Articles | Volume 17, issue 5
https://doi.org/10.5194/cp-17-1819-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1819-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying Southern Annular Mode paleo-reconstruction skill in a model framework
RD1 – Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Brandenburg, Germany
Climate Change Research Centre, UNSW Sydney, Sydney, NSW, Australia
Shayne McGregor
School of Earth Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
Related authors
Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021, https://doi.org/10.5194/gmd-14-4117-2021, 2021
Short summary
Short summary
In this study, we couple the well-established and comprehensively validated state-of-the-art dynamic LPJmL5 global vegetation model to the CM2Mc coupled climate model (CM2Mc-LPJmL v.1.0). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. The new climate model is able to capture important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the the impacts of managed land (crop growth and irrigation).
Moritz Kreuzer, Ronja Reese, Willem Nicholas Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner, and Ricarda Winkelmann
Geosci. Model Dev., 14, 3697–3714, https://doi.org/10.5194/gmd-14-3697-2021, https://doi.org/10.5194/gmd-14-3697-2021, 2021
Short summary
Short summary
We present the technical implementation of a coarse-resolution coupling between an ice sheet model and an ocean model that allows one to simulate ice–ocean interactions at timescales from centuries to millennia. As ice shelf cavities cannot be resolved in the ocean model at coarse resolution, we bridge the gap using an sub-shelf cavity module. It is shown that the framework is computationally efficient, conserves mass and energy, and can produce a stable coupled state under present-day forcing.
Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021, https://doi.org/10.5194/gmd-14-4117-2021, 2021
Short summary
Short summary
In this study, we couple the well-established and comprehensively validated state-of-the-art dynamic LPJmL5 global vegetation model to the CM2Mc coupled climate model (CM2Mc-LPJmL v.1.0). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. The new climate model is able to capture important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the the impacts of managed land (crop growth and irrigation).
Moritz Kreuzer, Ronja Reese, Willem Nicholas Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner, and Ricarda Winkelmann
Geosci. Model Dev., 14, 3697–3714, https://doi.org/10.5194/gmd-14-3697-2021, https://doi.org/10.5194/gmd-14-3697-2021, 2021
Short summary
Short summary
We present the technical implementation of a coarse-resolution coupling between an ice sheet model and an ocean model that allows one to simulate ice–ocean interactions at timescales from centuries to millennia. As ice shelf cavities cannot be resolved in the ocean model at coarse resolution, we bridge the gap using an sub-shelf cavity module. It is shown that the framework is computationally efficient, conserves mass and energy, and can produce a stable coupled state under present-day forcing.
R. Batehup, S. McGregor, and A. J. E. Gallant
Clim. Past, 11, 1733–1749, https://doi.org/10.5194/cp-11-1733-2015, https://doi.org/10.5194/cp-11-1733-2015, 2015
Short summary
Short summary
Climate indices of the past are often reconstructed using proxy information from various locations and it is assumed that the relationship between the two does not change over time. As this assumption has been recently questioned, we use a climate model to examine the effect of these changing relationships on the skill of El Nino-Southern Oscillation variance reconstructions. Our study finds that these changes reduce reconstruction skill, while also showing how this impact can be mitigated.
S. McGregor, A. Timmermann, M. H. England, O. Elison Timm, and A. T. Wittenberg
Clim. Past, 9, 2269–2284, https://doi.org/10.5194/cp-9-2269-2013, https://doi.org/10.5194/cp-9-2269-2013, 2013
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Modelling only | Timescale: Centennial-Decadal
Assessing the performance of the BARCAST climate field reconstruction technique for a climate with long-range memory
The influence of non-stationary teleconnections on palaeoclimate reconstructions of ENSO variance using a pseudoproxy framework
Tine Nilsen, Johannes P. Werner, Dmitry V. Divine, and Martin Rypdal
Clim. Past, 14, 947–967, https://doi.org/10.5194/cp-14-947-2018, https://doi.org/10.5194/cp-14-947-2018, 2018
Short summary
Short summary
The BARCAST climate field reconstruction method is tested using synthetic data experiments. It is demonstrated that the output reconstructions have altered statistical properties compared with the input data, but they are also not necessarily consistent with the model assumption of the reconstruction method. The conclusion is that the statistical properties of a reconstruction not only reflect the statistics of the real climate, but they may very well be affected by the manipulation of the data.
R. Batehup, S. McGregor, and A. J. E. Gallant
Clim. Past, 11, 1733–1749, https://doi.org/10.5194/cp-11-1733-2015, https://doi.org/10.5194/cp-11-1733-2015, 2015
Short summary
Short summary
Climate indices of the past are often reconstructed using proxy information from various locations and it is assumed that the relationship between the two does not change over time. As this assumption has been recently questioned, we use a climate model to examine the effect of these changing relationships on the skill of El Nino-Southern Oscillation variance reconstructions. Our study finds that these changes reduce reconstruction skill, while also showing how this impact can be mitigated.
Cited articles
Bamston, A. G., Chelliah, M., and Goldenberg, S. B.: Documentation of a highly
ENSO‐related sst region in the equatorial pacific: Research note,
Atmos.-Ocean, 35, 367–383, https://doi.org/10.1080/07055900.1997.9649597, 1997. a
Bracegirdle, T. J., Holmes, C. R., Hosking, J. S., Marshall, G. J., Osman, M.,
Patterson, M., and Rackow, T.: Improvements in Circumpolar Southern
Hemisphere Extratropical Atmospheric Circulation in CMIP6 Compared to CMIP5,
Earth and Space Science, 7, e2019EA001065,
https://doi.org/10.1029/2019EA001065, 2020. a, b
Cullen, L. E. and Grierson, P. F.: Multi-decadal scale variability in
autumn-winter rainfall in south-western Australia since 1655 AD as
reconstructed from tree rings of Callitris Columellaris, Clim.
Dynam., 33, 433–444, https://doi.org/10.1007/s00382-008-0457-8, 2009. a, b
Dätwyler, C., Neukom, R., Abram, N. J., Gallant, A. J. E., Grosjean, M.,
Jacques-Coper, M., Karoly, D. J., and Villalba, R.: Teleconnection
stationarity, variability and trends of the Southern Annular Mode (SAM)
during the last millennium, Clim. Dynam., 51, 2321–2339,
https://doi.org/10.1007/s00382-017-4015-0, 2018. a, b, c, d, e, f, g, h, i, j, k
Dätwyler, C., Grosjean, M., Steiger, N. J., and Neukom, R.: Teleconnections and relationship between the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) in reconstructions and models over the past millennium, Clim. Past, 16, 743–756, https://doi.org/10.5194/cp-16-743-2020, 2020. a, b, c, d
Davey, M., Brookshaw, A., and Ineson, S.: The probability of the impact of
ENSO on precipitation and near-surface temperature, Climate Risk
Management, 1, 5–24, https://doi.org/10.1016/j.crm.2013.12.002, 2014. a
Davis, R. E.: Predictability of Sea Surface Temperature and Sea Level
Pressure Anomalies over the North Pacific Ocean, J. Phys.
Oceanogr., 6, 249–266,
https://doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2, 1976. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K. A., Durachta, J. W., Findell, K. L., Ginoux, P., Gnanadesikan, A., Gordon, C. T., Griffies, S. M., Gudgel, R., Harrison, M. J., Held, I. M., Hemler, R. S., Horowitz, L. W., Klein, S. A., Knutson, T. R., Kushner, P. J., Langenhorst, A. R., Lee, H.-C., Lin, S.-J., Lu, J., Malyshev, S. L., Milly, P. C. D., Ramaswamy, V., Russell, J., Schwarzkopf, M. D., Shevliakova, E., Sirutis, J. J., Spelman, M. J., Stern, W. F., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, F., and Zhang, R.: GFDL’s CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics, J. Climate, 19, 643–674, https://doi.org/10.1175/JCLI3629.1, 2006. a, b
Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K. A., Durachta, J. W., Findell, K. L., Ginoux, P., Gnanadesikan, A., Gordon, C. T., Griffies, S. M., Gudgel, R., Harrison, M. J., Held, I. M., Hemler, R. S., Horowitz, L. W., Klein, S. A., Knutson, T. R., Kushner, P. J., Langenhorst, A. R., Lee, H.-C., Lin, S.-J., Lu, J., Malyshev, S. L., Milly, P. C. D., Ramaswamy, V., Russell, J., Schwarzkopf, M. D., Shevliakova, E., Sirutis, J. J., Spelman, M. J., Stern, W. F., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, F., and Zhang, R.: CM2.1 Pre-Industrial control simulation, GFDL [data set], available at: ftp://nomads.gfdl.noaa.gov/gfdl_cm2_1/CM2.1U_Control-1860_D4/pp/, last access: 10 February 2021. a
ECMWF: ERA-Interim, ECMWF [data set], available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim (last access: 9 October 2020), 2019. a
Esper, J., Frank, D. C., Wilson, R. J. S., and Briffa, K. R.: Effect of scaling
and regression on reconstructed temperature amplitude for the past
millennium, Geophys. Res. Lett., 32, L07711,
https://doi.org/10.1029/2004GL021236, 2005. a
Fogt, R. L., Bromwich, D. H., and Hines, K. M.: Understanding the SAM
influence on the South Pacific ENSO teleconnection, Clim. Dynam., 36,
1555–1576, https://doi.org/10.1007/s00382-010-0905-0, 2011. a
Gillet, N. P., Kell, T. D., and Jones, P. D.: Regional climate impacts of the
Southern Annular Mode, Geophys. Res. Lett., 33, L23704,
https://doi.org/10.1029/2006GL027721, 2006. a, b, c
Griffies, S. M., Gnanadesikan, A., Dixon, K. W., Dunne, J. P., Gerdes, R., Harrison, M. J., Rosati, A., Russell, J. L., Samuels, B. L., Spelman, M. J., Winton, M., and Zhang, R.: Formulation of an ocean model for global climate simulations, Ocean Sci., 1, 45–79, https://doi.org/10.5194/os-1-45-2005, 2005. a
Hauck, J., Völker, C., Wang, T., Hoppema, M., Losch, M., and Wolf-Gladrow,
D. A.: Seasonally different carbon flux changes in the Southern Ocean
in response to the southern annular mode, Global Biogeochem. Cy.,
27, 1236–1245, https://doi.org/10.1002/2013GB004600, 2013. a
Hegerl, G. C., Crowley, T. J., Allen, M., Hyde, W. T., Pollack, H. N., Smerdon,
J., and Zorita, E.: Detection of Human Influence on a New, Validated
1500-Year Temperature Reconstruction, J. Climate, 20, 650–666,
https://doi.org/10.1175/JCLI4011.1, 2007. a
Hendon, H. H., Thompson, D. W. J., and Wheeler, M. C.: Australian Rainfall and
Surface Temperature Variations Associated with the Southern Hemisphere
Annular Mode, J. Climate, 20, 2452–2467, https://doi.org/10.1175/JCLI4134.1, 2007. a
Huiskamp, W.: whuiskamp/SAM_pseudoproxy: Final accepted manuscript (v1.1), Zenodo [code], https://doi.org/10.5281/zenodo.5153393, 2021 (available at: https://github.com/whuiskamp/SAM_pseudoproxy, last access: 2 August 2021). a
Huiskamp, W. N. and Meissner, K. J.: Oceanic carbon and water masses during the
Mystery Interval: A model-data comparison study, Paleoceanography, 27,
PA4206, https://doi.org/10.1029/2012PA002368, 2012. a
Huiskamp, W. N., Meissner, K. J., and d'Orgeville, M.: Competition between
ocean carbon pumps in simulations with varying Southern Hemisphere westerly
wind forcing, Clim. Dynam., 46, 3463–3480,
https://doi.org/10.1007/s00382-015-2781-0, 2016. a
Jones, J. M., Fogt, R. L., Widmann, M., Marshall, G. J., Jones, P. D., and Visbeck, M.: Historical SAM Variability. Part I: Century-Length Seasonal Reconstructions, J. Climate, 22, 5319–5345, https://doi.org/10.1175/2009JCLI2785.1, 2009. a, b, c
Karpechko, A. Y., Gillett, N. P., Marshall, G. J., and Screen, J. A.: Climate
Impacts of the Southern Annular Mode Simulated by the CMIP3
Models, J. Climate, 22, 3751–3768, https://doi.org/10.1175/2009JCLI2788.1,
2009. a, b, c
Keppler, L. and Landschützer, P.: Regional Wind Variability Modulates the
Southern Ocean Carbon Sink, Sci. Rep., 9, 7384,
https://doi.org/10.1038/s41598-019-43826-y, 2019. a
Kwok, R. and Comiso, J. C.: Spatial patterns of variability in Antarctic
surface temperature: Connections to the Southern Hemisphere Annular Mode and
the Southern Oscillation, Geophys. Res. Lett., 29, 1705,
https://doi.org/10.1029/2002GL015415, 2002. a, b
Lee, S. and Feldstein, S. B.: Detecting Ozone- and Greenhouse Gas–Driven Wind
Trends with Observational Data, Science, 339, 563–567,
https://doi.org/10.1126/science.1225154, 2013. a
Lenton, A. and Matear, R. J.: Role of the Southern Annular Mode (SAM)
in Southern Ocean CO2 uptake, Global Biogeochem. Cy., 21, GB2016,
https://doi.org/10.1029/2006GB002714, 2007. a
Le Quéré, C., Rödenbeck, C., Buitenhuis, E. T., Conway, T. J.,
Langenfelds, R., Gomez, A., Labuschagne, C., Ramonet, M., Nakazawa, T.,
Metzl, N., Gillett, N., and Heimann, M.: Saturation of the Southern Ocean
CO2 Sink Due to Recent Climate Change, Science, 316, 1735–1738,
https://doi.org/10.1126/science.1136188, 2007. a
Liu, W., Lu, J., Xie, S.-P., and Fedorov, A.: Southern Ocean Heat Uptake,
Redistribution, and Storage in a Warming Climate: The Role of Meridional
Overturning Circulation, J. Climate, 31, 4727–4743,
https://doi.org/10.1175/JCLI-D-17-0761.1, 2018. a
Lovenduski, N. S., Gruber, N., Doney, S. C., and Lima, I. D.: Enhanced CO2
outgassing in the Southern Ocean from a positive phase of the Southern
Annular Mode, Global Biogeochem. Cy., 21, GB2026,
https://doi.org/10.1029/2006GB002900, 2007. a
Mann, M. E. and Rutherford, S.: Climate reconstruction using ‘Pseudoproxies’, Geophys. Res. Lett., 29, 139-1–139-4, https://doi.org/10.1029/2001GL014554, 2002. a
Mann, M. E., Rutherford, S., Wahl, E., and Ammann, C.: Robustness of proxy-based climate field reconstruction methods, J. Geophys. Res.-Atmos., 112, D12109, https://doi.org/10.1029/2006JD008272, 2007. a
Marini, C., Frankignoul, C., and Mignot, J.: Links between the Southern Annular
Mode and the Atlantic Meridional Overturning Circulation in a Climate Model,
J. Climate, 24, 624–640, https://doi.org/10.1175/2010JCLI3576.1, 2011. a
Marshall, G. J.: Trends in the Southern Annular Mode from Observations and Reanalyses, J. Climate, 16, 4134–4143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2, 2003 (available at: http://www.nerc-bas.ac.uk/public/icd/gjma/newsam.1957.2007.seas.txt, last access: 9 October 2020). a, b, c
Marshall, G. J. and Bracegirdle, T. J.: An examination of the relationship
between the Southern Annular Mode and Antarctic surface air temperatures in
the CMIP5 historical runs, Clim. Dynam., 45, 1513–1335,
https://doi.org/10.1007/s00382-014-2406-z, 2015. a, b
McGregor, S., Timmermann, A., England, M. H., Elison Timm, O., and Wittenberg, A. T.: Inferred changes in El Niño–Southern Oscillation variance over the past six centuries, Clim. Past, 9, 2269–2284, https://doi.org/10.5194/cp-9-2269-2013, 2013. a
National Oceanic and Atmospheric Administration (NOAA): PyFerret v7.63, NOAA [code], available at: http://ferret.pmel.noaa.gov/Ferret/ (last access: 31 August 2021), 2020. a
PAGES 2k Consortium: Continental-scale temperature variability during the
past two millennia, Nature Geosci., 6, 339–346, https://doi.org/10.1038/ngeo1797,
2013. a
Previdi, M. and Polvani, L. M.: Climate system response to stratospheric ozone
depletion and recovery, Q. J. Roy. Meteor.
Soc., 140, 2401–2419, https://doi.org/10.1002/qj.2330, 2014. a
Raphael, M. N. and Holland, M. M.: Twentieth century simulation of the southern
hemisphere climate in coupled models. Part 1: large scale circulation
variability, Clim. Dynam., 26, 217–228,
https://doi.org/10.1007/s00382-005-0082-8, 2006. a, b, c, d
Russell, J. L., Dixon, K. W., Gnanadesikan, A., Stouffer, R. J., and
Toggweiler, J. R.: The Southern Hemisphere Westerlies in a Warming World:
Propping Open the Door to the Deep Ocean, J. Climate, 19, 6382–6390,
https://doi.org/10.1175/JCLI3984.1, 2006. a
Son, S.-W., Polvani, L. M., Waugh, D. W., Akiyoshi, H., Garcia, R., Kinnison,
D., Pawson, S., Rozanov, E., Shepherd, T. G., and Shibata, K.: The Impact of
Stratospheric Ozone Recovery on the Southern Hemisphere Westerly Jet,
Science, 320, 1486–1489, https://doi.org/10.1126/science.1155939, 2008.
a
Steig, E. J., Mayewski, P. A., Dixon, D. A., Kaspari, S. D., Frey, M. M.,
Schneider, D. P., Arcone, S. A., Hamilton, G. S., Spikes, V. B., Albert, M.,
Meese, D., Gow, A. J., Shuman, C. A., White, J. W. C., Sneed, S., Flaherty,
J., and Wumkes, M.: High-Resolution Ice Cores from US ITASE (West
Antarctica): Development and Validation of Chronologies and
Determination of Precision and Accuracy, Ann. Glaciol., 41,
77–84, https://doi.org/10.3189/172756405781813311, 2005. a
Sterl, A., van Oldenborgh, G. J., Hazeleger, W., and Burgers, G.: On the
robustness of ENSO teleconnections, Clim. Dynam., 29, 469–485,
https://doi.org/10.1007/s00382-007-0251-z, 2007. a
Thompson, D. W. J. and Solomon, S.: Interpretation of Recent Southern
Hemisphere Climate Change, Science, 296, 895–899,
https://doi.org/10.1126/science.1069270, 2002. a
Trenberth, K. E. and Stepaniak, D. P.: Indices of El Niño Evolution,
J. Climate, 14, 1697–1701,
https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2, 2001. a
van Oldenborgh, G. J. and Burgers, G.: Searching for decadal variations in
ENSO precipitation teleconnections, Geophys. Res. Lett., 32, L15701,
https://doi.org/10.1029/2005GL023110, 2005. a
Villalba, R., Lara, A., Masiokas, M. H., Urrutia, R., Luckman, B. H., Marshall,
G. J., Mundo, I. A., Christie, D. A., Cook, E. R., Neukom, R., Allen, K.,
Fenwick, P., Boninsegna, J. A., Srur, A. M., Morales, M. S., Araneo, D.,
Palmer, J. G., Cuq, E., Aravena, J. C., Holz, A., and LeQuesne, C.: Unusual
Southern Hemisphere tree growth patterns induced by changes in the
Southern Annular Mode, Nature Geosci., 5, 793–798,
https://doi.org/10.1038/ngeo1613, 2012. a, b, c, d, e, f, g
Visbeck, M.: A Station-Based Southern Annular Mode Index from 1884
to 2005, J. Climate, 22, 940–950, https://doi.org/10.1175/2008JCLI2260.1,
2009. a
von Storch, H., Zorita, E., and González-Rouco, F.: Assessment of three
temperature reconstruction methods in the virtual reality of a climate
simulation, Int. J. Earth Sci., 98, 67–82,
https://doi.org/10.1007/s00531-008-0349-5, 2009. a
Yun, K.-S. and Timmermann, A.: Decadal Monsoon-ENSO Relationships Reexamined,
Geophys. Res. Lett., 45, 2014–2021, https://doi.org/10.1002/2017GL076912,
2018. a
Short summary
This study investigates the reliability of paleo-reconstructions of the Southern Annular Mode (SAM) using climate model data. We find that reconstructions are able to capture ~ 60 % of the SAM variability at best, with poorer reconstructions managing only 35 %. Reconstructions perform best when they use more proxies sourced from the entire Southern Hemisphere land mass. Future reconstructions should endeavour to address both sampling and proxy–SAM correlation stability uncertainties.
This study investigates the reliability of paleo-reconstructions of the Southern Annular Mode...