Thermohaline Circulation,
J. Phys. Oceanogr., 28, 756–778,
https://doi.org/10.1175/1520-0485(1998)028<0756:OTROTA<2.0.CO;2, 1998.
Eide, M., Olsen, A., Ninnemann, U. S., and Johannessen, T.: A global ocean
climatology of preindustrial and modern ocean δ13C, Global
Biogeochem. Cy., 31, 515–534, https://doi.org/10.1002/2016GB005473, 2017.
EPICA Project Members: Eight glacial cycles from an Antarctic ice core,
Nature, 429, 623–628, https://doi.org/10.1038/nature02599, 2004.
Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A., Stewart, A. L., and
Thompson, A. F.: Antarctic sea ice control on ocean circulation in present
and glacial climates, P. Natl. Acad. Sci. USA, 111,
8753, https://doi.org/10.1073/pnas.1323922111, 2014.
Filippelli, G. M., Latimer, J. C., Murray, R. W., and Flores, J.-A.:
Productivity records from the Southern Ocean and the equatorial Pacific
Ocean: Testing the glacial Shelf-Nutrient Hypothesis, Deep Sea Res. Pt.
II, 54, 2443–2452, https://doi.org/10.1016/j.dsr2.2007.07.021, 2007.
Freeman, E., Skinner, L. C., Waelbroeck, C., and Hodell, D.: Radiocarbon
evidence for enhanced respired carbon storage in the Atlantic at the Last
Glacial Maximum, Nat. Commun., 7, 11998, https://doi.org/10.1038/ncomms11998, 2016.
Galbraith, E. and de Lavergne, C.: Response of a comprehensive climate
model to a broad range of external forcings: relevance for deep ocean
ventilation and the development of late Cenozoic ice ages, Clim. Dynam., 52,
653–679, https://doi.org/10.1007/s00382-018-4157-8, 2019.
Galbraith, E. D. and Skinner, L. C.: The Biological Pump During the Last
Glacial Maximum, Ann. Rev. Mar. Sci., 12, 559–586,
https://doi.org/10.1146/annurev-marine-010419-010906, 2020.
Ganopolski, A. and Brovkin, V.: Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity, Clim. Past, 13, 1695–1716, https://doi.org/10.5194/cp-13-1695-2017, 2017.
Gebbie, G.: How much did Glacial North Atlantic Water shoal?,
Paleoceanography, 29, 190–209, https://doi.org/10.1002/2013PA002557, 2014.
Gebbie, G. and Huybers, P.: The Mean Age of Ocean Waters Inferred from
Radiocarbon Observations: Sensitivity to Surface Sources and Accounting for
Mixing Histories, J. Phys. Oceanogr., 42, 291–305,
https://doi.org/10.1175/jpo-d-11-043.1, 2012.
Gebbie, G., Peterson, C. D., Lisiecki, L. E., and Spero, H. J.: Global-mean
marine δ13C and its uncertainty in a glacial state estimate,
Quaternary Sci. Rev., 125, 144–159, https://doi.org/10.1016/j.quascirev.2015.08.010,
2015.
Gersonde, R., Crosta, X., Abelmann, A., and Armand, L.: Sea-surface
temperature and sea ice distribution of the Southern Ocean at the EPILOG
Last Glacial Maximum–a circum-Antarctic view based on siliceous
microfossil records, Quaternary Sci. Rev., 24, 869–896,
https://doi.org/10.1016/j.quascirev.2004.07.015, 2005.
Gottschalk, J., Skinner, L. C., Lippold, J., Vogel, H., Frank, N., Jaccard,
S. L., and Waelbroeck, C.: Biological and physical controls in the Southern
Ocean on past millennial-scale atmospheric CO2 changes, Nat.
Commun., 7, 11539, https://doi.org/10.1038/ncomms11539, 2016a.
Gottschalk, J., Vázquez Riveiros, N., Waelbroeck, C., Skinner, L. C.,
Michel, E., Duplessy, J.-C., Hodell, D. A., and Mackensen, A.: Stable oxygen
and carbon isotopes of C. wuellerstorfi, C. kullenbergi and Uvigerina spp.
from MD07-3076Q (sub-Antarctic Atlantic) over the last 22 kyrs, PANGAEA, https://doi.org/10.1594/PANGAEA.858257, 2016b.
Gottschalk, J., Vázquez Riveiros, N., Waelbroeck, C., Skinner, L. C.,
Michel, E., Duplessy, J.-C., Hodell, D. A., and Mackensen, A.: Stable oxygen
and carbon isotopes of C. wuellerstorfi, C. kullenbergi and Uvigerina spp.
from TN057-6GC (sub-Antarctic Atlantic) over the last 29 kyrs, PANGAEA, https://doi.org/10.1594/PANGAEA.858264, 2016c.
Gruber, N., Keeling, C. D., Bacastow, R. B., Guenther, P. R., Lueker, T. J.,
Wahlen, M., Meijer, H. A. J., Mook, W. G., and Stocker, T. F.:
Spatiotemporal patterns of carbon-13 in the global surface oceans and the
oceanic suess effect, Global Biogeochem. Cy., 13, 307–335,
https://doi.org/10.1029/1999GB900019, 1999.
Guo, C., Bentsen, M., Bethke, I., Ilicak, M., Tjiputra, J., Toniazzo, T., Schwinger, J., and Otterå, O. H.: Description and evaluation of NorESM1-F: a fast version of the Norwegian Earth System Model (NorESM), Geosci. Model Dev., 12, 343–362, https://doi.org/10.5194/gmd-12-343-2019, 2019.
Haake, B. and Ittekkot, V.: The Wind-Driven Biological Pump and Carbon
Removal in the Ocean, Naturwissenschaften, 77, 75–79, https://doi.org/10.1007/Bf01131777, 1990.
Heinze, C. and Hasselmann, K.: Inverse Multiparameter Modeling of
Paleoclimate Carbon Cycle Indices, Quaternary Res., 40, 281–296,
https://doi.org/10.1006/qres.1993.1082, 1993.
Heinze, C., Maier-Reimer, E., and Winn, K.: Glacial pCO2 Reduction by the World Ocean: Experiments With the Hamburg Carbon Cycle Model, Paleoceanography, 6, 395–430, https://doi.org/10.1029/91PA00489, 1991.
Heinze, C., Hoogakker, B. A. A., and Winguth, A.: Ocean carbon cycling during the past 130 000 years – a pilot study on inverse palaeoclimate record modelling, Clim. Past, 12, 1949–1978, https://doi.org/10.5194/cp-12-1949-2016, 2016.
Hesse, T., Butzin, M., Bickert, T., and Lohmann, G.: A model-data comparison
of delta C-13 in the glacial Atlantic Ocean, Paleoceanography, 26,
Pa3220, https://doi.org/10.1029/2010pa002085, 2011.
Ho, S. and Laepple, T.: Glacial cooling as inferred from marine temperature
proxies TEX and U , Earth Planet. Sci. Lett., 409, 15–22, https://doi.org/10.1016/j.epsl.2014.10.033, 2015.
Hodell, D. A. and Channell, J. E. T.: Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate, Clim. Past, 12, 1805–1828, https://doi.org/10.5194/cp-12-1805-2016, 2016.
Honda, M. C. and Watanabe, S.: Importance of biogenic opal as ballast of
particulate organic carbon (POC) transport and existence of mineral
ballast-associated and residual POC in the Western Pacific Subarctic Gyre,
Geophys. Res. Lett., 37, L02605, https://doi.org/10.1029/2009gl041521, 2010.
Howe, J. N. W. and Piotrowski, A. M.: (Table S2) Stable carbon and oxygen
isotopic composition of benthic foraminifera of ODP Site 154-929, PANGAEA, https://doi.org/10.1594/PANGAEA.882968, 2017.
Ito, T. and Follows, M. J.: Preformed phosphate, soft tissue pump and
atmospheric CO2, J. Marine Res., 63, 813–839,
https://doi.org/10.1357/0022240054663231, 2005.
Ito, T., Follows, M. J., and Boyle, E. A.: Is AOU a good measure of
respiration in the oceans?, Geophys. Res. Lett., 31, L17305,
https://doi.org/10.1029/2004GL020900, 2004.
Jaccard, S. L., Galbraith, E. D., Sigman, D. M., Haug, G. H., Francois, R.,
Pedersen, T. F., Dulski, P., and Thierstein, H. R.: Subarctic Pacific
evidence for a glacial deepening of the oceanic respired carbon pool, Earth Planet. Sci. Lett., 277, 156–165, https://doi.org/10.1016/j.epsl.2008.10.017, 2009.
Jaccard, S. L. and Galbraith, E. D.: Large climate-driven changes of
oceanic oxygen concentrations during the last deglaciation, Nat.
Geosci., 5, 151, https://doi.org/10.1038/ngeo1352, 2011.
Jansen, M. F.: Glacial ocean circulation and stratification explained by
reduced atmospheric temperature, P. Natl. Acad. Sci. USA, 114, 45–50, https://doi.org/10.1073/pnas.1610438113, 2017.
Jeltsch-Thömmes, A., Battaglia, G., Cartapanis, O., Jaccard, S. L., and Joos, F.: Low terrestrial carbon storage at the Last Glacial Maximum: constraints from multi-proxy data, Clim. Past, 15, 849–879, https://doi.org/10.5194/cp-15-849-2019, 2019.
Kageyama, M., Albani, S., Braconnot, P., Harrison, S. P., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Marti, O., Peltier, W. R., Peterschmitt, J.-Y., Roche, D. M., Tarasov, L., Zhang, X., Brady, E. C., Haywood, A. M., LeGrande, A. N., Lunt, D. J., Mahowald, N. M., Mikolajewicz, U., Nisancioglu, K. H., Otto-Bliesner, B. L., Renssen, H., Tomas, R. A., Zhang, Q., Abe-Ouchi, A., Bartlein, P. J., Cao, J., Li, Q., Lohmann, G., Ohgaito, R., Shi, X., Volodin, E., Yoshida, K., Zhang, X., and Zheng, W.: The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments, Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, 2017.
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J.
L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T. H.: A global ocean
carbon climatology: Results from Global Data Analysis Project (GLODAP),
Global Biogeochem. Cy., 18, GB4031, https://doi.org/10.1029/2004GB002247, 2004.
Khatiwala, S., Schmittner, A., and Muglia, J.: Air-sea disequilibrium
enhances ocean carbon storage during glacial periods, Sci. Adv., 5,
eaaw4981, https://doi.org/10.1126/sciadv.aaw4981, 2019.
Klaas, C. and Archer, D. E.: Association of sinking organic matter with
various types of mineral ballast in the deep sea: Implications for the rain
ratio, Global Biogeochem. Cy., 16, 1116, https://doi.org/10.1029/2001gb001765, 2002.
Kleypas, J. A.: Modeled estimates of global reef habitat and carbonate
production since the last glacial maximum, Paleoceanography, 12, 533–545,
https://doi.org/10.1029/97PA01134, 1997.
Klockmann, M., Mikolajewicz, U., and Marotzke, J.: The effect of greenhouse gas concentrations and ice sheets on the glacial AMOC in a coupled climate model, Clim. Past, 12, 1829–1846, https://doi.org/10.5194/cp-12-1829-2016, 2016.
Kobayashi, H., Abe-Ouchi, A., and Oka, A.: Role of Southern Ocean
stratification in glacial atmospheric CO2 reduction evaluated by a
three-dimensional ocean general circulation model, Paleoceanography, 30,
1202–1216, https://doi.org/10.1002/2015pa002786, 2015.
Kobayashi, H. and Oka, A.: Response of Atmospheric pCO2 to Glacial Changes in the Southern Ocean Amplified by Carbonate Compensation,
Paleoceanogr. Paleoclimatol., 33, 1206–1229, https://doi.org/10.1029/2018pa003360,
2018.
Kohfeld, K. E., Quéré, C. L., Harrison, S. P., and Anderson, R. F.:
Role of Marine Biology in Glacial-Interglacial CO2 Cycles, Science,
308, 74–78, https://doi.org/10.1126/science.1105375, 2005.
Kurahashi-Nakamura, T., Paul, A., and Losch, M.: Dynamical reconstruction of
the global ocean state during the Last Glacial Maximum, Paleoceanography,
32, 326–350, https://doi.org/10.1002/2016PA003001, 2017.
Lambert, F., Tagliabue, A., Shaffer, G., Lamy, F., Winckler, G., Farias, L., Gallardo, L., and De Pol‐Holz, R.: Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates, Geophys. Res. Lett., 42, 6014–6023, https://doi.org/10.1002/2015GL064250, 2015.
Lamy, F., Gersonde, R., Winckler, G., Esper, O., Jaeschke, A., Kuhn, G.,
Ullermann, J., Martinez-Garcia, A., Lambert, F., and Kilian, R.: Increased
Dust Deposition in the Pacific Southern Ocean During Glacial Periods,
Science, 343, 403–407, https://doi.org/10.1126/science.1245424, 2014.
Lamy, F., Arz, H. W., Kilian, R., Lange, C. B., Lembke-Jene, L., Wengler,
M., Kaiser, J., Baeza-Urrea, O., Hall, I. R., Harada, N., and Tiedemann, R.:
Glacial reduction and millennial-scale variations in Drake Passage
throughflow, P. Natl Acad. Sci. USA, 112, 13496, https://doi.org/10.1073/pnas.1509203112, 2015.
Large, W. G. and Yeager, S. G.: Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies, Tech. Note NCAR/TN-460+STR, National Center of Atmospheric Research, Boulder, Colorado, USA, available at: https://opensky.ucar.edu/islandora/object/technotes:434 (last acceess: 6 Febraury 2021), 2004.
Laws, E. A., Bidigare, R., R., and Popp, B. N.: Effects of growth rate and
CO2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum, Limnol. Oceanogr., 42, 1552–1560,
https://doi.org/10.4319/lo.1997.42.7.1552, 1997.
Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. S., and Fairbanks, R. G.:
The influence of air-sea exchange on the isotopic composition of oceanic
carbon: Observations and modeling, Global Biogeochem. Cy., 9, 653–665,
https://doi.org/10.1029/95GB02574, 1995.
Lynch-Stieglitz, J., Adkins, J. F., Curry, W. B., Dokken, T., Hall, I. R.,
Herguera, J. C., Hirschi, J. J. M., Ivanova, E. V., Kissel, C., Marchal, O., Marchitto, T. M., McCave, I. N., McManus, J. F., Mulitza, S., Ninnemann, U., Peeters, F., Yu, E.-F., and Zahn, R.: Atlantic Meridional Overturning Circulation During the Last Glacial Maximum, Science, 316, 66–69, https://doi.org/10.1126/science.1137127, 2007.
Lynch-Stieglitz, J., Ito, T., and Michel, E.: Antarctic density
stratification and the strength of the circumpolar current during the Last
Glacial Maximum, Paleoceanography, 31, 539–552, https://doi.org/10.1002/2015PA002915, 2016.
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender, C. S., and Luo, C.: Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates, J. Geophys. Res.-Atmos., 111, D10202,
https://doi.org/10.1029/2005JD006653, 2006.
Maier-Reimer, E.: Geochemical cycles in an ocean general circulation model.
Preindustrial tracer distributions, Global Biogeochem. Cy., 7,
645–677, https://doi.org/10.1029/93GB01355, 1993.
Maier-Reimer, E., Kriest, I., Segschneider, J., and Wetzel, P.: The Hamburg
Oceanic Carbon Cycle Circulation model HAMOCC5.1 – Technical Description
Release 1.1, Max Planck Institute for Meteorology, Hamburg, Germany, 2005.
Marchitto, T. M. and Broecker, W. S.: Deep water mass geometry in the
glacial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca, Geochem. Geophy. Geosy., 7, Q12003, https://doi.org/10.1029/2006GC001323, 2006.
MARGO Project Members: Constraints on the magnitude and patterns of ocean
cooling at the Last Glacial Maximum, Nat. Geosci., 2, 127,
https://doi.org/10.1038/ngeo411, 2009.
Mari, X., Passow, U., Migon, C., Burd, A. B., and Legendre, L.: Transparent
exopolymer particles: Effects on carbon cycling in the ocean, Prog.
Oceanogr., 151, 13–37, https://doi.org/10.1016/j.pocean.2016.11.002, 2017.
Mariotti, V., Paillard, D., Bopp, L., Roche, D. M., and Bouttes, N.: A
coupled model for carbon and radiocarbon evolution during the last
deglaciation, Geophys. Res. Lett., 43, 1306–1313,
https://doi.org/10.1002/2015GL067489, 2016.
Marzocchi, A. and Jansen, M. F.: Connecting Antarctic sea ice to deep-ocean
circulation in modern and glacial climate simulations, Geophys. Res.
Lett., 44, 6286–6295, https://doi.org/10.1002/2017GL073936, 2017.
Marzocchi, A. and Jansen, M. F.: Global cooling linked to increased glacial
carbon storage via changes in Antarctic sea ice, Nat. Geosci., 12,
1001–1005, https://doi.org/10.1038/s41561-019-0466-8, 2019.
Mazaud, A., Michel, E., Dewilde, F., and Turon, J. L.: Variations of the
Antarctic Circumpolar Current intensity during the past 500 ka,
Geochem. Geophy. Geosy., 11, Q08007, https://doi.org/10.1029/2010GC003033, 2010.
McCarthy, G. D., Smeed, D. A., Johns, W. E., Frajka-Williams, E., Moat, B.
I., Rayner, D., Baringer, M. O., Meinen, C. S., Collins, J., and Bryden, H.
L.: Measuring the Atlantic Meridional Overturning Circulation at
26∘ N, Prog. Oceanogr., 130, 91–111,
https://doi.org/10.1016/j.pocean.2014.10.006, 2015.
McCave, I. N., Crowhurst, S. J., Kuhn, G., Hillenbrand, C. D., and Meredith, M. P.: Minimal change in Antarctic Circumpolar Current flow speed between the last glacial and Holocene, Nat. Geosci., 7, 113–116, https://doi.org/10.1038/ngeo2037, 2013.
McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D., and
Brown-Leger, S.: Collapse and rapid resumption of Atlantic meridional
circulation linked to deglacial climate changes, Nature, 428, 834–837,
https://doi.org/10.1038/nature02494, 2004.
Mendes, P. A. D. and Thomsen, L.: Effects of Ocean Acidification on the
Ballast of Surface Aggregates Sinking through the Twilight Zone, Plos One,
7, e50865, https://doi.org/10.1371/journal.pone.0050865, 2012.
Menviel, L., Yu, J., Joos, F., Mouchet, A., Meissner, K. J., and England, M. H.: Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study, Paleoceanography, 32, 2–17, https://doi.org/10.1002/2016pa003024, 2017.
Menviel, L. C., Spence, P., Skinner, L. C., Tachikawa, K., Friedrich, T.,
Missiaen, L., and Yu, J.: Enhanced Mid-depth Southward Transport in the
Northeast Atlantic at the Last Glacial Maximum Despite a Weaker AMOC,
Paleoceanogr. Paleoclimatol., 35, e2019PA003793, https://doi.org/10.1029/2019PA003793, 2020.
Milliman, J. D.: Production and accumulation of calcium carbonate in the
ocean: Budget of a nonsteady state, Global Biogeochem. Cy., 7,
927–957, https://doi.org/10.1029/93GB02524, 1993.
Mitchell, D., AchutaRao, K., Allen, M., Bethke, I., Beyerle, U., Ciavarella, A., Forster, P. M., Fuglestvedt, J., Gillett, N., Haustein, K., Ingram, W., Iversen, T., Kharin, V., Klingaman, N., Massey, N., Fischer, E., Schleussner, C.-F., Scinocca, J., Seland, Ø., Shiogama, H., Shuckburgh, E., Sparrow, S., Stone, D., Uhe, P., Wallom, D., Wehner, M., and Zaaboul, R.: Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design, Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, 2017.
Molina-Kescher, M., Frank, M., Tapia, R., Ronge, T. A., Nürnberg, D.,
and Tiedemann, R.: Radiogenic neodymium, strontium and lead isotopes of
authigenic and detrital sedimentary phases and stable oxygen and carbon
isotopes of benthic foraminifera from gravity cores SO213-59-2 and
SO213-60-1 (central South Pacific), PANGAEA, https://doi.org/10.1594/PANGAEA.861362, 2016.
Mook, W. G.: 13C in atmospheric CO2, Neth. J. Sea Res., 20, 211–223, https://doi.org/10.1016/0077-7579(86)90043-8, 1986.
Morée, A. and Schwinger, J.: Last Glacial Maximum minus pre-industrial anomaly fields for use in forced ocean modelling, based on PMIP3, Norstore, https://doi.org/10.11582/2019.00011, 2019.
Morée, A. L. and Schwinger, J.: A Last Glacial Maximum forcing dataset for ocean modelling, Earth Syst. Sci. Data, 12, 2971–2985, https://doi.org/10.5194/essd-12-2971-2020, 2020.
Morée, A. L., Schwinger, J., and Heinze, C.: Southern Ocean controls of the vertical marine δ13C gradient – a modelling study, Biogeosciences, 15, 7205–7223, https://doi.org/10.5194/bg-15-7205-2018, 2018.
Morée, A., Schwinger, J., Bethke, I., and Heinze, C.: Ocean output of
NorESM-OC simulation of the Pre-Industrial control (∼1850), Dataset, Norstore, https://doi.org/10.11582/2020.00061, 2020a.
Morée, A., Schwinger, J., Bethke, I., and Heinze, C.: Ocean output of
NorESM-OC simulation of the Last Glacial Maximum (21 kya), Data set,
Norstore, https://doi.org/10.11582/2020.00062, 2020b.
Moy, A. D., Palmer, M. R., Howard, W. R., Bijma, J., Cooper, M. J., Calvo,
E., Pelejero, C., Gagan, M. K., and Chalk, T. B.: Varied contribution of the
Southern Ocean to deglacial atmospheric CO2 rise, Nat. Geosci., 12, 1006–1011, https://doi.org/10.1038/s41561-019-0473-9, 2019.
Muglia, J. and Schmittner, A.: Glacial Atlantic overturning increased by
wind stress in climate models, Geophys. Res. Lett., 42, 9862–9868,
https://doi.org/10.1002/2015gl064583, 2015.
Muglia, J., Skinner, L. C., and Schmittner, A.: Weak overturning circulation
and high Southern Ocean nutrient utilization maximized glacial ocean carbon,
Earth Planet. Sci. Lett., 496, 47–56, https://doi.org/10.1016/j.epsl.2018.05.038,
2018.
Müller, J. and Joos, F.: Global peatland area and carbon dynamics from the Last Glacial Maximum to the present – a process-based model investigation, Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020, 2020.
Müller, S. A., Joos, F., Edwards, N. R., and Stocker, T. F.: Water Mass
Distribution and Ventilation Time Scales in a Cost-Efficient,
Three-Dimensional Ocean Model, J. Climate, 19, 5479–5499,
https://doi.org/10.1175/JCLI3911.1, 2006.
Nadeau, L.-P., Ferrari, R., and Jansen, M. F.: Antarctic Sea Ice Control on
the Depth of North Atlantic Deep Water, J. Climate, 32, 2537–2551,
https://doi.org/10.1175/JCLI-D-18-0519.1, 2019.
Oka, A., Abe-Ouchi, A., Chikamoto, M. O., and Ide, T.: Mechanisms
controlling export production at the LGM: Effects of changes in oceanic
physical fields and atmospheric dust deposition, Global Biogeochem.
Cy., 25, GB2009, https://doi.org/10.1029/2009GB003628, 2011.
Oliver, K. I. C., Hoogakker, B. A. A., Crowhurst, S., Henderson, G. M., Rickaby, R. E. M., Edwards, N. R., and Elderfield, H.: A synthesis of marine sediment core δ13C data over the last 150 000 years, Clim. Past, 6, 645–673, https://doi.org/10.5194/cp-6-645-2010, 2010.
Oppo, D. W., Gebbie, G., Huang, K.-F., Curry, W. B., Marchitto, T. M., and
Pietro, K. R.: Data Constraints on Glacial Atlantic Water Mass Geometry and
Properties, Paleoceanogr. Paleoclimatol., 33, 1013–1034,
https://doi.org/10.1029/2018PA003408, 2018.
Ödalen, M., Nycander, J., Oliver, K. I. C., Brodeau, L., and Ridgwell, A.: The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model, Biogeosciences, 15, 1367–1393, https://doi.org/10.5194/bg-15-1367-2018, 2018.
Ödalen, M., Nycander, J., Ridgwell, A., Oliver, K. I. C., Peterson, C. D., and Nilsson, J.: Variable C P composition of organic production and its effect on ocean carbon storage in glacial-like model simulations, Biogeosciences, 17, 2219–2244, https://doi.org/10.5194/bg-17-2219-2020, 2020.
Peterson, C. D., Lisiecki, L. E., and Stern, J. V.: Deglacial whole-ocean
δ13C change estimated from 480 benthic foraminiferal records, Paleoceanography, 29, 549–563, https://doi.org/10.1002/2013PA002552, 2014.
Primeau, F. W., Holzer, M., and DeVries, T.: Southern Ocean nutrient
trapping and the efficiency of the biological pump, J. Geophys.
Res.-Oceans, 118, 2547–2564, https://doi.org/10.1002/jgrc.20181, 2013.
Rae, J. W. B., Burke, A., Robinson, L. F., Adkins, J. F., Chen, T., Cole,
C., Greenop, R., Li, T., Littley, E. F. M., Nita, D. C., Stewart, J. A., and Taylor, B. J.: CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales, Nature, 562, 569–573,
https://doi.org/10.1038/s41586-018-0614-0, 2018.
Rahmstorf, S.: On the freshwater forcing and transport of the Atlantic
thermohaline circulation, Clim. Dynam., 12, 799–811,
https://doi.org/10.1007/s003820050144, 1996.
Ridgwell, A. J., Watson, A. J., Maslin, M. A., and Kaplan, J. O.:
Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum, Paleoceanography, 18, 1083, https://doi.org/10.1029/2003PA000893, 2003.
Ritz, S. P., Stocker, T. F., and Joos, F.: A Coupled Dynamical Ocean–Energy Balance Atmosphere Model for Paleoclimate Studies, J. Climate, 24, 349–375, 2011.
Roche, D. M., Crosta, X., and Renssen, H.: Evaluating Southern Ocean sea-ice for the Last Glacial Maximum and pre-industrial climates: PMIP-2 models and data evidence, Quaternary Sci. Rev., 56, 99–106,
https://doi.org/10.1016/j.quascirev.2012.09.020, 2012.
Roth, R., Ritz, S. P., and Joos, F.: Burial-nutrient feedbacks amplify the sensitivity of atmospheric carbon dioxide to changes in organic matter remineralisation, Earth Syst. Dynam., 5, 321–343, https://doi.org/10.5194/esd-5-321-2014, 2014.
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P.:
High-latitude controls of thermocline nutrients and low latitude biological
productivity, Nature, 427, 56–60, https://doi.org/10.1038/nature02127, 2004.
Sarmiento, J. L. and Gruber, N.: Ocean biogeochemical dynamics, Princeton
University Press, Princeton, 2006.
Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A.,
Chappellaz, J., Köhler, P., Joos, F., Stocker, T. F., Leuenberger, M.,
and Fischer, H.: Carbon Isotope Constraints on the Deglacial CO2 Rise
from Ice Cores, Science, 336, 711–714, https://doi.org/10.1126/science.1217161, 2012.
Schmittner, A., Gruber, N., Mix, A. C., Key, R. M., Tagliabue, A., and Westberry, T. K.: Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean, Biogeosciences, 10, 5793–5816, https://doi.org/10.5194/bg-10-5793-2013, 2013.
Schmittner, A. and Somes, C. J.: Complementary constraints from carbon
(13C) and nitrogen (15N) isotopes on the glacial ocean's
soft-tissue biological pump, Paleoceanography, 31, 669–693,
https://doi.org/10.1002/2015PA002905, 2016.
Schwinger, J., Goris, N., Tjiputra, J. F., Kriest, I., Bentsen, M., Bethke, I., Ilicak, M., Assmann, K. M., and Heinze, C.: Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1), Geosci. Model Dev., 9, 2589–2622, https://doi.org/10.5194/gmd-9-2589-2016, 2016.
Sueyoshi, T., Ohgaito, R., Yamamoto, A., Chikamoto, M. O., Hajima, T., Okajima, H., Yoshimori, M., Abe, M., O'ishi, R., Saito, F., Watanabe, S., Kawamiya, M., and Abe-Ouchi, A.: Set-up of the PMIP3 paleoclimate experiments conducted using an Earth system model, MIROC-ESM, Geosci. Model Dev., 6, 819–836, https://doi.org/10.5194/gmd-6-819-2013, 2013
Siegenthaler, U. and Oeschger, H.: Biospheric CO2 emissions during the
past 200 years reconstructed by deconvolution of ice core data, Tellus B,
39B, 140–154, https://doi.org/10.1111/j.1600-0889.1987.tb00278.x, 1987.
Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in
atmospheric carbon dioxide, Nature, 407, 859–869, https://doi.org/10.1038/35038000, 2000.
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial
cycles in atmospheric CO2 concentration, Nature, 466, 47–55,
https://doi.org/10.1038/nature09149, 2010.
Sikes, E. L., Elmore, A. C., Allen, K. A., Cook, M. S., and Guilderson, T.
P.: Glacial water mass structure and rapid δ18O and δ13C changes during the last glacial termination in the Southwest
Pacific, Earth Planet. Sci. Lett., 456, 87–97,
https://doi.org/10.1016/j.epsl.2016.09.043, 2016.
Skinner, L. C., Primeau, F., Freeman, E., de la Fuente, M., Goodwin, P. A.,
Gottschalk, J., Huang, E., McCave, I. N., Noble, T. L., and Scrivner, A. E.: Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2, Nat. Commun., 8, 16010, https://doi.org/10.1038/ncomms16010,
2017.
Spence, J. P., Eby, M., and Weaver, A. J.: The Sensitivity of the Atlantic
Meridional Overturning Circulation to Freshwater Forcing at Eddy-Permitting
Resolutions, J. Climate, 21, 2697–2710, https://doi.org/10.1175/2007JCLI2103.1,
2008.
Srokosz, M. A. and Bryden, H. L.: Observing the Atlantic Meridional
Overturning Circulation yields a decade of inevitable surprises, Science,
348, 1255575, https://doi.org/10.1126/science.1255575, 2015.
Stein, K., Timmermann, A., Kwon, E. Y., and Friedrich, T.: Timing and
magnitude of Southern Ocean sea ice/carbon cycle feedbacks, P.
Natl. Acad. Sci. USA, 117, 4498, https://doi.org/10.1073/pnas.1908670117, 2020.
Stephens, B. B. and Keeling, R. F.: The influence of Antarctic sea ice on
glacial–interglacial CO2 variations, Nature, 404, 171–174,
https://doi.org/10.1038/35004556, 2000.
Takahashi, T., Broecker, W. S., and Langer, S.: Redfield ratio based on
chemical data from isopycnal surfaces, J. Geophys. Res.-Oceans, 90, 6907–6924, https://doi.org/10.1029/JC090iC04p06907, 1985.
Tagliabue, A., Bopp, L., Roche, D. M., Bouttes, N., Dutay, J.-C., Alkama, R., Kageyama, M., Michel, E., and Paillard, D.: Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum, Clim. Past, 5, 695–706, https://doi.org/10.5194/cp-5-695-2009, 2009.
Tamburini, F. and Föllmi, K. B.: Phosphorus burial in the ocean over glacial-interglacial time scales, Biogeosciences, 6, 501–513, https://doi.org/10.5194/bg-6-501-2009, 2009.
Tjiputra, J. F., Roelandt, C., Bentsen, M., Lawrence, D. M., Lorentzen, T., Schwinger, J., Seland, Ø., and Heinze, C.: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM), Geosci. Model Dev., 6, 301–325, https://doi.org/10.5194/gmd-6-301-2013, 2013.
Tjiputra, J. F., Schwinger, J., Bentsen, M., Morée, A. L., Gao, S., Bethke, I., Heinze, C., Goris, N., Gupta, A., He, Y.-C., Olivié, D., Seland, Ø., and Schulz, M.: Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2), Geosci. Model Dev., 13, 2393–2431, https://doi.org/10.5194/gmd-13-2393-2020, 2020.
Tschumi, T., Joos, F., Gehlen, M., and Heinze, C.: Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise, Clim. Past, 7, 771–800, https://doi.org/10.5194/cp-7-771-2011, 2011.
Umling, N. E., Thunell, R. C., and Bizimis, M.: Deepwater Expansion and Enhanced Remineralization in the Eastern Equatorial Pacific During the Last Glacial Maximum, Paleoceanogr. Paleoclimatol., 33, 563–578, https://doi.org/10.1029/2017PA003221, 2018.
Vecsei, A. and Berger, W. H.: Increase of atmospheric CO2 during
deglaciation: Constraints on the coral reef hypothesis from patterns of
deposition, Global Biogeochem. Cy., 18, GB1035, https://doi.org/10.1029/2003GB002147,
2004.
Volk, T. and Hoffert, M. I.: Ocean Carbon Pumps: Analysis of Relative
Strengths and Efficiencies in Ocean-Driven Atmospheric CO2 Changes, in: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, edited by: Sundquist, E. and Broecker, W., American Geophysical Union (AGU), https://doi.org/10.1029/GM032p0099, 1985.
Weber, S. L., Drijfhout, S. S., Abe-Ouchi, A., Crucifix, M., Eby, M., Ganopolski, A., Murakami, S., Otto-Bliesner, B., and Peltier, W. R.: The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations, Clim. Past, 3, 51–64, https://doi.org/10.5194/cp-3-51-2007, 2007.
Winckler, G., Anderson, R. F., Jaccard, S. L., and Marcantonio, F.: Ocean
dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years, P. Natl. Acad. Sci. USA, 113, 6119, https://doi.org/10.1073/pnas.1600616113, 2016.
Winguth, A. M. E., Archer, D., Duplessy, J. C., Maier-Reimer, E., and
Mikolajewicz, U.: Sensitivity of paleonutrient tracer distributions and
deep-sea circulation to glacial boundary conditions, Paleoceanography, 14,
304–323, https://doi.org/10.1029/1999PA900002, 1999.
Yamamoto, A., Abe-Ouchi, A., Ohgaito, R., Ito, A., and Oka, A.: Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust, Clim. Past, 15, 981–996, https://doi.org/10.5194/cp-15-981-2019, 2019.
Yu, J., Menviel, L., Jin, Z. D., Thornalley, D. J. R., Barker, S., Marino,
G., Rohling, E. J., Cai, Y., Zhang, F., Wang, X., Dai, Y., Chen, P., and
Broecker, W. S.: Sequestration of carbon in the deep Atlantic during the
last glaciation, Nat. Geosci., 9, 319–324, https://doi.org/10.1038/ngeo2657, 2016.
Yu, J., Menviel, L., Jin, Z. D., Thornalley, D. J. R., Foster, G. L.,
Rohling, E. J., McCave, I. N., McManus, J. F., Dai, Y., Ren, H., He, F.,
Zhang, F., Chen, P. J., and Roberts, A. P.: More efficient North Atlantic
carbon pump during the Last Glacial Maximum, Nat. Commun., 10,
2170, https://doi.org/10.1038/s41467-019-10028-z, 2019.
Zeebe, R. and Wolf-Gladrow, D.: CO2 in Seawater: Equilibrium,
Kinetics, Isotopes, Elsevier Oceanography Series, edited by: Halpern, D.,
Elsevier Science B. V., Amsterdam, The Netherlands, 346 pp., 2001.
Zhang, J., Quay, P. D., and Wilbur, D. O.: Carbon isotope fractionation
during gas-water exchange and dissolution of CO2, Geochim.
Cosmochim. Ac., 59, 107–114, https://doi.org/10.1016/0016-7037(95)91550-D, 1995.
Zhu, J., Otto-Bliesner, B. L., Brady, E. C., Poulsen, C. J., Tierney, J. E., Lofverstrom, M., and DiNezio, P.: Assessment of equilibrium climate
sensitivity of the Community Earth System Model version 2 through simulation of the Last Glacial Maximum, Geophys. Res. Lett., 48,
e2020GL091220, https://doi.org/10.1029/2020GL091220, 2021.
Ziegler, M., Diz, P., Hall, I. R., and Zahn, R.: Millennial-scale changes in atmospheric CO2 levels linked to the Southern Ocean carbon isotope
gradient and dust flux, Nat. Geosci., 6, 457, https://doi.org/10.1038/ngeo1782, 2013.
Short summary
This modeling study of the Last Glacial Maximum (LGM, ~ 21 000 years ago) ocean explores the biological and physical changes in the ocean needed to satisfy marine proxy records, with a focus on the carbon isotope 13C. We estimate that the LGM ocean may have been up to twice as efficient at sequestering carbon and nutrients at depth as compared to preindustrial times. Our work shows that both circulation and biogeochemical changes must have occurred between the LGM and preindustrial times.
This modeling study of the Last Glacial Maximum (LGM, ~ 21 000 years ago) ocean explores the...