Articles | Volume 17, issue 1
https://doi.org/10.5194/cp-17-379-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-379-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Response of biological productivity to North Atlantic marine front migration during the Holocene
David J. Harning
CORRESPONDING AUTHOR
Faculty of Earth Sciences, University of Iceland, Reykjavík, Iceland
Institute of Arctic and Alpine Research, University of Colorado, Boulder, USA
Department of Geological Sciences, University of Colorado, Boulder, USA
Anne E. Jennings
Institute of Arctic and Alpine Research, University of Colorado, Boulder, USA
Department of Geological Sciences, University of Colorado, Boulder, USA
Denizcan Köseoğlu
Biogeochemistry Research Centre, Plymouth University, Plymouth, UK
Simon T. Belt
Biogeochemistry Research Centre, Plymouth University, Plymouth, UK
Áslaug Geirsdóttir
Faculty of Earth Sciences, University of Iceland, Reykjavík, Iceland
Julio Sepúlveda
Institute of Arctic and Alpine Research, University of Colorado, Boulder, USA
Department of Geological Sciences, University of Colorado, Boulder, USA
Related authors
David J. Harning, Christopher R. Florian, Áslaug Geirsdóttir, Thor Thordarson, Gifford H. Miller, Yarrow Axford, and Sædís Ólafsdóttir
Clim. Past, 21, 795–815, https://doi.org/10.5194/cp-21-795-2025, https://doi.org/10.5194/cp-21-795-2025, 2025
Short summary
Short summary
Questions remain about the past climate in Iceland, including the relative impacts of natural and human factors on vegetation change and soil erosion. We present a sub-centennial-scale record of landscape and algal productivity from a lake in north Iceland. Along with a high-resolution tephra age constraint that covers the last ∼ 12 000 years, our record provides an environmental template for the region and novel insight into the sensitivity of the Icelandic ecosystem to natural and human impacts.
David J. Harning, Jonathan H. Raberg, Jamie M. McFarlin, Yarrow Axford, Christopher R. Florian, Kristín B. Ólafsdóttir, Sebastian Kopf, Julio Sepúlveda, Gifford H. Miller, and Áslaug Geirsdóttir
Hydrol. Earth Syst. Sci., 28, 4275–4293, https://doi.org/10.5194/hess-28-4275-2024, https://doi.org/10.5194/hess-28-4275-2024, 2024
Short summary
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes, streams, and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
Nicolò Ardenghi, David J. Harning, Jonathan H. Raberg, Brooke R. Holman, Thorvaldur Thordarson, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Clim. Past, 20, 1087–1123, https://doi.org/10.5194/cp-20-1087-2024, https://doi.org/10.5194/cp-20-1087-2024, 2024
Short summary
Short summary
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and human activities influenced environmental changes (erosion, wildfires) over the last 11 000 years. We found increased fire activity around 3000 and 1500 years ago, predating human settlement, likely driven by natural factors like precipitation shifts. Declining summer temperatures increased erosion vulnerability, exacerbated by farming and animal husbandry, which in turn may have reduced wildfires.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences, 20, 229–249, https://doi.org/10.5194/bg-20-229-2023, https://doi.org/10.5194/bg-20-229-2023, 2023
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence or absence. Our local temperature calibrations for GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
David Harning, Thor Thordarson, Áslaug Geirsdóttir, Gifford Miller, and Christopher Florian
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-26, https://doi.org/10.5194/gchron-2022-26, 2022
Preprint withdrawn
Short summary
Short summary
Volcanic ash layers are a common tool to synchronize records of past climate, and their estimated age relies on external dating methods. Here, we show that the chemical composition of the well-known, 12000 year-old Vedde Ash is indistinguishable with several other ash layers in Iceland that are ~1000 years younger. Therefore, chemical composition alone cannot be used to identify the Vedde Ash in sedimentary records.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-177, https://doi.org/10.5194/bg-2021-177, 2021
Manuscript not accepted for further review
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence/absence. Our local temperature calibrations for alkenones, GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
David J. Harning, Christopher R. Florian, Áslaug Geirsdóttir, Thor Thordarson, Gifford H. Miller, Yarrow Axford, and Sædís Ólafsdóttir
Clim. Past, 21, 795–815, https://doi.org/10.5194/cp-21-795-2025, https://doi.org/10.5194/cp-21-795-2025, 2025
Short summary
Short summary
Questions remain about the past climate in Iceland, including the relative impacts of natural and human factors on vegetation change and soil erosion. We present a sub-centennial-scale record of landscape and algal productivity from a lake in north Iceland. Along with a high-resolution tephra age constraint that covers the last ∼ 12 000 years, our record provides an environmental template for the region and novel insight into the sensitivity of the Icelandic ecosystem to natural and human impacts.
Babette A.A. Hoogakker, Catherine Davis, Yi Wang, Stephanie Kusch, Katrina Nilsson-Kerr, Dalton S. Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya V. Hess, Katrin J. Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold J. Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix J. Elling, Zeynep Erdem, Helena L. Filipsson, Sebastián Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallmann, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lélia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Reed Raven, Christopher J. Somes, Anja S. Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Xingchen Wang, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
Biogeosciences, 22, 863–957, https://doi.org/10.5194/bg-22-863-2025, https://doi.org/10.5194/bg-22-863-2025, 2025
Short summary
Short summary
Paleo-oxygen proxies can extend current records, constrain pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
David J. Harning, Jonathan H. Raberg, Jamie M. McFarlin, Yarrow Axford, Christopher R. Florian, Kristín B. Ólafsdóttir, Sebastian Kopf, Julio Sepúlveda, Gifford H. Miller, and Áslaug Geirsdóttir
Hydrol. Earth Syst. Sci., 28, 4275–4293, https://doi.org/10.5194/hess-28-4275-2024, https://doi.org/10.5194/hess-28-4275-2024, 2024
Short summary
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes, streams, and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
Joshua Coupe, Nicole S. Lovenduski, Luise S. Gleason, Michael N. Levy, Kristen Krumhardt, Keith Lindsay, Charles Bardeen, Clay Tabor, Cheryl Harrison, Kenneth G. MacLeod, Siddhartha Mitra, and Julio Sepúlveda
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-94, https://doi.org/10.5194/gmd-2024-94, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We develop a new feature in the atmosphere and ocean components of the Community Earth System Model version 2. We have implemented ultraviolet (UV) radiation inhibition of photosynthesis of four marine phytoplankton functional groups represented in the Marine Biogeochemistry Library. The new feature is tested with varying levels of UV radiation. The new feature will enable an analysis of an asteroid impact’s effect on the ozone layer and how that affects the base of the marine food web.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Nicolò Ardenghi, David J. Harning, Jonathan H. Raberg, Brooke R. Holman, Thorvaldur Thordarson, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Clim. Past, 20, 1087–1123, https://doi.org/10.5194/cp-20-1087-2024, https://doi.org/10.5194/cp-20-1087-2024, 2024
Short summary
Short summary
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and human activities influenced environmental changes (erosion, wildfires) over the last 11 000 years. We found increased fire activity around 3000 and 1500 years ago, predating human settlement, likely driven by natural factors like precipitation shifts. Declining summer temperatures increased erosion vulnerability, exacerbated by farming and animal husbandry, which in turn may have reduced wildfires.
Gifford H. Miller, Simon L. Pendleton, Alexandra Jahn, Yafang Zhong, John T. Andrews, Scott J. Lehman, Jason P. Briner, Jonathan H. Raberg, Helga Bueltmann, Martha Raynolds, Áslaug Geirsdóttir, and John R. Southon
Clim. Past, 19, 2341–2360, https://doi.org/10.5194/cp-19-2341-2023, https://doi.org/10.5194/cp-19-2341-2023, 2023
Short summary
Short summary
Receding Arctic ice caps reveal moss killed by earlier ice expansions; 186 moss kill dates from 71 ice caps cluster at 250–450, 850–1000 and 1240–1500 CE and continued expanding 1500–1880 CE, as recorded by regions of sparse vegetation cover, when ice caps covered > 11 000 km2 but < 100 km2 at present. The 1880 CE state approached conditions expected during the start of an ice age; climate models suggest this was only reversed by anthropogenic alterations to the planetary energy balance.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences, 20, 229–249, https://doi.org/10.5194/bg-20-229-2023, https://doi.org/10.5194/bg-20-229-2023, 2023
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence or absence. Our local temperature calibrations for GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
David Harning, Thor Thordarson, Áslaug Geirsdóttir, Gifford Miller, and Christopher Florian
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-26, https://doi.org/10.5194/gchron-2022-26, 2022
Preprint withdrawn
Short summary
Short summary
Volcanic ash layers are a common tool to synchronize records of past climate, and their estimated age relies on external dating methods. Here, we show that the chemical composition of the well-known, 12000 year-old Vedde Ash is indistinguishable with several other ash layers in Iceland that are ~1000 years younger. Therefore, chemical composition alone cannot be used to identify the Vedde Ash in sedimentary records.
Edgart Flores, Sebastian I. Cantarero, Paula Ruiz-Fernández, Nadia Dildar, Matthias Zabel, Osvaldo Ulloa, and Julio Sepúlveda
Biogeosciences, 19, 1395–1420, https://doi.org/10.5194/bg-19-1395-2022, https://doi.org/10.5194/bg-19-1395-2022, 2022
Short summary
Short summary
In this study, we investigate the chemical diversity and abundance of microbial lipids as markers of organic matter sources in the deepest points of the Atacama Trench sediments and compare them to similar lipid stocks in shallower surface sediments and in the overlying water column. We evaluate possible organic matter provenance and some potential chemical adaptations of the in situ microbial community to the extreme conditions of high hydrostatic pressure in hadal realm.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-177, https://doi.org/10.5194/bg-2021-177, 2021
Manuscript not accepted for further review
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence/absence. Our local temperature calibrations for alkenones, GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
Cited articles
Andersen, C., Koç, N., Jennings, A. E., and Andrews, J. T.: Nonuniform
response of the major surface currents in the Nordic Seas to insolation
forcing: Implications for the Holocene climate variability,
Paleoceanography, 19, 1–16, 2004.
Anderson, L. S., Flowers, G. E., Jarosch, A. H., Aðalgeirsdóttir, G.Th., Geirsdóttir, Á., Miller, G. H., Harning, D. J., Thorsteinsson, T., Magnússon, E., and Pálsson, F.: Holocene glacier and climate
variations in Vestfirðir, Iceland, from the modeling of Drangajökull
ice cap, Quaternary Sci. Rev., 190, 39–56, 2018.
Anderson, L. S., Geirsdóttir, Á., Flowers, G. E., Wickert, A. D.,
Aðalgeirsdóttir, G., and Thorsteinsson, Th.: Controls on the
lifespans of Icelandic ice caps, Earth Planet. Sc. Lett., 527, 115780, https://doi.org/10.1016/j.epsl.2019.115780, 2019.
Árnason, R. and Sigfússon, Þ.: Þýðing
sjávarklasans í íslensku efnahagslífi, published by
Islandsbanki, Reykjavík, Iceland, 2012.
Bakker, P., Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D., van
den Broeke, M. R., Chan, W.-L, Hu, A., Beadling, R. L., Marsland, S. J.,
Mernild, S. H., Saenko, O. A., Swingedouw, D., Sullivan, A., and Yin, J.: Fate
of the Atlantic meridional overturning circulation: strong decline under
continued warming and Greenland melting, Geophys. Res. Lett., 43,
12252–12260, 2016.
Belkin, I. M.: Propagation of the “Great Salinity Anomaly” of the 1990s
around the northern North Atlantic, Geophys. Res. Lett., 31, L08306, https://doi.org/10.1029/2003GL019334, 2004.
Belkin, I. M., Cornillon, P. C., and Sherman, K.: Fronts in Large Marine
Ecosystems, Prog. Oceangr., 81, 223–236, 2009.
Belt, S. T.: Source-specific biomarkers as proxies for Arctic and Antarctic
sea ice, Org. Geochem., 125, 277–298, 2018.
Belt, S. T., Allard, W. G., Massé, G., Robert, J.-M., and Rowland, S. J.: Highly branched isoprenoids (HBIs): Identification of the most common
and abundant sedimentary isomers, Geochim. Cosmochim. Ac., 64, 3839–3851, 2000.
Belt, S. T., Cabedo-Sanz, P., Smik, L., Rodriguez-Navarro, A., Berben, S. M. P., Knies, J., and Husum, K.: Identification of paleo Arctic winter sea
ice limits and the marginal ice zone: Optimised biomarker-based
reconstructions of late Quaternary Arctic sea ice, Earth Planet. Sc. Lett.,
431, 127–139, 2015.
Belt, S. T., Brown, T. A., Smik, L., Tatarek, A., Wiktor, J., Stowasser, G.,
Assmy, P., Allen, C. S., and Husum, K.: Identification of C25 highly
branched isoprenoid (HBI) alkenes in diatoms of the genus Rhizosolenia in polar and
sub-polar marine phytoplankton, Org. Geochem., 110, 65–72, 2017.
Belt, S. T., Smik, L., Köseoğlu, D., Knies, J., and Husum, K.: A
novel biomarker-based proxy for the spring phytoplankton bloom in Arctic and
sub-arctic settings – HBI T25, Earth Planet. Sc. Lett., 523, 115703, https://doi.org/10.1016/j.epsl.2019.06.038, 2019.
Bendle, J. A. P. and Rosell-Melé, A.: High-resolution alkenone sea
surface temperature variability on the North Icelandic Shelf: implications
for Nordic Seas palaeoclimatic development during the Holocene, Holocene,
17, 9–24, 2007.
Berger, A. and Loutre, M. F.: Insolation values for the climate of the last
10 million years, Quaternary Sci. Rev., 10, 297–317, 1991.
Bianchi, G. G. and McCave, I. N.: Holocene periodicity in North Atlantic
climate and deep-ocean flow south of Iceland, Nature, 397, 515–517, 1999.
Blaga, C. I., Reichart, G.-J., Heiri, O., and Sinninghe Damsté, J. S.: Tetraether membrane lipid distribution in water- column particulate
matter and sediments: A study from 47 European lakes along a north-south
transect, J. Paleolimnol., 41, 535–540, 2009.
Brassell, S. C., Eglington, G., Marlowe, I. T., Pflaumann, U., and Sarnthein, M.: Molecular stratigraphy: a new tool for climatic assessment, Nature, 320,
129–133, 1986.
Brown, T. A., Belt, S. T., Tatarek, A., and Mundy, C. J.: Source identification
of the Arctic sea ice proxy IP25, Nat. Commun. 5, 1–7, 2014.
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of
the Atlantic Meridional Overturning Circulation: A review, Rev. Geophys.,
54, 5–63, 2015.
Cabedo-Sanz, P., Belt, S. T., Jennings, A. E., Andrews, J. T., and
Geirsdóttir, Á.: Variability in drift ice export from the Arctic
Ocean to the North Icelandic Shelf over the last 8000 years: A multi-proxy
evaluation, Quaternary Sci. Rev., 146, 99–115, 2016.
Davoren, G. K., Montevecchi, W. A., and Anderson, J. T.: Distributional
patterns of a marine bird and its prey: habitat selection based on prey and
conspecific behaviour, Mar. Ecol. Prog. Ser., 256, 229–242, 2003.
Duffield, C. J., Hess, S., Norling, K., and Alve, E.: The response of
Nonionella iridea and other benthic foraminifera to “fresh” organic matter enrichment and
physical disturbance, Mar. Micropaleontol., 120, 20–30, 2015.
Eiríksson, J., Knudsen, K. L., Haflidason, H., and Henriksen, P.:
Late-glacial and Holocene palaeoceanography of the North Icelandic Shelf, J.
Quaternary Sci., 15, 23–42, 2000.
Eiríksson, J., Larsen, G., Knudsen, K. L., Heinemeier, J., and
Símonarson, L. A.: Marine reservoir age variability and water mass
distribution in the Iceland Sea, Quaternary Sci. Rev., 23, 2247–2268, 2004.
Geirsdóttir, Á., Miller, G. H., Andrews, J. T., Harning, D. J., Anderson, L. S., Florian, C., Larsen, D. J., and Thordarson, T.: The onset of neoglaciation in Iceland and the 4.2 ka event, Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, 2019.
Giraudeau, J., Jennings, A. E., and Andrews, J. T.: Timing and mechanisms of
surface and intermediate water circulation changes in the Nordic Sea over
the last 10000 cal years: A view from the North Iceland Shelf, Quaternary Sci.
Rev., 23, 2127–2139, 2004.
Gooday, A. J. and Hughes, J. A.: Foraminifera associated with phytodetritus
deposits at the bathyal site in the northern Rockall Trough (NE Atlantic):
seasonal contrasts and a comparison of stained and dead assemblages, Mar.
Micropaleontol., 46, 83–110, 2002.
Hald, M., Andersson, C., Ebbesen, H., Jansen, E., Klitgaard-Kristensen, D.,
Risebrobakken, B., Salomonsen, G. R., Sarnthein, M., Sejrup, H. P., and Telford, R. J.: Variations in temperature and extent of Atlantic Water in the
northern North Atlantic during the Holocene, Quaternary Sci. Rev., 26, 3423–3440, 2007.
Hall, I. R., Bianchi, G. G., and Evans, J. R.: Centennial to millennial scale
Holocene climate-deep water linkage in the North Atlantic, Quaternary Sci. Rev.,
23, 1529–1536, 2004.
Hanna, E., Jónsson, T., Ólafsson, J., and Valdimarsson, H.:
Icelandic coastal sea surface temperature records constructed: putting the
pulse on air-sea-climate interactions in the northern North Atlantic. Part
I: Comparison with HadISST1 open-ocean surface temperatures and preliminary
analysis of long-term patterns and anomalies of SSTs around Iceland, J.
Climate, 19, 5652–5666, 2006.
Harning, D. J., Geirsdóttir, Á., Miller, G. H., and Anderson, L. S.:
Episodic expansion of Drangajökull, Vestfirðir, Iceland over the
last 3 ka culminating in its maximum dimension during the Little Ice Age,
Quaternary Sci. Rev., 152, 118–131, 2016.
Harning, D. J., Geirsdóttir, Á., and Miller, G. H.: Punctuated
Holocene climate of Vestfirðir, Iceland, linked to internal/external
variables and oceanographic conditions, Quaternary Sci. Rev., 189, 31–42, 2018.
Harning, D. J., Andrews, J. T., Belt, S. T., Cabedo-Sanz, P., Geirsdóttir,
Á., Dildar, N., Miller, G. H., and Sepúlveda, J.: Sea ice control on
winter subsurface temperatures of the North Iceland Shelf during the Little
Ice Age: A TEX86 calibration case study, Paleoceanogr.
Paleoclimatol., 34, 1006–2021, 2019.
Harning, D. J., Curtin, L., Geirsdóttir, Á., D'Andrea, W. J., Miller, G. H., and Sepúlveda, J.: Lipid biomarkers quantify Holocene summer
temperature and ice cap sensitivity in Icelandic lakes. Geophys. Res. Lett.,
47, e2019GL085728, https://doi.org/10.1029/2019GL085728, 2020.
Heron-Allen, E. and Earland, A.: Some new Foraminifera from the South
Atlantic. IV. Four new genera from South Georgia, J. Royal Microscopial
Soc., 52, 253–261, 1932.
Huguet, C., Hopmans, E. C., Febo-Ayala, W., Thompson, D. H., Sinninghe
Damsté, J. S., and Schouten, S.: An improved method to determine the
absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids, Org.
Geochem., 37, 1036–1041, 2006.
Hurley, S. J., Elling, F. J., Könneke, M., Buchwald, C., Wankel, S. D.,
Santoro, A. E., Lipp, J. S., Hinrichs, K.-U., and Pearson, A.: Influence of
ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86
temperature proxy, P. Natl Acad. Sci., 113, 7762–7767, 2016.
Hurrell, J. W., Kushiner, Y., Ottersen, G., and Visbeck, M.: An Overview of
the North Atlantic Oscillation, American Geophysical Union, Washington, DC, USA, 2003.
Jennings, A. E., Hagen, S., Hardardóttir, J., Stein, R., Ogilvie, A. E. J.,
and Jonsdóttir, I.: Oceanographic change and terrestrial human impacts
in a post A. D. 1400 sediment record from the southwest Iceland shelf, Climatic
Change, 48, 83–100, 2001.
Jennings, A. E., Knudsen, K. L., Hald, M., Hansen, C. V., and Andrews, J. T.:
A mid-Holocene shift in Arctic sea-ice variability on the East
Greenland Shelf, Holocene, 12, 49–58, 2002.
Jennings, A. E., Weiner, N. J., Helgadóttir, G., and Andrews, J. T.: Modern
foraminiferal faunas of the southwestern to northern Iceland Shelf:
oceanographic and environmental controls, J. Foramin. Res., 34, 180–207, 2004.
Jiang, H., Muscheler, R., Björck, S., Seidenkrantz, M.-S., Olsen, J.,
Sha, L., Sjolte, J., Eiríksson, J., Ran., L., Knudsen, K.-L., and
Knudsen, M. F.: Solar forcing of Holocene summer sea-surface temperatures in
the northern North Atlantic, Geology, 43, 2–5, 2015.
Johannessen, T., Jansen, E., Flatøy, A., and Ravelo, A. C.: The
Relationship between Surface Water Masses, Oceanographic Fronts and
Paleoclimatic Proxies in Surface Sediments of the Greenland, Iceland,
Norwegian Seas, Carbon Cycling in the Glacial Ocean: Constraints on the
Ocean's Role in Global Change, edited by: Zahn, R., Pedersen, T. F., Kaminski, M. A., and Labeyrie, L., NATO ASI Series (Series I: Global Environmental Change), vol 17, Springer, Berlin, Heidelberg, Germany, https://doi.org/10.1007/978-3-642-78737-9_4, 1994.
Jónsson, S. and Valdimarsson, H.: Water mass transport variability to
the North Iceland Shelf, 1994–2010, ICES J. Mar. Sci., 69, 809–815, 2012.
Justwan, A., Koc, N., and Jennings, A. E.: Evolution of the Irminger and East
Icelandic Current systems through the Holocene, revealed by diatom-based sea
surface temperature reconstructions, Quaternary Sci. Rev., 27, 1571–1582, 2008.
Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V.,
Sangiorgi, F., Koc, N., Hopmans, E. C., and Sinninghe Damsté, J. S.: New
indices and calibrations derived from the distribution of crenarchaeal
isoprenoid tetraether lipids: Implications for past sea surface temperature
reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4653, 2010.
Knudsen, K. L., Jiang, H., Jansen, E., Eiríksson, J., Heinemeier, J.,
and Seidenkrantz, M. S.: Environmental changes off North Iceland during the
deglaciation and the Holocene: foraminifera, diatoms and stable isotopes,
Mar. Micropaleontol., 50, 273–305, 2004.
Koç Karpuz, N. and Schrader, H.: Surface sediment diatom distribution
and Holocene paleotemperature variations in the Greenland, Iceland and
Norwegian Sea, Paleoceanography, 5, 557–580,1990.
Kolling, H. M., Stein, R., Fahl, K., Sadatzki, H., de Vernal, A., and Xiao, X.: Biomarker distributions in (sub)-Arctic surface sediments and their
potential for sea-ice reconstructions, Geochem. Geophy. Geosy., 21,
e2019GC008629, https://doi.org/10.1029/2019GC008629, 2020.
Könneke, M., Bernhard, A. E., de la Torre, J. R., Walker, C. B., Waterbury, J. B., and Stahl, D. A.: Isolation of an autotrophic ammonia-oxidizing marine
archaeon, Nature, 437, 543–546, 2005.
Kristjánsdóttir, G. B., Moros, M., Andrews, J. T., and Jennings, A. E.:
Holocene Mg/Ca, alkenones, and light stable isotope measurements on the
outer North Iceland shelf (MD99–2269): A comparison with other multi-proxy
data and sub-division of the Holocene, Holocene, 26, 55–62, 2017.
Malmberg, S.-A. and Jonsson, S.: Timing of deep convection in the
Greenland and Iceland Seas, ICES J. Mar. Sci., 54, 300–309, 1997.
Minobe, S., Kuwano-Yoshida, A., Komori, N., Xie, S.-P., and Small, R. J.:
Influence of the Gulf Stream on the troposphere, Nature, 452, 206–209,
2008.
Moffa-Sánchez, P. and Hall, I. R.: North Atlantic variability and its
links to European climate over the last 3000 years, Nat. Commun., 8, 1–9,
2017.
Moossen, H., Bendle, J., Seki, O., Quillmann, U., and Kawamura, K.: North
Atlantic Holocene climate evolution recorded by high-resolution terrestrial
and marine biomarker records, Quaternary Sci. Rev., 129, 111–127, 2015.
Moros, M., Andrews, J. T., Eberl, D. D., and Jansen, E.: Holocene history of
drift ice in the northern North Atlantic: Evidence for differential spatial
and temporal modes, Paleoceanography, 21, 1–10, 2006.
Müller, P. J., Kirst, G., Ruhland, G., von Storch, I., and
Rosell-Melé, A.: Calibration of the alkenone paleotemperature index
based on core-tops from the eastern South Atlantic
and the global ocean (60∘ N–60∘ S), Geochim. Cosmochim. Ac., 62,
1757–1772, 1998.
Oksman, M., Juggins, S., Miettinen, A., Witkowski, A., and Weckström, K.: The biogeography and ecology of common diatom species in the northern
North Atlantic, and their implications for paleoceanographic
reconstructions, Mar. Micropaleontol., 148, 1–28, 2019.
Ólafsdóttir, A. H. and Rose, G. A.: Influences of temperature,
bathymetry and fronts on spawning migration routes of Icelandic capelin
(Mallotus villosus), Fish. Oceanogr., 21, 182–198, 2012.
Ólafsson, J.: Connections between oceanic conditions off N-Iceland, Lake
Mývatn temperature, regional wind direction variability and the North
Atlantic oscillation, Rit Fiskideildar, 16, 41–57, 1999.
Olsen, J., Anderson, N. J., and Knudsen, M. F.: Variability of the North
Atlantic Oscillation over the past 5,200 years, Nat. Geosci., 5, 1–14, 2012.
Oppo, D. W., McManus, J. F., and Cullen, J. L.: Deepwater variability in the
Holocene epoch, Nature, 422, 277–278, 2003.
Orme, L. C., Miettinen, A., Divine, D., Husum, K., Pearce, C., Van
Nieuwenhove, N., Born, A., Mohan, R., and Seidenkrantz, M.-S.: Subpolar
North Atlantic sea surface temperature since 6 ka BP: Indications of
anomalous ocean-atmosphere interactions at 4–2 ka BP, Quaternary Sci. Rev., 194,
128–142, 2018.
Pados, T. and Spielhagen, R. F.: Species distribution and depth habitat of
recent planktic foraminifera in Fram Strait, Arctic Ocean, Polar Res., 33,
1–12, 2014.
Perner, K., Moros, M., Jansen, E., Kuijpers, A., Troelstra, S. R., and Prins, M. A.: Subarctic Front migration at the Reykjanes Ridge during the mid-
to late Holocene: Evidence from planktic foraminifera, Boreas, 47, 175–188, 2018.
Perner, K., Moros, M., Otterå, O. H., Blanz, T., Schneider, R. R., and
Jansen, E.: An oceanic perspective on Greenland's recent freshwater
discharge since 1850, Sci. Rep.-UK, 9, 1–10, 2019.
Pflaumann, U., Sarnthein, M., Chapman, M., d'Abreu, L., Funnell, B., Huels, M., Kiefer, M., Maslin, M., Schulz, H., Swallow, J., van Kreveld, S.,
Vautravers, M., Vogelsang, E., and Weinelt, M.: Glacial North Atlantic:
sea-surface conditions reconstructed by GLAMAP 2000, Paleoceanogr.
Paleoclimatol., 18, 1065, https://doi.org/10.1029/2002PA000774, 2003.
Piatt, J. F. and Methven, D. A.: Threshold foraging behaviour of baleen
whales, Mar. Ecol. Prog. Ser., 84, 205–210, 1992.
Prahl, F. G. and Wakeham, S. G.: Calibration of unsaturation in long-chain
ketone compositions for palaeotemperature assessment, Nature, 330, 533–537,
1987.
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., and Schaffernicht, E. J.: Exceptional twentieth-century slowdown in
Atlantic Ocean overturning circulation, Nat. Clim. Change, 5, 475–480, 2015.
Risebrobakken, B., Moros, M., Ivanova, E. V., Chistyakova, N., and Rosenberg, R., 2010: Climate and oceanographic variability in the SW Barents Sea during
the Holocene, Holocene, 20, 609–621.
Rodionov, S. N.: A sequential algorithm for testing climate regime shifts,
Geophys. Res. Lett., 31, L09204, https://doi.org/10.1029/2004GL019448, 2004.
Rodionov, S. N.: Use of prewhitening in climate regime shift detection,
Geophys. Res. Lett., 33, 1–4, 2006.
Rosell-Melé, A., Eglinton, G., Pflaumann, U., and Sarnthein, M.: Atlantic core-top calibration of the UK37 index as a sea-surface
palaeotemperature indicator, Geochim. Cosmochim. Ac., 59, 3099–107, 1995.
Rowland, S. J., Allard, W. G., Belt, S. T., Massé, G., Robert, J. M.,
Blackburn, S., Frampton, D., Revill, A. T., and Volkman, J. K.: Factors
influencing the distributions of polyunsaturated terpenoids in the diatom,
Rhizosolenia setigera, Phytochemistry, 58, 717–728, 2001.
Rytter, F., Knudsen, K. L., Seidenkrantz, M.-S., and
Eiríksson, J.: Modern distribution of benthic foraminifera on the North
Iceland shelf and slope, J. Foramin. Res., 32, 217–244, 2002.
Schlitzer, R.: Ocean Data View, available at: http://odv.awi.de, last access: 1 September 2020.
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic
geochemistry of glycerol dialkyl glycerol tetraether lipids: A review, Org.
Geochem., 54, 19–61, 2013.
Seddon, A. W. R., Froyd, C. A., Witkowski, A., and Willis, K. J.: A quantitative
framework for analysis of regime shifts in a Galápagos coastal lagoon,
Ecology, 95, 3046–3055, 2014.
Sejrup, H. P., Birks, H. J. B., Kristensen, D. K., and Madsen, H.: Benthonic
foraminiferal distributions and quantitative transfer functions for the
northwest European continental margin, Mar. Micropaleontol., 53, 197–226,
2004.
Semper, S., Våge, K., Pickart, R. S., Valdimarsson, H., Torres, D. J., and
Jónsson, S.: The emergence of the North Icelandic Jet and its
evolution from Northeast Iceland to Denmark Strait, J. Phys. Oceanogr., 49,
2499–2521, 2019.
Semper, S., Pickart, R. S., Våge, K., Larsen, K. M. H., Hátún, H.,
and Hansen, B.: The Iceland-Faroe Slope Jet: a conduit for dense water
toward the Faroe Bank Channel overlow, Nat. Commun., 11, 1–10, 2020.
Simon, M. H., Muschitiello, F., Tisserand, A. A., Olsen, A., Moros, M.,
Perner, K., Bardsnes, S. T., Dokken,T.M., and Jansen, E.: A multi-decadal
record of oceanographic changes of the past ∼165 years
(1850–2015 AD) from Northwest of Iceland, PLoS ONE, 15, e0239373, https://doi.org/10.1371/journal.pone.0239373, 2020.
Small, R. J., deSzoeke, S. P., Xie, S. P., O'Neill, L., Seo, H., Song, Q.,
Cornillon, P., Spall, M., and Minobe, S.: Air–sea interaction over ocean
fronts and eddies, Dynam. Atmos. Ocean., 45, 274–319, 2008.
Solignac, S., Giraudeau, J., and de Vernal, A.: Holocene sea surface
conditions in the western North Atlantic: Spatial and temporal
heterogeneities, Paleoceanography, 21, 1–6, 2006.
Stefánsson, U.: North Icelandic Waters, Rit Fiskideildar, Atvinnudeild Haskolans, Reykjavik, Iceland, 3, 1–265, 1962.
Stefánsson, U. and Ólafsson, J.: Nutrients and fertility of
Icelandic waters, Rit fiskideildar, Marine Research Insitute, Reykjavik, Iceland, 1–56, 1991.
Stoner, J. S., Jennings, A., Kristjánsdóttir, G. B., Dunhill, G., Andrews, J. T., and Hardardóttir, J.: A
paleomagnetic approach toward refining Holocene radiocarbon-based
chronologies: Paleoceanographic records from the north Iceland (MD99-2269)
and east Greenland (MD99-2322) margins, Paleoceanography, 22, 1–23, 2007.
Swift, J. H. and Aagaard, K.: Seasonal transitions and water mass formation
in the Iceland and Greenland seas, Deep-Sea Res., 28A, 1107–1129, 1981.
Thordardóttir, T.: Primary production north of Iceland in relation to
water masses in May–June 1970–1989, International Council for the Exploration of the Sea CM 1984/L:20, 17 pp., 1984.
Thornalley, D. J. R., Elderfield, H., and McCave, I. N.: Holocene oscillations
in temperature and salinity of the surface subpolar North Atlantic, Nature,
457, 711–714, 2009.
Thornalley, D. J. R., Blaschek, M., Davies, F. J., Praetorius, S., Oppo, D. W., McManus, J. F., Hall, I. R., Kleiven, H., Renssen, H., and McCave, I. N.: Long-term variations in Iceland–Scotland overflow strength during the Holocene, Clim. Past, 9, 2073–2084, https://doi.org/10.5194/cp-9-2073-2013, 2013.
Våge, K., Pickart, R. S., Spall, M. A., Valdimarsson, H., Jónsson, S., Torres, D. J., Østerhus, S., and Eldevik, T.: Significant role of the
North Icelandic Jet in the formation of Denmark Strait overflow water, Nat.
Geosci., 4, 723–727, 2011.
Våge, K., Pickart, R. S., Spall, M. A., Moore, G. W. K., Valdimarsson, H.,
Torres, D. J., Erofeeva, S. Y., and Nilsen, J. E.Ø.: Revised
circulation scheme north of the Denmark Strait, Deep-Sea Res. Pt. I, 79, 20–39, 2013.
Vilhjálmsson, H.: Capelin (Mallotus villosus) in the Ice-land–East Greenland–Jan Mayen
ecosystem, ICES J. Mar. Sci., 59, 870–883, 2002.
Volkmann, R.: Planktic foraminifers in the outer Laptev Sea and the Fram
Strait – modern distribution and ecology, J. Foramin. Res., 30, 157–176,
2000.
Walker, M., Head, M. J., Lowe, J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar, L. C., Fisher, D., Gkinis, V., Long, A., Newnham, R., Rasmussen, S. O., and Weiss, H.: Subdividing the Holocene Series/Epoch: formalization of
stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary
stratotypes, J. Quaternary Sci., 34, 173–186, 2019.
Zhai, L., Gudmundsson, K., Miller, P., Peng, W., Guðfinnsson, H.,
Debes, H., Hátún, H., White III, G. N., Hernández Walls, R.,
Sathyendranath, S., and Platt, T.: Phytoplankton phenology and production
around Iceland and Faroes, Cont. Shelf Res., 37, 15– 25, 2012.
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
Today, the waters north of Iceland are characterized by high productivity that supports a...