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Abstract. Past attempts to reconstruct the Southern Annular
Mode (SAM) using paleo-archives have resulted in records
which can differ significantly from one another prior to the
window over which the proxies are calibrated. This study
attempts to quantify not only the skill with which we may
expect to reconstruct the SAM but also to assess the con-
tribution of regional bias in proxy selection and the impact
of non-stationary proxy–SAM teleconnections on a resulting
reconstruction. This is achieved using a pseudoproxy frame-
work with output from the GFDL CM2.1 global climate
model. Reconstructions derived from precipitation fields per-
form better, with 89 % of the reconstructions calibrated over
a 61 year window able to reproduce at least 50 % of the inter-
annual variance in the SAM, as opposed to just 25 % for
surface air temperature (SAT)-derived reconstructions. Non-
stationarity of proxy–SAM teleconnections, as defined here,
plays a small role in reconstructions, but the range in re-
construction skill is not negligible. Reconstructions are most
likely to be skilful when proxies are sourced from a geo-
graphically broad region with a network size of at least 70
proxies.

1 Introduction

The Southern Annular Mode (SAM), which describes the in-
tensity and latitudinal location of the subtropical westerly jet,
is the leading mode of atmospheric variability in the South-
ern Hemisphere. Positive and negative phases of the SAM
have been linked to changes in surface air temperature (SAT)

and precipitation in Australia (Hendon et al., 2007), New
Zealand (Gallant et al., 2013), as well as South America
and Africa (Gillet et al., 2006; Silvestri and Vera, 2009).
For example, positive phases of the SAM over the period
1979–2005 are typically associated with cool annual tem-
perature anomalies over the Antarctic continent (Thompson
and Solomon, 2002; Kwok and Comiso, 2002; Gillet et al.,
2006) and warm anomalies over the Antarctic Peninsula,
southern South America, and southern New Zealand (Kwok
and Comiso, 2002; Silvestri and Vera, 2009). Precipitation
changes typically found during a positive SAM phase include
negative annual precipitation anomalies over southern South
America, New Zealand, and Tasmania, as well as positive
precipitation anomalies over Australia and South Africa (Sil-
vestri and Vera, 2009).

Over the last five decades, the SAM has shown a trend
towards more positive values, consistent with a poleward in-
tensification of the surface westerly winds, which has been
largely attributed to anthropogenic forcing, such as strato-
spheric ozone depletion and the increase in atmospheric
CO2 (Son et al., 2008; Lee and Feldstein, 2013; Previdi
and Polvani, 2014). In addition, both high-frequency (3–4
months) and low-frequency (16 years) variability, as derived
from reanalysis experiments, has been observed in the SAM
(Raphael and Holland, 2006). It is important to place these
observed trends over the last five decades into a long-term
context in order to understand the contributions of forced
and natural variability. These relative contributions are im-
portant for understanding projected future changes, given the
impact of the SAM on not only regional weather patterns but
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also large-scale ocean circulation and heat uptake (Russell
et al., 2006; Marini et al., 2011; Liu et al., 2018) and even
the marine carbon cycle (Lovenduski et al., 2007; Lenton and
Matear, 2007; Le Quéré et al., 2007; Huiskamp and Meiss-
ner, 2012; Hauck et al., 2013; Huiskamp et al., 2016; Keppler
and Landschützer, 2019).

Instrumental reconstructions of the SAM extend as far
back as 1865 (Jones et al., 2009), but those for periods prior
to the mid-twentieth century involve significant uncertainty
due to fewer observations and the methods used to compen-
sate for this (i.e. estimates based on atmospheric conserva-
tion of mass, e.g. in Jones et al., 2009). Direct measurements,
meanwhile, only extend as far back as 1958 (Marshall, 2003).
Thus, if we wish to extend our understanding of SAM trends
and variability back beyond the instrumental record, recon-
structions derived from paleo-archives are required.

1.1 Paleo-reconstructions of SAM variations

Paleo-reconstructions are generated by examining changes
preserved in natural environmental archives (biological,
chemical, and physical records) that are sensitive to climatic
impacts of the mode of variability being reconstructed. In
the case of the SAM, this has traditionally been achieved
by finding proxies that are sensitive to precipitation or sur-
face air temperature changes associated with the two dif-
ferent phases of the SAM. Proxies that record changes in
temperature and precipitation include tree rings, ice cores,
and terrestrial sediment cores, although the latter are less
favoured due to chronological uncertainties and, typically, a
lower temporal resolution. Tree growth, and therefore ring
width and/or density, can be sensitive to both temperature
and precipitation depending on the tree type and its location,
while ice cores can provide accumulation rates, δ18O and δD
(e.g. Steig et al., 2005), which record air temperature and
precipitation (accumulation).

1.1.1 Reconstructions and their potential issues

The relationship to the SAM is typically initially established
by correlating changes in these proxy records with a SAM
index developed from instrumental or reanalysis data over
a period spanning several decades (Villalba et al., 2012 and
references therein; Abram et al., 2014). The individual proxy
records are then combined into a single index using a recon-
struction method such as a regression approach (Zhang et al.,
2010; Villalba et al., 2012) or weighted composite plus scal-
ing (CPS; Abram et al., 2014; Dätwyler et al., 2018).

However, two fundamental assumptions are being made
when we reconstruct the past climate in this way. Firstly,
we assume that a hemisphere-wide mode of variability can
be accurately reconstructed using records from a geograph-
ically limited sample space. As there is relatively little land
in the Southern Hemisphere, particularly in the latitude of
the westerlies, SAM reconstructions often rely dispropor-

tionately on records from narrow longitude bands. Sites are
primarily in South America, Australia and New Zealand (Vil-
lalba et al., 2012), and Antarctica (Zhang et al., 2010; Abram
et al., 2014; Dätwyler et al., 2018), with Antarctica being
the only location that is able to provide samples with good
longitudinal coverage. Abram et al. (2014) show that their
regional Drake Passage sector paleo-reconstruction of the
SAM is representative of the hemispheric mean signal by ex-
tracting a sea level pressure-derived (SLP) SAM index from
a suite of eight global climate models and comparing it with
a secondary SAM index derived from the same SLP field but
restricted to the Drake Passage sector. They find that the re-
gional expression of the SAM in these models closely re-
sembles the hemispheric expression over 1000 years, a con-
clusion supported by the regional SAM records of Visbeck
(2009). Dätwyler et al. (2018), on the other hand, find non-
trivial differences between their hemisphere-wide SAM re-
construction and that of Abram et al. (2014), implying that an
annual-mean SAM reconstructed from paleo-proxies is not
well approximated by sampling from a limited region.

Secondly, when we correlate a proxy with the modern
SAM over a calibration window of several decades, we
make the assumption that this relationship remains the same
through time. This is commonly referred to as proxy sta-
tionarity. Gallant et al. (2013) investigated SAT/precipitation
non-stationarity using instrumental data spanning the period
1900–2009 and reported that 21 %–37 % of Australian pre-
cipitation records showed non-stationary teleconnections to
the El Niño–Southern Oscillation (ENSO) and the SAM. Sil-
vestri and Vera (2009) performed a similar study with ob-
served precipitation and surface air temperature records for
the spring months in Australia and South America span-
ning the 1960s/1970s and the 1980s/1990s. They found that
significant positive correlations of the SAM with SAT in
the Australia/New Zealand region in the earlier decades
could become insignificant or even negative in more recent
decades. Dätwyler et al. (2018) built on this by adding sta-
tionarity criteria to their proxies for reconstructing the SAM,
but at a cost of calibrating their proxies with a longer but less
reliable record (Jones et al., 2009). The resulting reconstruc-
tions showed a more stable teleconnection through time but
were not necessarily more skilful (as measured by validation
statistics). Finally, when considering multi-decadal calibra-
tion periods, stochastic noise or other climate signals (e.g.
ENSO) can modulate the correlation strength between, for
example, South American precipitation and the SAM with-
out the precipitation record being classified as non-stationary
(Yun and Timmermann, 2018).

This study aims to quantify the uncertainties raised by
the aforementioned assumptions within a modelling frame-
work, similar to Batehup et al. (2015), and seeks to address
the following questions: (1) What impacts do the proxy net-
work size and calibration window size have on the skill of
a resulting reconstruction? (2) How does the geographical
distribution of the proxies affect reconstruction skill? (3)
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Are any regions in our model framework prone to produc-
ing non-stationary proxies, and what could be modulating
the SAM–proxy teleconnection? The use of climate models
to assess the paleo-reconstruction skill provides an oppor-
tunity to investigate a “perfect” time series of the climate
index we wish to reconstruct and the ability to reconstruct
this index with fields from a model that act as pseudopaleo-
proxies (Mann and Rutherford, 2002; Mann et al., 2007).
These “perfect” proxies are free from non-climatic noise that
may degrade a teleconnection signal between a real proxy
and the SAM. Instead, our pseudoproxies isolate changes
in teleconnection strength due to underlying variability in
the climate only. This is in contrast to “real world” prox-
ies, which are also prone to other influences inherent to the
physical/chemical/biological nature of the proxy itself. It is
often assumed that these effects will be minimised by sam-
pling proxies from a range of regions, as local factors from
different locations would not be expected to be correlated.
Additionally, model data allow us to assess multi-decadal to
centennial changes in proxy–SAM teleconnection and how
calibration over certain windows in time affects the skilful-
ness of a SAM reconstruction.

2 Methods

2.1 Model and data

The data used in this study are a 500-year pre-industrial con-
trol simulation of the Geophysical Fluid Dynamics Labora-
tory’s Coupled Model 2.1 (CM2.1 hereafter), with all bound-
ary conditions set to CE 1860 levels. This assures that any
changes in the model SAM are due to internal variability in
the climate system only. CM2.1 is a fully coupled global cli-
mate model with ocean (OM3.1), atmosphere (AM2.1), land
(LM2.1), and sea-ice (SIS) components. The ocean model
has a resolution of 1◦× 1◦, which increases equatorward
from 30◦ latitude to a meridional resolution of 1/3◦ at the
equator (Griffies et al., 2005). The atmospheric and land sur-
face models have a resolution of 2◦ latitude by 2.5◦ longi-
tude, and the AM2.1 has 24 vertical levels (Delworth et al.,
2006).

CM2.1 is selected due to its good representation of the
SAM compared to similar models from the CMIP5 and
CMIP6 archives (Bracegirdle et al., 2020), while Karpechko
et al. (2009) find its performance to be favourable when com-
pared to ERA-40 data. The spatial structure of the SAM is
well simulated, accurately capturing the centre of action over
the Pacific while being slightly too zonally symmetric in the
eastern half of the Southern Hemisphere (Raphael and Hol-
land, 2006). Importantly for our purposes, CM2.1 accurately
simulates the latitude at which the SAM transitions from
its positive to its negative phase (as expressed via regres-
sion onto 850 hPa winds) over South America, which many
models of a similar age and computational complexity fail to
achieve (Raphael and Holland, 2006, their Fig. 4b). The am-

plitude of the model’s SAM index is comparable with obser-
vations (Raphael and Holland, 2006), although its variability
is larger than observed (Karpechko et al., 2009). As previ-
ously noted, we should be cautious about directly comparing
observations spanning a brief time period (in this instance,
ERA-Interim (Dee et al., 2011) data correlated with the Mar-
shall SAM index (Marshall, 2003) over the 36 year period
1979–2014) for which there is a well-observed SAM trend
with our model data, which represents a stable pre-industrial
climate spanning 500 years. To address this, we calculate a
36 year running correlation between the model SAM and our
SAT and precipitation fields and identify whether the corre-
lations derived from observations fall within the model range
(Fig. 1). The SAM index in the model is calculated accord-
ing to the method of Gallant et al. (2013) as the difference
in normalised, zonally averaged sea level pressure anomalies
between 40 and 60◦ S. Except in a region of equatorial South
America in the SAT field, the agreement is good, with 87 %
of the SAT and 95 % of the precipitation grid cells on land
showing agreement with observations.

Paleo-proxies are not uniformly sensitive to one season or
variable; their sensitivities depend on the region from which
they are sourced. For example, a tree ring record constructed
by Cullen and Grierson (2009) from south-west Western
Australia was shown to be particularly sensitive to austral
autumn–winter precipitation. Alternatively, South American
tree ring records compiled by Villalba et al. (2012) show sen-
sitivity to summer–autumn precipitation, while New Zealand
records appear to be most responsive to summer temperature.
In addition, while the proxies are sensitive to SAT or precipi-
tation during one season, the strongest influence of the SAM
on these variables may occur during a different season en-
tirely. For example, while the South American tree rings of
Villalba et al. (2012) are sensitive to summer–autumn pre-
cipitation, the SAM signal is most clearly seen in late spring
and winter precipitation in south-eastern South America (Sil-
vestri and Vera, 2009). With this in mind, we employ annual
mean (January–December) fields for sea level pressure, sur-
face air temperature, and precipitation for the following rea-
sons: (1) the CMIP5 generation of models (including CM2.1)
are less skilful at representing the seasonal variability in the
SAM–SAT relationship than they are at representing the an-
nual mean (Marshall and Bracegirdle, 2015); (2) reconstruct-
ing the SAM on an annual-mean timescale should smooth out
high-frequency noise in the proxies and enhance the signal-
to-noise ratio of our reconstructions; and (3) it enables us to
simplify the experimental parameter space and focus instead
on the impacts of network size and calibration window length
rather than seasonal effects.

2.2 Calculation of non-stationarity

A proxy is typically considered non-stationary if its telecon-
nection to the SAM is changed by a dynamical process rather
than stochastic variability (localised weather), such that the
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Figure 1. Correlations of annual-mean (January–December) SAT (a) and precipitation (b) from the GFDL CM2.1 model with the model-
derived SAM, calculated over 500 years. Black dots show where the correlation of the ERA-Interim reanalysis product with the Marshall
SAM index, calculated over a 36 year period from 1979 to 2014, does not fall within the range of the model’s 36 year running correlation at
each grid cell.

signal it records no longer represents changes in the SAM.
Here, the SAM teleconnection is modelled via a running cor-
relation between the proxy and the SAM index over a win-
dow of 31, 61, or 91 years. We define non-stationary telecon-
nections following the method of Gallant et al. (2013) and
Batehup et al. (2015), such that a proxy is considered non-
stationary when the variability in its running correlation with
the SAM exceeds what would be expected if the proxy were
only influenced by local random noise.

Following on from this, a Monte Carlo approach (van Old-
enborgh and Burgers, 2005; Sterl et al., 2007; Gallant et al.,
2013) is used to create stochastic simulations of SAT and pre-
cipitation at each grid point in the model. These stochastic
simulations are created to have the same statistical properties
as the original SAT and precipitation data from the CM2.1
simulation. To determine the range of variability expected
due to the stochastic processes mentioned previously, 1000
of these time series are created at each grid point according
to the following equation from Gallant et al. (2013):

v(t)= a0+ a1c(t)+ σv
√

1− r2[ηv(t)+βηv(t − 1)]. (1)

Here, v(t) is the stochastic SAT or precipitation time series,
a0 and a1 are regression coefficients representing the station-
ary teleconnection strength between the SAT or precipita-
tion and the SAM index (c(t)), while the remaining terms
represent the noise added to the time series. A red noise,
[ηv(t)+βηv(t − 1)], is added and weighted by the standard
deviation σv of the local SAT or precipitation time series as
well as the proportion of the variance not related to the re-
gression (

√
1− r2), where r is the correlation between the

SAT/precipitation time series and the SAM index. The red
noise is a combination of random Gaussian noise (ηv(t))
and the autocorrelation (β) of the SAT or precipitation time
series at a lag of 1 year multiplied by the Gaussian noise
(βηv(t − 1)).

The stochastic simulations of SAT and precipitation are
used to create a 95 % confidence interval for each grid point
of all possible running correlations a time series could have
and still be considered to have a stationary teleconnection
with the SAM. Therefore, if the time series from our model
proxy has a running correlation that falls outside the confi-
dence interval, we consider that proxy to be non-stationary
with the SAM in that temporal window, as it is unlikely to be
affected by stochastic processes alone. It should be noted that
as a 95 % confidence interval is used, non-stationarity will
be falsely identified 5 % of the time, hence we define a grid
point as non-stationary only if the running correlation falls
out of the confidence interval more than 10 % of the time –
more than double the 5 % we might expect by chance alone.
The running correlations are converted to Fisher Z-scores to
ensure they are normally distributed for the calculation of
confidence intervals:

Z =
1
2

ln
(

1+ r
1− r

)
, (2)

where r is the running correlation value.

2.3 Generation of pseudoproxies

SAT and precipitation fields from the model are used to rep-
resent climate proxies in the model, as discussed in Sect. 2.1.
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Rather than being inferred via changes in tree ring growth,
these proxies are direct measures of these variables and there-
fore free of non-climatic noise (von Storch et al., 2009). We
do not add noise to increase the realism of these proxies;
rather, we assess reconstruction skill and non-stationarity in
a “best case scenario” where we assume that the proxy is a
perfect analogue for the climate variable it is deemed to rep-
resent (SAT or precipitation), similar to the experiments of
Dätwyler et al. (2020).

Proxies are randomly selected in accordance with two con-
ditions. Ideally, proxies would be calibrated with the SAM
over the full length of the time series (500 years); however,
as previously noted, real-world proxies are calibrated over
shorter windows of several decades. For each grid point in
the model, the time series is split into 10 windows either 31,
61, or 91 years in length, whose midpoints are evenly spaced
throughout the 500 years regardless of the overlap or space
between them. A proxy may be selected if it is (1) on land
in the Southern Hemisphere and (2) has a correlation with
the model SAM index of |0.3| or greater within the calibra-
tion window, after the method of McGregor et al. (2013) and
Batehup et al. (2015). A threshold correlation of 0.3 is an
arbitrary choice, but it ensures that the proxy represents the
SAM to some extent while not being so high that proxies are
only sourced from a geographically limited region.

The number of proxies that meet our criteria in each re-
gion/window size is shown in Table 1. This approach allows
for the possibility that a proxy has a strong correlation with
the SAM over the selected calibration window but an in-
significant or even reversed correlation over other windows,
or indeed the full 500 years. The window sizes were chosen
to assess the effect of window length on the resulting skill of
the reconstruction. For example, the use of a 61 year calibra-
tion window, as opposed to a 31 year one, may decrease the
effect of decadal climate variability and its modulation of the
pseudoproxy–SAM teleconnection.

Reconstructions are computed with a network size of be-
tween 2 and 70 proxies, a range typical of past reconstruc-
tions with strict selection criteria (e.g. Abram et al., 2014
and Dätwyler et al., 2018). This is done to quantify the de-
pendence of reconstruction skill on network size. 1000 net-
works are generated for each of the 10 calibration windows
for each network size. Each site in each network is randomly
selected and unique, while the same site may be included
in more than one network. Similarly, all sites in a network
are selected based upon correlations over a single window
and may therefore be absent from networks calibrated using
a different window.

To reconstruct the proxy networks into a single proxy-
SAM index, we use the weighted composite plus scale (CPS)
method (Esper et al., 2005; Hegerl et al., 2007), similar to
that used by Abram et al. (2014). The scope of this study does
not include the effects of different reconstruction methods on
the skill of the reconstructed index, so we choose to use CPS
because it is commonly employed in paleo-reconstructions

Table 1. The range in the number of sites available for use in a SAT
or precipitation proxy network in each region and the calibration
window size. The range was calculated across the 10 different cal-
ibration windows used when creating the network, as discussed in
Sect. 2.3.

Number of sites

Region Window size SAT Precip.

31 years 842–1740 549–935
S. Hemisphere 61 years 640–1568 429–709

91 years 838–1535 326–660

31 years 557–1346 264–563
Antarctica 61 years 454–1253 191–403

91 years 705–1254 211–396

31 years 48–152 60–166
Aus./NZ 61 years 41–130 46–165

91 years 31–132 33–158

31 years 54–244 62–195
S. America 61 years 44–227 46–156

91 years 30–207 39–154

(PAGES 2k Consortium, 2013; Abram et al., 2014; Bate-
hup et al., 2015; Dätwyler et al., 2018). Using this method,
proxies are normalised to have a zero mean and unit stan-
dard deviation, and are then weighted according to their cor-
relation with the model SAM over the calibration window
before being summed into a single time series. To quantify
the skill of the pseudoproxy reconstructions, Pearson correla-
tion coefficients between each normalised SAT/precipitation-
derived SAM index and the sea level pressure-derived SAM
index over the full 500 years of data are calculated. We de-
fine a skilful reconstruction as one that is able to reproduce
at least 50 % of the model SAM variability (i.e. r2

≥ 0.5 or
r ≥∼ 0.71).

To investigate the role that ENSO may play in modulating
the pseudoproxy–SAM teleconnection, a correlation coeffi-
cient is calculated between the running correlation time se-
ries of SAM-SAT/precipitation and the model Nino3.4 (n3.4)
index at each grid point. The n3.4 index is chosen due to
its optimal representation of the character and evolution of
El Niño and La Niña events (Bamston et al., 1997; Trenberth
and Stepaniak, 2001). The model n3.4 index is calculated as
the sea surface temperature anomaly in the region from 5◦ N
to 5◦ S and from 170◦W to 120◦W.

Each SAT and precipitation grid cell is correlated with the
SAM over a 31, 61, and 91 year running window, while the
n3.4 index is bandpass filtered using the same window size
to remove high-frequency variability. The two time series are
then correlated over their common interval (500 years minus
the window size), with the significance calculated using a
reduced degrees of freedom method (Davis, 1976). An addi-
tional set of SAM reconstructions are calculated which ex-
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clude any proxy whose SAM–proxy running correlation is
found to have a significant (p < 0.05) correlation to the fil-
tered n3.4 index over the relevant calibration window.

3 Results

The importance of a long calibration window is illustrated in
Fig. 2. For example, a true correlation of −0.3 between pre-
cipitation and the SAM may become anything ranging from
−0.65 to 0.1 when evaluated over a shorter 31 year window
(Fig. 2d). However, as the window size increases, it is in-
creasingly likely that the calculated correlation is represen-
tative of the true correlation. For example, calibration win-
dows of 61 and 91 years ensure that our proxy’s correlation
with SAM is always the same sign as it is over the 500 year
period (Fig. 2e and f). Also noteworthy is the considerable
decrease in the maximum available number of proxies eligi-
ble for inclusion in reconstructions when calibrating with a
61 year window rather than a 31 year window (Table 1). A
smaller decrease in the proxy pool is seen when lengthening
the window from 61 to 91 years.

3.1 Reconstruction skill

Reconstructions of the SAM often rely heavily on proxies
from a very limited geographic location. What follows are
several reconstructions, each one utilising proxies from one
or more regions which are commonly used to reconstruct
the SAM. In the first scenario, shown in Fig. 3a–f, pseu-
doproxies are sourced from the entire Southern Hemisphere
(SH), including Antarctica. The reconstruction skill is dis-
played as a correlation (y axis) between the pseudoproxy-
generated SAM index and the “real” SAM index calculated
from sea level pressure (SLP) fields in the model. This is
plotted against the number of proxies used to generate the
reconstruction (x axis). The ranges of the 5th, 50th, and 95th
percentiles represent the use of 10 different calibration win-
dows and show the effect this has on the reconstruction.

Results suggest that small proxy networks (2–10 prox-
ies) rarely provide skilful reconstructions of the SAM, even
when the calibration window is a relatively large 91 years
(Figs. 4 and 5, panels a, e, i; red line), though a greater
proportion of precipitation-derived reconstructions are con-
sidered skilful across all window sizes. The range in recon-
struction skill is smaller for precipitation than for SAT, par-
ticularly when longer calibration windows are used, suggest-
ing larger multi-decadal variability in the SAM–SAT tele-
connection over time. Maximising the number of records in
the proxy network leads to a larger proportion of skilful re-
constructions, although for the shortest window of 31 years,
the reconstruction skill in the 95th percentile is never greater
than r = 0.76 for precipitation and r = 0.77 for SAT (r2 =
0.58 and 0.59, respectively), suggesting that around 60 % of
the model SAM variability can be reproduced at most. Min-
imum values (the lowest r value in the 5th percentile for 70

proxies and the 31 year window) are r = 0.62 for SAT and
r = 0.59 for precipitation, reconstructing 38 % and 35 % of
the SAM variability, respectively (Fig. 3a and d).

The range in reconstruction skill presented in Fig. 3 in-
dicates that even when the network size is maximised and a
long window is selected, simply calibrating during a different
period can change the skill of the resulting reconstruction. It
is noteworthy that increasing the calibration window length
does not necessarily increase the maximum possible skill of
the resulting reconstruction, but rather leads to a reconstruc-
tion converging towards the skill of a so-called “true” re-
construction. This true reconstruction utilises the entire time
span of our data for calibration, which is 500 years here, and
shows the actual ability of these proxies to reconstruct the
SAM. This convergence is visible for the SH SAT reconstruc-
tions (Fig. 4a, e, and i), where a longer calibration window
does not increase the 95th percentile of reconstruction skill
nor necessarily increase the proportion of skilful reconstruc-
tions (Fig. 4e and i; red lines). In other words, a longer cal-
ibration window will more realistically represent a proxy’s
relationship with the SAM, but, as a result, it may decrease
the skill of the reconstructed SAM.

As Antarctica represents a large percentage of the avail-
able proxies (Table 1), reconstructions are included for prox-
ies sourced from the entire Southern Hemisphere other than
Antarctica to ensure they are not disproportionately impact-
ing the skill of our reconstructions. The Antarctic-free SAT
reconstructions are less skilful for the 31 and 61 year win-
dows with a larger range in r . Note that most of the 95th per-
centile (Fig. 3g, h, i – red shading) is below the r2 > 0.5 skil-
ful threshold, as opposed to reconstructions with Antarctic
sites. Antarctic-free precipitation reconstructions typically
see an increase in maximum skill but a similar increase in the
range (Fig. 3i–l). The contrasting effects of Antarctica could
be due to Antarctic precipitation having a generally weak
correlation with the model SAM, while SAT shows strong
negative correlation with the SAM continent-wide (Fig. 1);
by removing these points, we lose skill in the SAT-derived
reconstructions and increase skill in the precipitation-derived
reconstructions.

Data from different regions may also act to increase or de-
crease the skill of reconstructions. Figures 4 and 5 illustrate
the skill of each regional reconstruction in comparison to the
SH one. In addition, comparisons are made to a reconstruc-
tion with a true calibration window of 500 years, showing
the actual range in skill that the pseudoproxies can produce.
Southern Africa was excluded from this analysis, as too few
grid cells met our criteria for reconstruction. When we utilise
records from individual regions, the reconstructive skill of
the proxy network is significantly reduced. Reconstructions
for the Australia–New Zealand region (Figs. 4 and 5c, g, k),
South America (Figs. 4 and 5b, f, j), and Antarctica (Figs. 4
and 5d, h, l) all show reduced reconstructive skill when com-
pared with the entire SH network (Figs. 4 and 5a, e, i), with
Antarctica being the only individual region capable of gen-
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Figure 2. Correlation coefficients between the model SAM index and both SAT (a, b, c) and precipitation (d, e, f) fields. Panels show the
probability distribution of a grid point with a certain probability in a 31 year (a, d), 61 year (b, e), and 91 year (c, f) calibration window
given the same point’s correlation over the full 500 years. This illustrates how a longer calibration window will ensure that the correlation of
a point to the SAM within that window will be closer to the “true” correlation calculated over the full 500 years.

erating any skilful reconstructions. In general, then, recon-
structing the SAM using pseudoproxies in CM2.1 is most
successful when we maximise network size and source sites
from as many geographical regions as possible, particularly
at longer calibration windows, where the proxy pool becomes
too small for a full network in many regions. The exceptions
here are precipitation-based reconstructions, where leaving
out Antarctica improves reconstruction skill.

When comparing proxy types, there are significantly more
skilful precipitation-derived reconstructions than for SAT,
and this is true across all window sizes for the Southern
Hemisphere-wide reconstructions (Figs. 4 and 5a, e, i). In
particular, when using a 61 or 91 year window, 89 % and
91 % of SH precipitation reconstructions are considered skil-
ful, respectively (with a network size of 70) (Fig. 5e and i),
and an increase in window size increases the proportion of
skilful reconstructions (Fig. 5a, e, i; red line). In contrast,
SAT reconstructions calibrated with 61 and 91 year windows
only produce skilful reconstructions 25 % and 20 % of the
time, respectively (Fig. 4e and i). Most striking here is that a
longer calibration window both decreases the 95th percentile
skill and the proportion of SAT-derived reconstructions that
can be considered skilful. But this is reasonable when we see
that, at best, 11 % of true SAT reconstructions are skilful and

have a lower maximum skill for the 95th percentile (Fig. 4e
and i). This result indicates that shorter calibration windows
are sufficiently susceptible to climatic noise or modulation
that they are producing reconstructions with spuriously larger
reconstruction skill. It is also worth noting that the reduction
in the reconstruction skill range visible for the 61 and 91 year
windows relative to the 31 year window will necessarily be
in part due to the overlapping of the 10 calibration windows
over the 500 years of model data. With a longer data set, the
lack of such an overlap would almost certainly result in this
spread being larger.

While increasing the number of sites used in each recon-
struction does not necessarily improve the maximum 95th
percentile skill after approximately n= 10, it does narrow
the range of possible reconstruction skill (Figs. 4 and 5a,
e, i; note the yellow envelope converging on the blue with
increasing window size). Figures 4a, e, i give the impres-
sion that our reconstructions outperform the true reconstruc-
tions, but they have virtually the same maximum skill at each
network size. This apparent incongruence occurs due to the
probability distribution of reconstruction skill for our true
proxies being far narrower than for the reconstructions with
varying window length, resulting in the 95th percentile hav-
ing a generally lower value for each network size.
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Figure 3. Correlation of the model SAM index (y axis) to the pseudoproxy reconstructions described in Sect. 2.3, plotted here by network
size (x axis). Each panel shows the reconstruction skill for the 31, 61, or 91 year calibration window. The three shaded areas show the 5th,
50th, and 95th percentiles, respectively. Their ranges represent the ranges of these percentiles across the 10 different calibration windows for
each window/network size. Panels (a)–(c) and (d)–(f) show reconstructions for SAT and precipitation, respectively, are proxies are sourced
from the entire Southern Hemisphere. Panels (g)–(i) and (j)–(l) show reconstructions generated using proxies sourced from everywhere but
Antarctica, but are otherwise equivalent to (a)–(f).

3.2 Mapping non-stationarity

In this section, we examine whether certain regions are more
or less non-stationary to the SAM, which would contribute
to these regions being better or worse than others at re-
constructing the SAM. Figure 6 shows the number of non-
stationary years at each grid point for SAT (a) and precipi-
tation (b) as defined in Sect. 2.2. Grid points with running
correlations that fall outside the 95 % confidence interval of
stochastic variability more than 10 % of the time are high-
lighted with solid contours; we define these regions as non-
stationary. For SAT, 6 % (31 year window) and 11 % (61

and 91 year windows) of the land cells are non-stationary;
for precipitation, 7 % (31 year window) and 14 % (61 and
91 year windows) are.

Depending on the length of the calibration window, dif-
ferent patterns of non-stationarity appear, particularly for
SAT. Aside from three small regions in south-east Australia,
central South America, and the Queen Elizabeth Range in
Antarctica, there are almost no land sites that can be consid-
ered non-stationary when using a 31 year running correla-
tion for SAT. It is also noteworthy that these non-stationary
regions (as calculated using the 31 year running correlation)
appear to fall, on average, in regions where correlations are
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Figure 4. Differing reconstruction skill achieved when using SAT-derived proxies sourced from the entire Southern Hemisphere (a, e,
i), South America (b, f, j), Australia and New Zealand (c, g, k), and Antarctica (d, h, l) only. The correlation between a SAT-derived
reconstruction and the SAM is plotted on the y axis, while the number of sites used (n= 2 : 70) in a reconstruction is plotted on the x axis.
Shaded regions represent the range between the minimum of the 5th percentile and the maximum of the 95th percentile for each network size
across 10 000 reconstructions (described in Sect. 2.3). Each set of regional reconstructions is shaded in yellow, and the end of this yellow
region indicates the number of samples available when it is below 70. Each panel also includes the range in skill for reconstructions with
sites sourced from the entire Southern Hemisphere and calibrated with a “true” 500 year window (blue shading). The blue line indicates the
percentage of true SH reconstructions that meet or exceed our skill threshold of being able to explain 50 % or more of the variability in the
SAM. The red line indicates the same thing, but for each regional reconstruction. The dashed black line indicates the r value required to meet
our skill threshold.

weaker (though still significant at p < 0.1 when r > 0.08)
over the full 500 years (Fig. 1a). The same is also broadly
true for precipitation, where large regions of non-stationary
points do occur but fall in regions of weaker or zero correla-
tion with the SAM, particularly in East Antarctica (Fig. 1b).
It is worth noting, however, that despite not meeting the re-
quirement of being classified as non-stationary, large regions
of the Southern Hemisphere land surface show modulation
of the SAM–proxy teleconnection (Fig. 6, yellow regions).

To better illustrate the impact of non-stationary proxies on
reconstructions, Fig. 7a compares the skill of our SH recon-
structions with the percentage of non-stationary proxies in
each. The effect of non-stationary sites is negative in all but
one instance. Correlations are typically stable with network

size and are relatively weak, with mean r2 values of 0.03. Re-
constructions calibrated with a 31 year window are outliers,
both of which see a slight increase in skill with larger net-
work sizes. In particular, the positive relationship observed
for the precipitation reconstructions (Fig. 7a and b, purple
line) suggests that these proxies provide a net benefit to the
reconstructions they are part of, despite their non-stationary
nature. SAT reconstructions calibrated over 61 and 91 years
are noteworthy as the impact of non-stationary sites is larger
(r2 = 0.19 for 70 proxies calibrated over 91 years) and in-
creases with network size when compared to other scenarios
(Fig. 7a and b, yellow line).

The negative relationship between reconstruction skill and
non-stationarity belies the chances of producing a recon-
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Figure 5. Differing reconstruction skill achieved when using precipitation-derived proxies sourced from the entire Southern Hemisphere (a,
e, i), South America (b, f, j), Australia and New Zealand (c, g, k), and Antarctica (d, h, l) only. The correlation between a precipitation-
derived reconstruction and the SAM is plotted on the y axis, while the number of sites used (n= 2 : 70) in a reconstruction is plotted on the x
axis. Shaded regions represent the range between the minimum of the 5th percentile and the maximum of the 95th percentile for each network
size across 10 000 reconstructions (described in Sect. 2.3). Each set of regional reconstructions is shaded in yellow, and the end of this yellow
region indicates the number of samples available when it is below 70. Each panel also includes the range in skill for reconstructions with
sites sourced from the entire Southern Hemisphere and calibrated with a “true” 500 year window (blue shading). The blue line indicates the
percentage of true SH reconstructions that meet or exceed our skill threshold of being able to explain 50 % or more of the variability in the
SAM. The red line indicates the same thing, but for each regional reconstruction. The dashed black line indicates the r value required to meet
our skill threshold.

struction with a large proportion of non-stationary proxies.
Figure A1c and d demonstrate that, for a network size of 70,
the most likely proportion of non-stationary proxies in a re-
construction is∼ 5 %, and even this constitutes only 10–15 %
of reconstructions. While increasing the calibration window
results in a larger number of non-stationary sites in the re-
construction, a sufficiently large proxy network minimises
the probability that these non-stationary sites will represent
a significant proportion of the network. In summary, there is
a weak negative relationship between the proportion of non-
stationary proxies in a reconstruction and its skill, but this
impact is not felt by the majority of our reconstructions.

3.3 Modulation of the SAM–proxy teleconnection

While few terrestrial cells qualify as non-stationary based
on the definition in Sect. 2.2, there is still considerable
variance in the teleconnection strength between SAM and
SAT/precipitation over the 500 years of the simulation
(Fig. 8). While this could be due to climatic noise, it is not
unreasonable that other modes of climatic variability – in
particular ENSO – may be modulating this teleconnection
(Silvestri and Vera, 2009; Fogt et al., 2011; Dätwyler et al.,
2020). The regions from which we source our proxies, such
as Australia/New Zealand and South America, are strongly
impacted by ENSO, with its teleconnections visible in both
temperature and precipitation fields (Davey et al., 2014). The
following section will examine which regions show the most
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Figure 6. Number of years at each grid point where the 31 year (a, b), 61 year (c, d), and 91 year (e, f) running correlation between SAT
(a, c, e) or precipitation (b, d, f) and the model SAM falls outside the 95 % stationarity confidence interval (Sect. 2.2). As per our definition
of non-stationarity, regions which fall outside this interval 10 % of the time or more (≥ 47, 44, and 41 years for the 31, 61, and 91 windows,
respectively) are highlighted with solid black contours and are considered to be non-stationary.

variance in proxy–SAM teleconnection and whether these re-
gions appear to be influenced by the model ENSO.

Variations in SAM teleconnection strength for SAT prox-
ies show considerable variance in Antarctica, northern and
southern South America, and, for the 31 and 61 year win-
dows, parts of Australia and New Zealand (Fig. 8a–c). Dis-
tinct regions of higher teleconnection variance in Antarctica
are typically in regions of high SAM–SAT correlation over
the full 500 years (Fig. 8a–c; dashed contours), with this vari-
ance decreasing as we move to a 91 year calibration window.
Further to this, variance is typically low for regions with a
small 500 year r value.

Significant correlations between the running correlations
of SAM–SAT and the filtered n3.4 index can be seen over
much of Western Antarctica, south-eastern Australia, and
parts of South America (all windows, Fig. 9a–c), while sig-
nificant correlations are also seen in East Antarctica in the
31 year window. ENSO’s modulating influence can be seen
to vary depending on both the strength of the underlying
SAM–proxy correlation as well as the calibration window
length (Fig. 10). For the 31 year window, the regression co-
efficient between ENSO and the SAM–SAT running correla-
tion is relatively low, clustering predominately between 0.2
and 0.4 (Fig. 10a), and it generally decreases if a site has a
stronger correlation with SAM over the full 500 year period.
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Figure 7. Correlation (y axis) between the skill of a given reconstruction and the percentage of non-stationary proxies it contains (a),
plotted as a function of network size. (b) is the same as panel (a), but the y axis shows the regression slope. Calculations are over 10 000
reconstructions for each network size. r = 0 is plotted as a dashed black line. All correlations are significant to at least p < 0.05, other than
in the region bounded by the two red lines about r = 0.

A similar relationship is visible for the 61 year window, but
the regression coefficients are slightly larger (∼ 0.25–0.5),
and a decrease in the ENSO regression coefficient with in-
creasing SAM–SAT r is less apparent. The 91 year window
sees this relationship disappear altogether, with relatively
large (∼ 0.6–0.8) regression coefficients independent of the
SAM–proxy correlation (Fig. 10c and f). This is of lesser
consequence, however, as most sites show little variance
in SAM–SAT teleconnection at this longer window length
(Fig. 8c; most regions have an rstd < 0.1), despite ENSO po-
tentially being responsible for 50 % or more of this variance
(Fig. 10c). Furthermore, any impact of ENSO on the SAM–
SAT teleconnection can be reduced with a longer calibration
window, as the number of land points (SAM–SAT running
correlation) that are significantly correlated with the filtered
n3.4 index decreases as the window length increases (i.e. this
is, respectively, 30 %, 24 %, and 15 % for the 31, 61, and
91 year windows).

For precipitation, teleconnection strength is less variable,
and only parts of Australia, Indonesia, and the Ross Ice
Shelf/Marie Byrd Land in Antarctica show large changes
(Fig. 8d–f). Correlation of this precipitation teleconnection
variance with the model n3.4 index reveals few regions of
significant ENSO influence (Fig. 11), and little coherent spa-
tial structure is observed for this correlation. The magnitude
of the impact of ENSO on the SAM–precipitation telecon-
nection (Fig. 10d, e, f) is similar to the magnitude of the im-
pact of ENSO on the SAM–SAT teleconnection. The number
of grid cells impacted by ENSO is fewer than that for SAT,
with the running correlation of SAM to precipitation being

significantly correlated with n3.4 in 21 %, 16 %, and 8 % of
land cells for the 31, 61, and 91 year windows.

Removing these ENSO-sensitive proxies from our SH-
wide reconstructions has a small but negative impact on the
proportion of skilful reconstructions we are able to produce
for both SAT and precipitation (Fig. 12). Their absence also
reduces the minimum skill values for the 5th percentile for all
precipitation-derived reconstructions across all network sizes
(Fig. 12d, e, f). A smaller effect is visible for SAT-derived
reconstructions calibrated with a 31 year window, but only
for smaller network sizes. Given the minimal extent to which
ENSO appears to modulate the proxy–SAM relationship, re-
moving these proxies – which may otherwise enhance the
regional diversity of a network – results in a net degrada-
tion of the signal-to-noise ratio in our reconstructions. On
the other hand, reconstructions using only ENSO-sensitive
proxies (not shown) also result in lower skill, although it is
unclear what role ENSO plays due to the vastly reduced pool
of proxies we can sample from in this scenario.

4 Discussion and Conclusions

In this study, we use the CM2.1 coupled climate model to ex-
amine the limits to SAM reconstruction skill, including the
impact of regional biases in the sourcing of proxy records as
well as the impact of non-stationary proxy teleconnections.
Reconstructions derived from model SAT and precipitation
fields and calibrated over a 31 year window are able to –
at best – replicate 56 % and 58 % of the SAM variance, re-
spectively, comparing favourably to a “true” reconstruction
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Figure 8. One standard deviation of the correlation of either the model SAT (a–c) or the precipitation (d–f) with the model SAM index over
the 10 calibration windows. Panel (a) shows values for the ten 31 year calibration windows for SAT. Panels (b) and (c) show values for the
ten 61 and 91 year windows, respectively. Panels (d), (e) and (f) are the same, but for precipitation. Maximum values on the colour bars for
panels (a), (b), (d), (e), and (f) indicate the colour of several outliers in the data. Grey regions indicate cells that did not meet the minimum
correlation criteria (r ≥ |0.3|) over any windows, meaning that no standard deviation could be calculated. Dashed contours show the model
SAM–SAT (a–c) and SAM–precipitation (d–f) 500 year correlation fields from Fig. 1.
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Figure 9. Correlation between the (a) 31 year, (b) 61 year, and (c) 91 year SAM–SAT running correlation at each grid cell and the model-
derived n3.4 index. The n3.4 index is filtered with a corresponding 30, 60, or 90 year filter. Hatched regions indicate p < 0.05.

Figure 10. Scatter plots of the regression slopes from the significant (red) and non-significant (blue) land points shown in Figs. 9 and 11
against the 500 year correlation coefficient between the SAM and either the SAT (a, b, c) or the precipitation (d, e, f). Both the SAM–proxy
running correlations for each cell and the n3.4 index are standardised prior to the regression calculation. Note that the vertical scale varies
depending on the panel.
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Figure 11. Correlation between the (a) 31 year, (b) 61 year, and (c) 91 year SAM–precipitation running correlation at each grid cell and the
model-derived n3.4 index. The n3.4 index is filtered with a corresponding 30, 60, and 90 year filter. Hatched regions indicate p < 0.05.

whose proxies are calibrated over the full 500 year interval
(Figs. 4 and 5). This suggests a possible upper limit to the
variance an annual-mean SAM reconstruction can reproduce
of ∼ 60 %.

Assessing the skilfulness of our reconstructions, where
skilfulness is defined as being able to reproduce ≥ 50 % of
the SAM variance over the full 500 years, reconstructions de-
rived from precipitation performed best (Fig. 3), with a max-
imum of 91 % of the reconstructions being reported as skil-
ful (91 year window, 70 proxies) and exhibiting less spread
due to the variability of the teleconnection between precipita-
tion and the SAM (Fig. 8). SAT-derived reconstructions per-
form poorly by comparison, with only a maximum of 25 %
of the reconstructions qualifying as skilful (61 year win-
dow, 70 proxies). It is worth noting that this result remains
consistent when examining a different measure for skill. If
we consider the median root mean square error (RMSE),
precipitation-derived reconstructions perform better overall
(minimum RMSE of 0.91 for SAT and 0.90 for precipitation;
Fig. A2). As with our threshold skill score, the RMSE shows
that skill is maximised by utilising a large proxy network and
a longer calibration window of 61 or 91 years, though the dif-
ference in skill between SAT and precipitation is smaller.

Both SAT-derived and precipitation-derived reconstruc-
tions are most skilful when proxies are selected from a ge-
ographically broad region, while regional reconstructions –
with the exception of Antarctica – fail to produce any skilful
reconstructions. This is likely due to each region being af-
fected by localised climatic noise, which becomes a system-

atic source of error in the reconstruction. With larger datasets
from different regions, this noise cancels out, and the signal
we seek to reconstruct is more clearly visible.

Increasing the calibration window does not increase the
chance of producing a more skilful reconstruction. It does,
however, along with maximising the number of proxies,
cause the range of reconstruction skill to converge on the skill
of our true proxy reconstructions (blue envelopes, Figs. 4 and
5). It should be noted that this will be due in part to our
correlation requirement of r ≥ |0.3| for proxies, which im-
poses a progressively more rigorous selection criterion for
longer calibration windows. Adding more sites to a recon-
struction has limited benefit in terms of the maximum skill it
can achieve, with values largely plateauing at a network size
of ∼ 20. Minimum skill, however, improves for increases
in network size all the way up to and including 70 proxies
(Fig. 3). This increase in skill in turn acts to increase the pro-
portion of skilful reconstructions for a given window size.

There is low-frequency variability in the teleconnections
between our pseudoproxies and the SAM that cannot be
explained by climatic noise (stochastic variability). CM2.1
simulates, at maximum, 14 % of the land points as being
non-stationary as defined by Gallant et al. (2013) (using
precipitation as a proxy and a 61 or 91 year running win-
dow), although the odds of creating a proxy network with a
high proportion of non-stationary sites remains relatively low
(Fig. A1). Non-stationary proxies, as defined here, do not
seem to modulate SAM–proxy teleconnection strengths or
impact on reconstructions greatly, as emphasised by the weak
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Figure 12. Differing reconstruction skill achieved when sourcing proxies from the entire Southern Hemisphere (yellow envelopes) and
the entire Southern Hemisphere, excluding proxies whose teleconnections with SAM have a significant (p < 0.05) correlation with ENSO
(hatched regions in Figs. 9 and 11; red envelope). The correlation between a SAT-derived or precipitation-derived reconstruction and the
SAM is plotted on the y axis, while the number of sites used (n= 2 : 70) in a reconstruction is plotted on the x axis. Shaded regions
represent the range between the minimum of the 5th percentile and the maximum of the 95th percentile for each network size across 10 000
reconstructions (described in Sect. 2.3). The black lines indicate the percentage of SH reconstructions (yellow envelope) that meet or exceed
our skill threshold of being able to explain 50 % or more of the variability in the SAM. The red line indicates the same thing, but for those
reconstructions that exclude ENSO-sensitive proxies (red envelope). The dashed black line indicates the r value required to meet our skill
threshold.

relationship between reconstruction skill and the number of
non-stationary proxies in a reconstruction (Fig. 7a). The ex-
ceptions are SAT-derived reconstructions with a longer cal-
ibration window (61 or 91 years), suggesting that at larger
network sizes, care should be taken to minimise the propor-
tion of non-stationary proxies. While assessing the stationar-
ity of a proxy–SAM correlation is more difficult in the real
world, we suggest that multiple methods be employed where
possible, such as in Dätwyler et al. (2018).

It is not unreasonable to suspect that ENSO may be con-
tributing to proxy–SAM teleconnection variance. Dätwyler
et al. (2020) identify a highly variable but centennial-average
r of −0.3 between austral summer ENSO and SAM re-
constructions over the last millennium. Their pseudoproxy
experiments using a CESM1 ensemble show significant
changes in SAT during periods of large negative SAM–
ENSO correlation (their Fig. 4, bottom left panel). The pat-
tern is similar to our results (Fig. 9a), with regions of signif-
icant correlation over much of Antarctica and three regions
in the Southern Ocean centred on roughly 60◦ E, 150◦ E, and

60◦W. Rather than excluding proxies for which the telecon-
nection with the SAM is significantly correlated with ENSO,
we can minimise the impact of ENSO simply by calibrating
over a longer window, thus ensuring that, while ENSO may
impact these proxies, the variance of their teleconnections
with the SAM will be small. Its greater impact at longer win-
dows (Fig. 10) is therefore minimised as the variance of the
proxy–SAM teleconnection is smaller (Fig. 8).

As we use only one integration from a single model, it
is worth discussing the performance of CM2.1. Its repre-
sentation of the SAM is good with respect to similar mod-
els (Karpechko et al., 2009; Marshall and Bracegirdle, 2015;
Bracegirdle et al., 2020), though it does have some biases
which may impact the results presented here. For instance,
when compared to observations and reanalysis, there is a
small equatorward bias in the Southern Hemisphere west-
erlies in CM2.1, but the spatial structure and amplitude of
SLP anomalies associated with these winds, and therefore the
SAM, are well simulated (Delworth et al., 2006). These com-
parisons are encouraging, particularly considering the multi-
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decadal changes in the teleconnections that have been ob-
served from in-situ temperature and precipitation measure-
ments (see Silvestri and Vera, 2009, Fig. 1; Gillet et al., 2006,
Fig. 1). Furthermore, we may expect that the expression of
the model SAM in the SAT and precipitation fields in our
control simulation may not be identical to that found in ob-
servations, given the significant positive trend in the SAM
over the last five decades and potentially accounting for some
of the model–data discrepancy.

A caveat of this study is our use of annual mean data
rather than seasonal fields. This is a distinction from pre-
vious real-world reconstructions utilising tree ring records
(Zhang et al., 2010; Villalba et al., 2012; Abram et al., 2014;
Dätwyler et al., 2018), which are not only more sensitive
to the SAT or precipitation in a particular season but also
combine these with other proxies such as ice cores (Zhang
et al., 2010; Abram et al., 2014; Dätwyler et al., 2018), corals
(Zhang et al., 2010), and lake sediments (Abram et al., 2014;
Dätwyler et al., 2018), each of which may be more or less
seasonally sensitive to multiple climatological fields. In ad-
dition, many proxies such as tree rings (Cullen and Grier-
son, 2009; Villalba et al., 2012) have been shown to have a
lag relationship with SAM from the previous year, which is
also not accounted for in this study. The “perfect” pseudo-
proxy experiments of Dätwyler et al. (2020) for an austral
summer SAM show similar reconstruction skill to our re-
sults (an average 31 year running correlation of ∼ 0.7–0.8
for their ensemble mean), which (even though the methods
of this study are not analogous to theirs) supports the con-
clusion that proxy-derived reconstructions of the SAM in a
model framework can, at best, reproduce 50 %–60 % of the
SAM variance on an annual timescale. Finally, the results
we present here are derived from a control simulation, and
the uncertainties in our reconstructions represent noise inter-
nal to the climate system. This is in direct contrast to real-
world reconstructions, which have the bad fortune of requir-
ing proxies to be calibrated over a period with a significant
anthropologically forced trend in the SAM. We would expect
this to increase the uncertainty in reconstructions, and any fu-
ture model-based verification of real-world reconstructions
would need to address this problem.

Most importantly, our results confirm that calibrations of
paleo-data to instrumental records over brief time periods can
result in misleading teleconnection strengths. The large range
in reconstruction skill due to the use of multiple calibration
windows suggests that real-life proxy records may provide
a misleading representation of reconstructed SAM variabil-
ity due to this non-stationary behaviour, particularly when
the reconstruction network constitutes fewer than 20 proxies.
For a SAT-derived, Southern-Hemisphere-wide reconstruc-
tion, a longer calibration window minimises this uncertainty
but does not necessarily result in a more skilful reconstruc-
tion. Rather, the reconstructions converge on the “true” skill
that these proxies provide. The use of teleconnection stability
screening, as applied in Dätwyler et al. (2018), is an impor-
tant step in the right direction, and should be utilised along-
side correlation “skill” scores and other validation statistics
to assess the reliability of a reconstruction. The lack of long-
term observational data makes it difficult to circumvent this
problem, but climate models which have demonstrated re-
alistic dynamical mechanisms may aid us in calculating the
uncertainty of these calibrations in the future.
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Appendix A

Figure A1. The chance of creating a SAM reconstruction (y axis) with a certain proportion of non-stationary proxies (x axis), as calculated
from 10 000 reconstructions for each network size. Panels show the probabilities for 31 year (a, d), 61 year (b, e), and 91 year (c, f) calibration
windows. Panels (a)–(c) and (d)–(f) show reconstructions based on SAT and precipitation data, respectively.

Figure A2. Median root mean square error across the 10 000 reconstructions calculated for each network size for SAT-derived (a, b, c)
and precipitation-derived (d, e, f) reconstructions. Results are displayed for the 31 year (a, d), 61 year (b, e), and 91 year (c, f) calibration
windows. Data is displayed for reconstructions derived from the entire southern hemisphere (SH – blue line), Antarctica only (AA only – red
line), Australia and New Zealand (AuNZ – yellow line), and South America (SA – purple line).
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Code and data availability. Model data were downloaded
from ftp://nomads.gfdl.noaa.gov/gfdl_cm2_1/CM2.1U_
Control-1860_D4/pp/ (last access: 10 February 2021, Del-
worth et al., 2021). The Marshall SAM index was down-
loaded from http://www.nerc-bas.ac.uk/public/icd/gjma/
newsam.1957.2007.seas.txt, last access: 9 October 2020
(Marshall, 2003, https://doi.org/https://doi.org/10.1175/1520-
0442(2003)016<4134:TITSAM>2.0.CO;2). ERA-Interim data
were downloaded from https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era-interim, last access: 9 Octo-
ber 2020 (ECMWF, 2019). Code for analysis and plotting
of figures can be found in the following Github repository:
https://github.com/whuiskamp/SAM_pseudoproxy (last access:
2 August 2021), and is archived in the following Zenodo repository,
labelled v1.1 https://doi.org/10.5281/zenodo.5153393 (Huiskamp,
2021).

Analysis and plotting was done using Matlab v2017b, Pyferret
v7.4 (PyFerret is a product of NOAA’s Pacific Marine Environ-
mental Laboratory. http://ferret.pmel.noaa.gov/Ferret/, last access:
31 August 2021, NOAA, 2021), and python3.
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