Articles | Volume 17, issue 1
Clim. Past, 17, 229–239, 2021
Clim. Past, 17, 229–239, 2021

Research article 18 Jan 2021

Research article | 18 Jan 2021

Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up

Annique van der Boon et al.

Related authors

Maastrichtian-Rupelian paleoclimates in the southwest Pacific – a critical evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172
Peter K. Bijl, Joost Frieling, Margot J. Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past Discuss.,,, 2021
Preprint under review for CP
Short summary
Introducing GloRiSe – A global database on river sediment composition
Gerrit Müller, Jack J. Middelburg, and Appy Sluijs
Earth Syst. Sci. Data Discuss.,,, 2021
Preprint under review for ESSD
Short summary
The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597,,, 2020
Short summary
Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400,,, 2020
Short summary
Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Margot J. Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968,,, 2020
Short summary

Related subject area

Subject: Carbon Cycle | Archive: Terrestrial Archives | Timescale: Cenozoic
Alluvial record of an early Eocene hyperthermal within the Castissent Formation, the Pyrenees, Spain
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Jeremy K. Caves Rugenstein, Miquel Poyatos-Moré, Cai Puigdefàbregas, Emmanuelle Chanvry, Julian Clark, Andrea Fildani, Eric Verrechia, Kalin Kouzmanov, Matthieu Harlaux, and Sébastien Castelltort
Clim. Past, 16, 227–243,,, 2020
Short summary
Paleoenvironmental response of midlatitudinal wetlands to Paleocene–early Eocene climate change (Schöningen lignite deposits, Germany)
Katharina Methner, Olaf Lenz, Walter Riegel, Volker Wilde, and Andreas Mulch
Clim. Past, 15, 1741–1755,,, 2019
Short summary
Synchronizing early Eocene deep-sea and continental records – cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores
Thomas Westerhold, Ursula Röhl, Roy H. Wilkens, Philip D. Gingerich, William C. Clyde, Scott L. Wing, Gabriel J. Bowen, and Mary J. Kraus
Clim. Past, 14, 303–319,,, 2018
Short summary
Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming
Hemmo A. Abels, Vittoria Lauretano, Anna E. van Yperen, Tarek Hopman, James C. Zachos, Lucas J. Lourens, Philip D. Gingerich, and Gabriel J. Bowen
Clim. Past, 12, 1151–1163,,, 2016
Short summary
Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary
Margret Steinthorsdottir, Amanda S. Porter, Aidan Holohan, Lutz Kunzmann, Margaret Collinson, and Jennifer C. McElwain
Clim. Past, 12, 439–454,,, 2016
Short summary

Cited articles

Allen, M. B. and Armstrong, H. A.: Arabia – Eurasia collision and the forcing of mid-Cenozoic global cooling, Palaeogeogr. Palaeocl., 265, 52–58,, 2008. 
Amini, B. and Amini Chehragh, M. R.: Geological Map of Iran 1:100.000 Series Sheet 2555 – Kajan, Geological Survey of Iran, Tehran, 2001. 
Amini Chehragh, M. R. and Ghalamghash, J.: Geological Map of Iran 1:100.000 Series Sheet 7162 – Meyamey, Geological Survey of Iran, Tehran, available at:, last access: 11 January 2021. 
Arvin, M., Pan, Y., Dargahi, S., Malekizadeh, A., and Babaei, A.: Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction, J. Asian Earth Sci., 30, 474–489,, 2007. 
Asiabanha, A. and Foden, J.: Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran, Lithos, 148, 98–111,, 2012. 
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.