Articles | Volume 17, issue 6
https://doi.org/10.5194/cp-17-2343-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-2343-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Age and driving mechanisms of the Eocene–Oligocene transition from astronomical tuning of a lacustrine record (Rennes Basin, France)
Slah Boulila
CORRESPONDING AUTHOR
Institut des Sciences de la
Terre-Paris, ISTeP, Sorbonne Université, CNRS, Paris, France
ASD/IMCCE, CNRS-UMR 8028, Observatoire de Paris, PSL University,
Sorbonne Université, Paris, France
Guillaume Dupont-Nivet
Geosciences Rennes UMR-CNRS, Université de Rennes 1, Rennes, France
Department of Geosciences, Potsdam University, Potsdam-Golm, Germany
Bruno Galbrun
Institut des Sciences de la
Terre-Paris, ISTeP, Sorbonne Université, CNRS, Paris, France
Hugues Bauer
BRGM, Bureau de Recherches Géologiques et Minières,
Orléans, France
Jean-Jacques Châteauneuf
BRGM, Bureau de Recherches Géologiques et Minières,
Orléans, France
Related authors
No articles found.
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022, https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Short summary
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants describe its middle Eocene to early Oligocene increase in the Northern Hemisphere, but underlying mechanisms have not been studied in detail yet. Using climate simulations, we map global seasonality changes and show that major contemporary forcing – atmospheric CO2 lowering, Antarctic ice-sheet expansion and particularly related sea level drop – participated in this phenomenon and its spatial distribution.
Delphine Tardif, Frédéric Fluteau, Yannick Donnadieu, Guillaume Le Hir, Jean-Baptiste Ladant, Pierre Sepulchre, Alexis Licht, Fernando Poblete, and Guillaume Dupont-Nivet
Clim. Past, 16, 847–865, https://doi.org/10.5194/cp-16-847-2020, https://doi.org/10.5194/cp-16-847-2020, 2020
Short summary
Short summary
The Asian monsoons onset has been suggested to be as early as 40 Ma, in a palaeogeographic and climatic context very different from modern conditions. We test the likeliness of an early monsoon onset through climatic modelling. Our results reveal a very arid central Asia and several regions in India, Myanmar and eastern China experiencing highly seasonal precipitations. This suggests that monsoon circulation is not paramount in triggering the highly seasonal patterns recorded in the fossils.
J. Briais, F. Guillocheau, E. Lasseur, C. Robin, J. J. Châteauneuf, and O. Serrano
Solid Earth, 7, 205–228, https://doi.org/10.5194/se-7-205-2016, https://doi.org/10.5194/se-7-205-2016, 2016
Short summary
Short summary
This paper focuses on the record of lithospheric deformations within an intracratonic basin. This study is based on a detailed analysis of sedimentology and stratigraphy of the Paris Basin (European plate). We identified four intraplate deformations during the Palaeocene-early Eocene period. Age, amplitude, wavelength, and orientation of these deformations are specified and attributed to the geodynamic events. This paper is based on results from J. Briais Phd thesis.
Related subject area
Subject: Feedback and Forcing | Archive: Terrestrial Archives | Timescale: Cenozoic
Evidence for fire in the Pliocene Arctic in response to amplified temperature
Late Pliocene lakes and soils: a global data set for the analysis of climate feedbacks in a warmer world
Tamara L. Fletcher, Lisa Warden, Jaap S. Sinninghe Damsté, Kendrick J. Brown, Natalia Rybczynski, John C. Gosse, and Ashley P. Ballantyne
Clim. Past, 15, 1063–1081, https://doi.org/10.5194/cp-15-1063-2019, https://doi.org/10.5194/cp-15-1063-2019, 2019
Short summary
Short summary
The last time atmospheric CO2 was similar to the present was 3–4 million years ago. The Arctic was warmer compared to the global average, and the causes are not fully known. To investigate this, we reconstructed summer temperature, forest fire and vegetation at a 3.9 Ma fen peat in Arctic Canada. The summer temperatures averaged 15.4 °C, and charcoal was abundant. Interactions between vegetation and climate were mediated by fire and may contribute to high Arctic temperatures during the Pliocene.
M. J. Pound, J. Tindall, S. J. Pickering, A. M. Haywood, H. J. Dowsett, and U. Salzmann
Clim. Past, 10, 167–180, https://doi.org/10.5194/cp-10-167-2014, https://doi.org/10.5194/cp-10-167-2014, 2014
Cited articles
Abels, H. A., Abdul Aziz, H., Krijgsman, W., Smeets, S. J. B., and Hilgen,
F. J.: Long-period eccentricity control on sedimentary sequences in the
continental Madrid Basin (middle Miocene, Spain), Earth Planet. Sci. Lett.,
289, 220–231, 2010.
Abels, H. A., Dupont-Nivet, G., Xiao, G., Bosboom, R., and Krijgsman, W.:
Step-wise change of Asian interior climate preceding the
Eocene–OligoceneTransition (EOT), Paleogeogr. Paleoclim. Paleoecol., 299,
399–412, 2011.
Abelson, M. and Erez, J.: The onset of modern-like Atlantic meridional
overturning circulation at the Eocene–Oligocene transition: Evidence,
causes, and possible implications for global cooling, Geochem. Geophys.
Geosys., 18, 2177–2199, 2017.
Bauer, H., Bessin, P., Saint-Marc, P., Châteauneuf, J. J., Bourdillon,
C., Wyns, R., and Guillocheau, F.: The Cenozoic history of the Armorican
Massif: New insights from the deep CDB1 borehole (Rennes Basin, France), C.
R. Geosciences, 348, 387–397, 2016.
Berggren, W. A., Wade, B. S., and Pearson, P. N.: Oligocene
chronostratigraphy and planktonic foraminiferal biostratigraphy: historical
review and current state-of-the-art, Cushman Foundation Special Publication,
46, 29–54, 2018.
Boulila, S.: Eocene-Oligocene continental sediment natural gamma radiation data of the CDB1 drill-core (Rennes Basin, France), PANGAEA [data set], available at: https://issues.pangaea.de/browse/PDI-30098, last access : 8 November 2021.
Boulila, S., Galbrun, B., Hinnov, L. A., and Collin, P.-Y.: Orbital
calibration of the Early Kimmeridgian (southeastern France): implications
for geochronology and sequence stratigraphy, Terra Nova, 20, 455–462, 2008.
Boulila, S., Vahlenkamp, M., De Vleeschouwer, D., Laskar, J., Yamamoto, Y.,
Pälike, H., Kirtland Turner, S., Sexton, P. F., and Cameron, A.: Towards
a robust and consistent middle Eocene astronomical timescale, Earth Planet.
Sci. Lett., 486, 94–107, 2018.
Brown, R. E., Koeberl, C., Montanari, A., and Bice, D. M.: Evidence for a
change in Milankovitch forcing caused by extraterrestrial events at
Massignano, Italy, Eocene–Oligocene boundary GSSP, in: The Late Eocene
Earth–Hothouse, Icehouse, and Impacts, edited by: Koeberl, C. and
Montanari, A., Geol. Soc. Am. Spec. Paper, 452, 1–19, 2009.
Cande, S. C. and Kent, D. V.: Revised calibration of the geomagnetic
polar-ity timescale for the Late Cretaceous and Cenozoic, J. Geophys.
Res., 100, 6093–6095, 1995.
Coxall, H. K. and Wilson, P. A.: Early Oligocene glaciation and
productivity in the eastern equatorial Pacific: Insights into global carbon
cycling, Paleoceanography, 26, PA2221, https://doi.org/10.1029/2010PA002021, 2011.
Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J.:
Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation
in the Pacific Ocean, Nature, 433, 53–57, 2005.
Coxall, H. K., Huck, C., Huber, M., Lear, C., Legarda-Lisarri, A., O'Regan,
M., Śliwińska, K., Flierdt, T., De Boer, A. M., Zachos, J. C., and
Backman, J.: Export of nutrient rich Northern Component Water preceded early
Oligocene Antarctic glaciation, Nat. Geosci., 11, 190–196,
https://doi.org/10.1038/s41561-018-0069-9, 2018.
DeConto, R. M. and Pollard, D.: Rapid Cenozoic glaciation of Antarctica
induced by declining atmospheric CO2, Nature, 421, 245–249, 2003.
Dunlop, D. J. and Özdemir, Ö.: Rock Magnetism: Fundamentals and Frontiers, Cambridge Univ. Press, New York, 573 pp.,
ISBN 9780521000987, 1997.
Dupont-Nivet, G., Krijgsman, W., Langereis, C. G., Abels H. A., and Fang,
X.: Tibetan plateau aridification linked to global cooling at the
Eocene–Oligocene transition, Nature, 445, 635–638, 2007.
Elsworth, G., Galbraith, E., Halverson, G., and Yang, S.: Enhanced
weathering and CO2 drawdown caused by latest Eocene strengthening of
the Atlantic meridional overturning circulation, Nat. Geosci., 10, 213–216,
2017.
Ghirardi, J.: Impact de la transition climatique Eocène-Oligocène
sur les écosystèmes continentaux, Etude du Bassin de Rennes, PhD
thesis, Université d'Orléans, Orléans, France, 332 pp., 2016.
Goldner, A, Herold, N., and Huber, M.: Antarctic glaciation caused ocean
circulation changes at the Eocene–Oligocene transition, Nature, 511,
574–577, 2014.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. (Eds.): Geological
Time Scale 2020, Elsevier, Amsterdam, the Netherlands, 2020.
Hesselbo, S. P.: Spectral gamma-ray logs in relation to clay mineralogy and
sequence stratigraphy, Cenozoic of the Atlantic margin, offshore new jersey,
in: Proc. ODP Sci. Results 150, edited by: Mountain, G. S., Miller, K. G., Blum, P., Poag, C. W., and Twichell, D. C., College Station, TX, (Ocean Drilling Program), USA, 411–422, https://doi.org/10.2973/odp.proc.sr.150.1996, ISSN 1096-7451, 1996.
The ISSN is : 1096-7451
Hilgen, F. J. and Kuiper, K. F.: A critical evaluation of the numerical age
of the Eocene–Oligocene boundary, in: The Late Eocene Earth–Hothouse,
Icehouse, and Impacts, edited by: Koeberl, C. and Montanari, A., Geol. Soc.
Am. Spec. Paper, 452, 1–10, 2009.
Hinnov, L. A. and Hilgen, F. J.: Cyclostratigraphy and astrochronology, in:
The Geologic Time Scale 2012, edited by: Gradstein, F. M., Ogg, J. G.,
Schmitz, M., and Ogg, G., Elsevier, Amsterdam, the Netherlands, 63–83, 2012.
Hren, M. T., Sheldon, N. D., Grimes, S. T., Collinson, M. E., Hooker, J. J.,
Bugler, M., and Lohmann, K. C.: Terrestrial cooling in Northern Europe
during the Eocene–Oligocene transition, P. Natl. Acad. Sci. USA, 110,
7562–7567, 2013.
Hutchinson, D. K., Coxall, H. K., Lunt, D. J., Steinthorsdottir, M., de Boer, A. M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-Asser, A. T., Kunzmann, L., Ladant, J.-B., Lear, C. H., Moraweck, K., Pearson, P. N., Piga, E., Pound, M. J., Salzmann, U., Scher, H. D., Sijp, W. P., Śliwińska, K. K., Wilson, P. A., and Zhang, Z.: The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons, Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, 2021.
Huybers, P. and Denton, G.: Antarctic temperature at orbital time scales
controlled by local summer duration, Nat. Geosci., 1, 787–792, 2008.
Jovane, L., Florindo, F., Sprovieri, M., and Pälike, H.: Astronomic
calibration of the late Eocene/early Oligocene Massignano section (central
Italy), Geochem. Geophys. Geosys., 7, Q07012, https://doi.org/10.1029/2005GC001195, 2006.
Kaminski, M. and Ortiz, S.: The Eocene–Oligocene turnover of deep-water
agglutinated foraminifera at ODP Site 647, Southern Labrador Sea (North
Atlantic), Micropaleontology, 60, 53–66, 2014.
Katz, M. E., Miller, K. G., Wright, J. D., Wade, B. S., Browning, J. V.,
Cramer, B. S., and Rosenthal, Y.: Stepwise transition from the Eocene
greenhouse to the Oligocene icehouse, Nat. Geosci., 1, 329–334, 2008.
Kodama, K. P. and Hinnov, L. A.: Rock Magnetic Cyclostratigraphy, New
Analytical Methods in Earth and Environmental Science Series,
John Wiley & Sons, Ltd., Hoboken, New Jersey, USA, ISBN 978-1-1185-6129-4, https://doi.org/10.1002/9781118561294, 2014.
Ladant, J. B., Donnadieu, Y., Lefebvre, V., and Dumas, C.: The respective
role of atmospheric carbon dioxide and orbital parameters on ice sheet
evolution at the Eocene–Oligocene transition, Paleoceanography, 29,
810–823, 2014.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities of
the Earth, Astron. Astrophys., 428, 261–285, 2004.
Laskar, J., Gastineau, M., Delisle, J-B., Farrés, A., and Fienga, A.:
Strong chaos induced by close encounters with Ceres and Vesta, Astron.
Astrophys., 532, L4,
https://doi.org/10.1051/0004-6361/201117504, 2011.
Lear, C. H., Bailey, T. R., Pearson, P. N. P., Coxall, H. K., and Rosenthal,
Y.: Cooling and ice growth across the Eocene–Oligocene transition, Geology,
36, 251–254, 2008.
Li, M., Kump, L. R., Hinnov, L. A., and Mann, M. E.: Tracking variable
sedimentation rates and astronomical forcing in Phanerozoic paleoclimate
proxy series with evolutionary correlation coefficients and hypothesis
testing, Earth Planetary Science Letters, 501, 165–179, 2018.
Licht, A., Dupont-Nivet, G., Meijer, N., Caves Rugenstein, J., Schauer, A.,
Fiebig, J., Mulch, A., Hoorn, C., Barbolini, N., and Guo, Z.: Decline of
soil respiration in northeastern Tibet through the transition into the
Oligocene icehouse, Palaeogeo. Palaeoclim. Palaeoecol., 560, 110016 https://doi.org/10.1016/j.palaeo.2020.110016, 2020.
Lowrie, W.: Identification of ferromagnetic minerals in a rock by coercivity
and unblocking temperature properties, Geophys. Res. Lett., 17, 159–162, 1990.
Lüning, S. and Kolonic, S.: Uranium spectral gamma-ray response as a
proxy for organic richness in black shales: applicability and limitations,
J. Pet. Geol., 26, 153–174, 2003.
Luterbacher, H. P., Ali, J. R., Brinkhuis, H., Gradstein, F. M., Hooker, J.,
Monechi, S., Ogg, J. G., Powell, J., Röhl, U., Sanfilippo, A., and
Schmitz, B.: The Paleogene Period, in: A Geologic Time Scale 2004, edited
by: Gradstein, F., Ogg, J., and Smith, A., Cambridge University Press, Cambridge, UK,
384–408, 2004.
Mann, M. E. and Lees, J. M.: Robust estimation of background noise and
signal detection in climatic time series, Climatic Change, 33, 409–445, 1996.
McFadden, P. L. and Reid, A. B.: Analysis of paleomagnetic inclination data, Geophys. J. R. Astron. Soc., 69, 307–319, 1982.
Meyers, S. R. and Sageman, B. B.: Quantification of deep-time orbital
forcing by average spectral misfit, Am. J. Sci., 307, 773–792, https://doi.org/10.2475/05.2007.01, 2007.
Miller, K. G., Wright, J. D., and Fairbanks, R. G.: Unlocking the Ice House:
Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion, J. Geophys.
Res., 96, 6829–6848, 1991.
Miller, K. G., Browning, J. V., Aubry, M.-P., Wade, B. S., Katz, M. E.,
Kulpecz, A. A., and Wright, J. D.: Eocene–Oligocene global climate and
sea-level changes: St. Stephens Quarry, Alabama, Geol. Soc. Am. Bull., 120,
34–53, 2008.
Murray-Tortarolo, G., Friedlingstein, P., Sitch, S., Seneviratne, S. I.,
Fletcher I., Mueller, B., Greve, P., Anav, A., Liu, Y.,
Ahlström, A., Huntingford, C., Levis, S., Levy, P., Lomas, M., Poulter,
B., Viovy, N., Zaehle, S., and Zeng, N.: The dry season intensity as a key
driver of NPP trends, Geophys. Res. Lett., 43, 2632–2639, 2016.
Ogg, J. G. and Smith, A. G.: The geomagnetic polarity time scale, in: A
Geological Timescale 2004, edited by: Gradstein, F. M., Ogg, J. G., and Smith,
A. G., Cambridge University Press, Cambridge, UK, 63–86, 2004.
Ogg, J. G., Ogg, G., and Gradstein, F. M. (Eds.): A Concise Geologic Time
Scale 2016, Elsevier, Amsterdam, the Netherlands, 2016.
Page, M., Licht, A., Dupont-Nivet, G., Meijer, N., Barbolini, N., Hoorn, C.,
Schauer, A., Huntington, K., Bajnai, D., Fiebig, J., Mulch, and Guo, Z.:
Synchronous cooling and decline in monsoonal rainfall in northeastern Tibet
during the fall into the Oligocene icehouse, Geology, 47, 203–206, 2019.
Paillard, D., Labeyrie, L., and Yiou, P.: Macintosch program performs
timeseries analysis, Eos, 77, 379, https://doi.org/10.1029/96EO00259, 1996.
Pälike, H. and Hilgen, F. J.: Rock clock synchronization, Nat. Geosci.,
1, 282, https://doi.org/10.1038/ngeo197, 2008.
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K.,
Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The
Heartbeat of the Oligocene Climate System, Science, 314, 1894–1898, 2006.
Pälike, H., Nishi, H., Lyle, M., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists: Proc. IODP, 320/321: Tokyo, Integrated Ocean Drilling Program Management International, Inc., https://doi.org/10.2204/iodp.proc.320321.101.2010, 2010.
Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide
through the Eocene–Oligocene climate transition, Nature, 461, 1110–1113,
2009.
Peters, S. E., Carlson, A. E., Kelly, D. C., and Gingerich, P. D.:
Large-scale glaciation and deglaciation of Antarctica during the Late
Eocene, Geology, 38, 723–726, 2010.
Pound, M. J. and Salzmann, U.: Heterogeneity in global vegetation and
terrestrial climate change during the late Eocene to early Oligocene
transition, Scientific Reports, 7, 43386, https://doi.org/10.1038/srep43386, 2017.
Pusz, A. E., Thunell, R. C., and Miller, K. G.: Deep water temperature,
carbonate ion, and ice volume changes across the Eocene–Oligocene climate
transition, Paleoceanography, 26, PA2205, https://doi.org/10.1029/2010PA001950, 2011.
Roberts, A. P., Chang, L., Rowan, C. J., Horng, C.-S., and Florindo, F.: Magnetic properties of sedimentary greigite (Fe3S4): an update, Rev. Geophys., 49, RG1002, https://doi.org/10.1029/2010RG000336, 2011.
Sahy, D., Condon, D. J., Hilgen, F. J., and Kuiper, K. F.: Reducing
Disparity in Radio-Isotopic and Astrochronology-Based Time Scales of the
Late Eocene and Oligocene, Paleoceanography, 32, 1018–1035, 2017.
Sahy, D., Hiess, J., Fischer, A. U., Condon, D. J., Terry, D. O., Abels, H.
A., Hüsing, S. K., and Kuiper, K. F.: Accuracy and precision of the late
Eocene–early Oligocene geomagnetic polarity time scale, Geol. Soc. Am.
Bull., 132, 373–388, 2020.
Sagnotti, L., Cascella, A., Ciaranfi, N., Macri, P., Maiorano, P., Marino, M., and Taddeucci, J.: Rock magnetism and palaeomagnetism of the Montalbano Jonico section (Italy): evidence for late diagenetic growth of greigite and implications for magnetostratigraphy, Geophys. J. Int. 180, 1049–1066, https://doi.org/10.1111/j.1365-246X.2009.04480.x, 2010.
Speijer, R. P., Pälike, H., Hollis, C. J., Hooker, J. J., and Ogg, J.
G.: The Neogene Period, in: Geological Time Scale 2020, edited by:
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G., Elsevier,
Amsterdam, the Netherlands, 1087–1140, 2020.
Sun, J. M., Ni, X. J., Bi, S. D., Wu, W. Y., Ye, J., Meng, J., and Windley,
B. F.: Synchronous turnover of flora, fauna, and climate at the
Eocene–Oligocene boundary in Asia, Sci. Rep.-UK, 4, 7463, https://doi.org/10.1038/srep07463, 2014.
Thomson, D. J.: Spectrum estimation and harmonic analysis, IEEE Proc., 70, 1055–1096, 1982.
Toumoulin, A., Tardif, D., Donnadieu, Y., Licht, A., Ladant, J.-B., Kunzmann, L., and Dupont-Nivet, G.: Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse – A model-data comparison, Clim. Past Discuss. [preprint], https://doi.org/10.5194/cp-2021-27, in review, 2021.
Tramoy R., Salpin, M., Schnyder, J., Person, A., Sebilo, M., Yans, J.,
Vaury, V., Fozzani, J., and Bauer, H.: Stepwise paleoclimate change across
the Eocene–Oligocene Transition recorded in continental NW Europe by
mineralogical assemblages and δ15Norg (Rennes Basin,
France), Terra Nova, 28, 212–220, 2016.
Vandenberghe, N., Speijer, R. P., and Hilgen, F. J.: The Paleogene time
scale, in: The Geologic Time Scale 2012, edited by: Gradstein, F. M., Ogg,
J. G., Schmitz, M., and Ogg, G., Elsevier, Amsterdam, the Netherlands, 855–922, 2012.
van Mourik, C. A., Lourens, L. J., Brinkhuis, H., Pälike, H., Hilgen, F.
J., Montanari, A., and Coccioni, R.: From greenhouse to icehouse at the
Massignano Eocene–Oligocene GSSP: Implications for the cause, timing and
effect of the Oi-1 glaciation, in: The Greenhouse-Icehouse Transition, A
Dinoflagellate Perspective, edited by: van Mourik, C. A., PhD thesis,
Stockholm University, Stockholm, no. 327, 32 pp., 2006.
van Vugt, N., Steebrink, J., Langereis, C. G., Hilgen, F. J., and
Meulenkamp, J. E.: Magnetostratigraphy-based astronomical tuning of the
early Pliocene lacustrine sediments of Ptolemais (NW Greece) and bed-to-bed
correlation with the marine record, Earth Planet. Sci. Lett., 164, 535–551,
1998.
Vasiliev, I., Franke, C., Meeldijk, J. D., Dekkers, M. J., Langereis, C. G., and Krijgsman, W.: Putative greigite magnetofossils from the Pliocene epoch, Nat. Geosci., 1, 782–786, 2008.
Wang, M., Chen, H., Huang, C., Kemp, D. B., Xu, T., Zhang, H., and Li, M.:
Astronomical forcing and sedimentary noise modeling of lake-level changes in
the Paleogene Dongpu Depression of North China, Earth Planet. Sci. Lett.,
535, 116116, https://doi.org/10.1016/j.epsl.2020.116116, 2020.
Westerhold, T., Röhl, U., Pälike, H., Wilkens, R., Wilson, P. A., and Acton, G.: Orbitally tuned timescale and astronomical forcing in the middle Eocene to early Oligocene, Clim. Past, 10, 955–973, https://doi.org/10.5194/cp-10-955-2014, 2014.
Xiao, G. Q., Abels, H. A., Yao, Z. Q., Dupont-Nivet, G., and Hilgen, F. J.: Asian aridification linked to the first step of the Eocene–Oligocene climate Transition (EOT) in obliquity-dominated terrestrial records (Xining Basin, China), Clim. Past, 6, 501–513, https://doi.org/10.5194/cp-6-501-2010, 2010.
Zachos, J. C., Quinn, T. M., and Salamy, S.: High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition, Paleoceanography, 9, 353–387, 1996.
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
Rhythms, Aberrations in Global Climate 65 Ma to Present, Science, 292,
686–693, 2001a.
Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H., and
Flower, B. P.: Climate response to orbital forcing across the
Oligocene–Miocene boundary, Science, 292, 274–278, 2001b.
Short summary
The Eocene–Oligocene climate transition (EOT) is one of the most drastic climate changes of the Cenozoic era and the final stage of the shift from ice-free to icehouse Earth. Here we present high-resolution records (geophysical, geochemical and sedimentological proxy data) of the EOT from lake deposits to detect the atmospheric expression of the EOT via the hydrological cycle. Such records provide strong constraints on climate modeling and on our comprehension of the forcing mechanisms of EOT.
The Eocene–Oligocene climate transition (EOT) is one of the most drastic climate changes of the...