Articles | Volume 17, issue 5
https://doi.org/10.5194/cp-17-1819-2021
https://doi.org/10.5194/cp-17-1819-2021
Research article
 | 
13 Sep 2021
Research article |  | 13 Sep 2021

Quantifying Southern Annular Mode paleo-reconstruction skill in a model framework

Willem Huiskamp and Shayne McGregor

Related authors

CM2Mc-LPJmL v1.0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model
Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021,https://doi.org/10.5194/gmd-14-4117-2021, 2021
Short summary
Coupling framework (1.0) for the PISM (1.1.4) ice sheet model and the MOM5 (5.1.0) ocean model via the PICO ice shelf cavity model in an Antarctic domain
Moritz Kreuzer, Ronja Reese, Willem Nicholas Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner, and Ricarda Winkelmann
Geosci. Model Dev., 14, 3697–3714, https://doi.org/10.5194/gmd-14-3697-2021,https://doi.org/10.5194/gmd-14-3697-2021, 2021
Short summary

Related subject area

Subject: Proxy Use-Development-Validation | Archive: Modelling only | Timescale: Centennial-Decadal
Assessing the performance of the BARCAST climate field reconstruction technique for a climate with long-range memory
Tine Nilsen, Johannes P. Werner, Dmitry V. Divine, and Martin Rypdal
Clim. Past, 14, 947–967, https://doi.org/10.5194/cp-14-947-2018,https://doi.org/10.5194/cp-14-947-2018, 2018
Short summary
The influence of non-stationary teleconnections on palaeoclimate reconstructions of ENSO variance using a pseudoproxy framework
R. Batehup, S. McGregor, and A. J. E. Gallant
Clim. Past, 11, 1733–1749, https://doi.org/10.5194/cp-11-1733-2015,https://doi.org/10.5194/cp-11-1733-2015, 2015
Short summary

Cited articles

Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J., and England, M. H.: Evolution of the Southern Annular Mode during the past millennium, Nat. Clim. Change, 4, 564–569, https://doi.org/10.1038/nclimate2235, 2014. a, b, c, d, e, f, g, h, i, j, k
Bamston, A. G., Chelliah, M., and Goldenberg, S. B.: Documentation of a highly ENSO‐related sst region in the equatorial pacific: Research note, Atmos.-Ocean, 35, 367–383, https://doi.org/10.1080/07055900.1997.9649597, 1997. a
Batehup, R., McGregor, S., and Gallant, A. J. E.: The influence of non-stationary teleconnections on palaeoclimate reconstructions of ENSO variance using a pseudoproxy framework, Clim. Past, 11, 1733–1749, https://doi.org/10.5194/cp-11-1733-2015, 2015. a, b, c, d, e
Bracegirdle, T. J., Holmes, C. R., Hosking, J. S., Marshall, G. J., Osman, M., Patterson, M., and Rackow, T.: Improvements in Circumpolar Southern Hemisphere Extratropical Atmospheric Circulation in CMIP6 Compared to CMIP5, Earth and Space Science, 7, e2019EA001065, https://doi.org/10.1029/2019EA001065, 2020. a, b
Cullen, L. E. and Grierson, P. F.: Multi-decadal scale variability in autumn-winter rainfall in south-western Australia since 1655 AD as reconstructed from tree rings of Callitris Columellaris, Clim. Dynam., 33, 433–444, https://doi.org/10.1007/s00382-008-0457-8, 2009. a, b
Download
Short summary
This study investigates the reliability of paleo-reconstructions of the Southern Annular Mode (SAM) using climate model data. We find that reconstructions are able to capture ~ 60 % of the SAM variability at best, with poorer reconstructions managing only 35 %. Reconstructions perform best when they use more proxies sourced from the entire Southern Hemisphere land mass. Future reconstructions should endeavour to address both sampling and proxy–SAM correlation stability uncertainties.