Articles | Volume 17, issue 4
https://doi.org/10.5194/cp-17-1701-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-17-1701-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the tuning of plateaus in atmospheric and oceanic 14C records to derive calendar chronologies of deep-sea cores and records of 14C marine reservoir age changes
Edouard Bard
CORRESPONDING AUTHOR
CEREGE, Aix-Marseille University, CNRS, IRD, INRAE, Collège de France, Technopôle de l'Arbois, Aix-en-Provence, France
Timothy J. Heaton
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
Related authors
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Irene Schimmelpfennig, Joerg M. Schaefer, Jennifer Lamp, Vincent Godard, Roseanne Schwartz, Edouard Bard, Thibaut Tuna, Naki Akçar, Christian Schlüchter, Susan Zimmerman, and ASTER Team
Clim. Past, 18, 23–44, https://doi.org/10.5194/cp-18-23-2022, https://doi.org/10.5194/cp-18-23-2022, 2022
Short summary
Short summary
Small mountain glaciers advance and recede as a response to summer temperature changes. Dating of glacial landforms with cosmogenic nuclides allowed us to reconstruct the advance and retreat history of an Alpine glacier throughout the past ~ 11 000 years, the Holocene. The results contribute knowledge to the debate of Holocene climate evolution, indicating that during most of this warm period, summer temperatures were similar to or warmer than in modern times.
Nicolás E. Young, Alia J. Lesnek, Josh K. Cuzzone, Jason P. Briner, Jessica A. Badgeley, Alexandra Balter-Kennedy, Brandon L. Graham, Allison Cluett, Jennifer L. Lamp, Roseanne Schwartz, Thibaut Tuna, Edouard Bard, Marc W. Caffee, Susan R. H. Zimmerman, and Joerg M. Schaefer
Clim. Past, 17, 419–450, https://doi.org/10.5194/cp-17-419-2021, https://doi.org/10.5194/cp-17-419-2021, 2021
Short summary
Short summary
Retreat of the Greenland Ice Sheet (GrIS) margin is exposing a bedrock landscape that holds clues regarding the timing and extent of past ice-sheet minima. We present cosmogenic nuclide measurements from recently deglaciated bedrock surfaces (the last few decades), combined with a refined chronology of southwestern Greenland deglaciation and model simulations of GrIS change. Results suggest that inland retreat of the southwestern GrIS margin was likely minimal in the middle to late Holocene.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Lise Bonvalot, Thibaut Tuna, Yoann Fagault, Jean-Luc Jaffrezo, Véronique Jacob, Florie Chevrier, and Edouard Bard
Atmos. Chem. Phys., 16, 13753–13772, https://doi.org/10.5194/acp-16-13753-2016, https://doi.org/10.5194/acp-16-13753-2016, 2016
Short summary
Short summary
The contribution of fossil and non-fossil carbon sources to aerosols sampled in the Arve River valley is quantified with 14C measured by AMS with a CO2 gas source. Results show a high contribution of non-fossil carbon sources during winter, which is highly correlated to levoglucosan concentration, showing that almost all of the non-fossil carbon originates from wood combustion. This correlation is also used to separate the contributions of wood burning and biogenic emissions for summer samples.
M.-P. Ledru, W. U. Reimold, D. Ariztegui, E. Bard, A. P. Crósta, C. Riccomini, and A. O. Sawakuchi
Sci. Dril., 20, 33–39, https://doi.org/10.5194/sd-20-33-2015, https://doi.org/10.5194/sd-20-33-2015, 2015
K. Tachikawa, L. Vidal, M. Cornuault, M. Garcia, A. Pothin, C. Sonzogni, E. Bard, G. Menot, and M. Revel
Clim. Past, 11, 855–867, https://doi.org/10.5194/cp-11-855-2015, https://doi.org/10.5194/cp-11-855-2015, 2015
A. Cauquoin, A. Landais, G. M. Raisbeck, J. Jouzel, L. Bazin, M. Kageyama, J.-Y. Peterschmitt, M. Werner, E. Bard, and ASTER Team
Clim. Past, 11, 355–367, https://doi.org/10.5194/cp-11-355-2015, https://doi.org/10.5194/cp-11-355-2015, 2015
Short summary
Short summary
We present a new 10Be record at EDC between 269 and 355ka. Our 10Be-based accumulation rate is in good agreement with the one associated with the EDC3 timescale except for the warm MIS 9.3 optimum. This suggests that temperature reconstruction from water isotopes may be underestimated by 2.4K for the difference between the MIS 9.3 and present day. The CMIP5-PMIP3 models do not quantitatively reproduce changes in precipitation vs. temperature increase during glacial–interglacial transitions.
T. Barlyaeva, E. Bard, and R. Abarca-del-Rio
Ann. Geophys., 32, 761–771, https://doi.org/10.5194/angeo-32-761-2014, https://doi.org/10.5194/angeo-32-761-2014, 2014
O. Cartapanis, K. Tachikawa, O. E. Romero, and E. Bard
Clim. Past, 10, 405–418, https://doi.org/10.5194/cp-10-405-2014, https://doi.org/10.5194/cp-10-405-2014, 2014
Luke Skinner, Francois Primeau, Aurich Jeltsch-Thömmes, Fortunat Joos, Peter Köhler, and Edouard Bard
Clim. Past, 19, 2177–2202, https://doi.org/10.5194/cp-19-2177-2023, https://doi.org/10.5194/cp-19-2177-2023, 2023
Short summary
Short summary
Radiocarbon is best known as a dating tool, but it also allows us to track CO2 exchange between the ocean and atmosphere. Using decades of data and novel mapping methods, we have charted the ocean’s average radiocarbon ″age” since the last Ice Age. Combined with climate model simulations, these data quantify the ocean’s role in atmospheric CO2 rise since the last Ice Age while also revealing that Earth likely received far more cosmic radiation during the last Ice Age than hitherto believed.
Irene Schimmelpfennig, Joerg M. Schaefer, Jennifer Lamp, Vincent Godard, Roseanne Schwartz, Edouard Bard, Thibaut Tuna, Naki Akçar, Christian Schlüchter, Susan Zimmerman, and ASTER Team
Clim. Past, 18, 23–44, https://doi.org/10.5194/cp-18-23-2022, https://doi.org/10.5194/cp-18-23-2022, 2022
Short summary
Short summary
Small mountain glaciers advance and recede as a response to summer temperature changes. Dating of glacial landforms with cosmogenic nuclides allowed us to reconstruct the advance and retreat history of an Alpine glacier throughout the past ~ 11 000 years, the Holocene. The results contribute knowledge to the debate of Holocene climate evolution, indicating that during most of this warm period, summer temperatures were similar to or warmer than in modern times.
Nicolás E. Young, Alia J. Lesnek, Josh K. Cuzzone, Jason P. Briner, Jessica A. Badgeley, Alexandra Balter-Kennedy, Brandon L. Graham, Allison Cluett, Jennifer L. Lamp, Roseanne Schwartz, Thibaut Tuna, Edouard Bard, Marc W. Caffee, Susan R. H. Zimmerman, and Joerg M. Schaefer
Clim. Past, 17, 419–450, https://doi.org/10.5194/cp-17-419-2021, https://doi.org/10.5194/cp-17-419-2021, 2021
Short summary
Short summary
Retreat of the Greenland Ice Sheet (GrIS) margin is exposing a bedrock landscape that holds clues regarding the timing and extent of past ice-sheet minima. We present cosmogenic nuclide measurements from recently deglaciated bedrock surfaces (the last few decades), combined with a refined chronology of southwestern Greenland deglaciation and model simulations of GrIS change. Results suggest that inland retreat of the southwestern GrIS margin was likely minimal in the middle to late Holocene.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Lise Bonvalot, Thibaut Tuna, Yoann Fagault, Jean-Luc Jaffrezo, Véronique Jacob, Florie Chevrier, and Edouard Bard
Atmos. Chem. Phys., 16, 13753–13772, https://doi.org/10.5194/acp-16-13753-2016, https://doi.org/10.5194/acp-16-13753-2016, 2016
Short summary
Short summary
The contribution of fossil and non-fossil carbon sources to aerosols sampled in the Arve River valley is quantified with 14C measured by AMS with a CO2 gas source. Results show a high contribution of non-fossil carbon sources during winter, which is highly correlated to levoglucosan concentration, showing that almost all of the non-fossil carbon originates from wood combustion. This correlation is also used to separate the contributions of wood burning and biogenic emissions for summer samples.
M.-P. Ledru, W. U. Reimold, D. Ariztegui, E. Bard, A. P. Crósta, C. Riccomini, and A. O. Sawakuchi
Sci. Dril., 20, 33–39, https://doi.org/10.5194/sd-20-33-2015, https://doi.org/10.5194/sd-20-33-2015, 2015
K. Tachikawa, L. Vidal, M. Cornuault, M. Garcia, A. Pothin, C. Sonzogni, E. Bard, G. Menot, and M. Revel
Clim. Past, 11, 855–867, https://doi.org/10.5194/cp-11-855-2015, https://doi.org/10.5194/cp-11-855-2015, 2015
A. Cauquoin, A. Landais, G. M. Raisbeck, J. Jouzel, L. Bazin, M. Kageyama, J.-Y. Peterschmitt, M. Werner, E. Bard, and ASTER Team
Clim. Past, 11, 355–367, https://doi.org/10.5194/cp-11-355-2015, https://doi.org/10.5194/cp-11-355-2015, 2015
Short summary
Short summary
We present a new 10Be record at EDC between 269 and 355ka. Our 10Be-based accumulation rate is in good agreement with the one associated with the EDC3 timescale except for the warm MIS 9.3 optimum. This suggests that temperature reconstruction from water isotopes may be underestimated by 2.4K for the difference between the MIS 9.3 and present day. The CMIP5-PMIP3 models do not quantitatively reproduce changes in precipitation vs. temperature increase during glacial–interglacial transitions.
T. Barlyaeva, E. Bard, and R. Abarca-del-Rio
Ann. Geophys., 32, 761–771, https://doi.org/10.5194/angeo-32-761-2014, https://doi.org/10.5194/angeo-32-761-2014, 2014
O. Cartapanis, K. Tachikawa, O. E. Romero, and E. Bard
Clim. Past, 10, 405–418, https://doi.org/10.5194/cp-10-405-2014, https://doi.org/10.5194/cp-10-405-2014, 2014
Related subject area
Subject: Proxy Use-Development-Validation | Archive: Marine Archives | Timescale: Millenial/D-O
Technical note: Considerations on using uncertain proxies in the analogue method for spatiotemporal reconstructions of millennial-scale climate
Dynamics of primary productivity in the northeastern Bay of Bengal over the last 26 000 years
Boron isotope fractionation during brucite deposition from artificial seawater
Oliver Bothe and Eduardo Zorita
Clim. Past, 17, 721–751, https://doi.org/10.5194/cp-17-721-2021, https://doi.org/10.5194/cp-17-721-2021, 2021
Short summary
Short summary
The similarity between indirect observations of past climates and information from climate simulations can increase our understanding of past climates. The further we look back, the more uncertain our indirect observations become. Here, we discuss the technical background for such a similarity-based approach to reconstruct past climates for up to the last 15 000 years. We highlight the potential and the problems.
Xinquan Zhou, Stéphanie Duchamp-Alphonse, Masa Kageyama, Franck Bassinot, Luc Beaufort, and Christophe Colin
Clim. Past, 16, 1969–1986, https://doi.org/10.5194/cp-16-1969-2020, https://doi.org/10.5194/cp-16-1969-2020, 2020
Short summary
Short summary
We provide a high-resolution primary productivity (PP) record of the northeastern Bay of Bengal over the last 26 000 years. Combined with climate model outputs, we show that PP over the glacial period is controlled by river input nutrients under low sea level conditions and after the Last Glacial Maximum is controlled by upper seawater salinity stratification related to monsoon precipitation. During the deglaciation the Atlantic meridional overturning circulation is the main forcing factor.
J. Xiao, Y. K. Xiao, C. Q. Liu, and Z. D. Jin
Clim. Past, 7, 693–706, https://doi.org/10.5194/cp-7-693-2011, https://doi.org/10.5194/cp-7-693-2011, 2011
Cited articles
Adolphi, F. and Muscheler, R.: Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene – Bayesian wiggle-matching of cosmogenic radionuclide records, Clim. Past, 12, 15–30, https://doi.org/10.5194/cp-12-15-2016, 2016.
Adolphi, F., Muscheler, R., Friedrich, M., Güttler, D., Wacker, L.,
Talamo, S., and Kromer, B.: Radiocarbon calibration uncertainties during the
last deglaciation: Insights from new floating tree-ring chronologies,
Quaternary Sci. Rev., 170, 98-108, https://doi.org/10.1016/j.quascirev.2017.06.026, 2017.
Adolphi, F., Bronk Ramsey, C., Erhardt, T., Edwards, R. L., Cheng, H., Turney, C. S. M., Cooper, A., Svensson, A., Rasmussen, S. O., Fischer, H., and Muscheler, R.: Connecting the Greenland ice-core and U∕Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events, Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018, 2018.
Andrews, A., Siciliano, D., Potts, D., DeMartini, E., and Covarrubias, S.:
Bomb Radiocarbon and the Hawaiian Archipelago: Coral, Otoliths, and
Seawater, Radiocarbon, 58, 531–548, https://doi.org/10.1017/RDC.2016.32, 2016.
Arz, H. W., Pätzold, J., and Wefer, G.: Climatic changes during the last
deglaciation recorded in sediment cores from the Northeast Brazilian
Continental Margin, Geo Marine Letters, 19, 209–218, 1999.
Ausin, B., Haghipour, N., Wacker, L., Voelker, A. H. L., Hodell, D., Magill,
C., Looser, N., Bernasconi, S. M., and Eglinton, T. I.: Radiocarbon age offsets
between two surface dwelling planktonic foraminifera species during abrupt
climate events in the SW Iberian margin, Paleoceanography and Paleoclimatology, 34, 63–78, https://doi.org/10.1029/2018PA003490, 2019.
Ausin, B., Sarnthein, M., and Haghipour, N.: Glacial-to-deglacial reservoir and ventilation ages on the southwest Iberian continental margin, Quaternary Sci. Revi., 255, 106818, https://doi.org/10.1016/j.quascirev.2021.106818, 2021.
Austin, W. E. N., Telford, R. J., Ninnemann, U. S., Brown, L., Wilson, L. J.,
Small, D. P., and Bryant, C. L.: North Atlantic reservoir ages linked to high
Younger Dryas atmospheric radiocarbon concentrations,Global Planet. Change, 79, 226–233, 2011.
Balmer, S. and Sarnthein, M.: Glacial-to deglacial changes in North Atlantic
meltwater advection and deep-water formation –
Centennial-to-millennial-scale 14C records from the Azores Plateau, Geochim. Cosmochim. Ac., 236, 399–415, https://doi.org/10.1016/j.gca.2018.03.001, 2018.
Balmer, S., Sarnthein, M., Mudelsee, M., and Grootes, P. M.: Refined
modeling and 14C plateau tuning reveal consistent patterns of glacial
and deglacial 14C reservoir ages of surface waters in low-latitude
Atlantic, Paleoceanography, 31, 1030–1040, https://doi.org/10.1002/2016PA002953, 2016.
Bard, E.: Correction of accelerator mass spectrometry 14C ages measured
on planktonic foraminifera: Paleoceanographic implications, Paleoceanography, 3, 635–645, https://doi.org/10.1029/PA003i006p00635, 1988.
Bard, E.: Geochemical and geophysical implications of the radiocarbon
calibration, Geochim. Cosmochim. Ac., 62, 2025–2038, https://doi.org/10.1016/S0016-7037(98)00130-6, 1998.
Bard, E., Arnold, M., Duprat, J., Moyes, J., and Duplessy, J. C.:
Reconstruction of the last deglaciation: deconvolved records of δ18O profiles, micropaleontological variations and accelerator mass
spectrometric 14C dating, Clim. Dynam., 1, 101–112, https://doi.org/10.1007/BF01054479, 1987.
Bard, E., Arnold, M., Mangerud, M., Paterne, M., Labeyrie, L., Duprat, J.,
Mélières, M. A., Sonstegaard, E., and Duplessy, J. C.: The North Atlantic
atmosphere-sea surface 14C gradient during the Younger Dryas climatic
event, Earth Planet. Sc. Lett., 126, 275–287, https://doi.org/10.1016/0012-821X(94)90112-0, 1994.
Bard, E., Raisbeck, G., Yiou, F., and Jouzel, J.: Solar modulation of cosmogenic
nuclide production over the last millennium: comparison between 14C and
10Be records, Earth Planet. Sc. Lett.,150, 453–462, https://doi.org/10.1016/S0012-821X(97)00082-4, 1997.
Bard, E., Ménot, G., Rostek, F., Licari, L., Böning, P., Edwards,
R. L., Cheng, H., Wang, Y., and Heaton, T. J.: Radiocarbon Calibration/Comparison Records Based on Marine Sediments from the Pakistan and Iberian Margins, Radiocarbon, 55, 1999–2019, https://doi.org/10.2458/azu_js_rc.55.17114, 2013.
Beer, J., Siegenthaler, U., Bonani, G., Finkel, R. C., Oeschger, H., Suter, M., and Wölfli, W.: Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core, Nature, 331, 675–679,
https://doi.org/10.1038/331675a0, 1988.
Broecker, W., Mix, A. C., Andree, M., and Oeschger, H.: Radiocarbon measurements on
coexisting benthic and planktic foraminifera shells: potential for
reconstructing ocean ventilation times over the past 20 000 years, Nucl. Instrum. Meth. B, 5, 331–339, https://doi.org/10.1016/0168-583X(84)90538-X, 1984.
Bronk Ramsey, C., van der Plicht, J., and Weninger, B.: “Wiggle matching”
radiocarbon dates, Radiocarbon, 43, 381–389, https://doi.org/10.1017/S0033822200038248, 2001.
Bronk Ramsey, C., Staff, R. A., Bryant, C. L., Brock, F., Kitagawa, H., van
der Plicht, J., Schlolaut, G., Marshall, M. H., Brauer, A., Lamb, H. F.,
Payne, R. L., Tarasov, P. E., Haraguchi, T., Gotanda, K., Yonenobu, H.,
Yokoyama, Y., Tada, R., and Nakagawa, T.: A Complete terrestrial radiocarbon
record for 11.2 to 52.8 kyr BP, Science, 338, 370–374, 2012.
Bronk Ramsey, C., Heaton, T. J., Schlolaut, G., Staff, R. A., Bryant, C. L.,
Brauer, A., Lamb, H. F., Marshall, M. H., and Nakagawa, T.: Reanalysis of the
atmospheric radiocarbon calibration record from Lake Suigetsu, Japan, Radiocarbon, 62, 989–999, https://doi.org/10.1017/RDC.2020.18,
2020.
Butzin, M., Prange, M., and Lohmann, G.: Radiocarbon simulations for the glacial
ocean: the effects of wind stress, Southern Ocean sea ice and Heinrich
events, Earth Pl. Sc. Lett., 235, 45–61, https://doi.org/10.1016/j.epsl.2005.03.003, 2005.
Butzin, M., Köhler, P., and Lohmann, G.: Marine Radiocarbon Reservoir Age Simulations for the Past 50 000 Years, Geophys. Res. Lett., 44, 8473–8480, https://doi.org/10.1002/2017GL074688, 2017.
Butzin, M., Heaton, T. J., Köhler, P., and Lohmann, G.: A Short Note on Marine Reservoir Age Simulations Used in IntCal20, Radiocarbon, 62, 865–871,
https://doi.org/10.1017/RDC.2020.9, 2020.
Capano, M., Miramont, C., Guibal, F., Kromer, B., Tuna, T., Fagault, Y., and
Bard, E.: Wood 14C dating with AixMICADAS: methods and application to
tree-ring sequences from the Younger Dryas event in the southern French
Alps, Radiocarbon, 60, 51–74, https://doi.org/10.1017/RDC.2017.83, 2018.
Capano, M., Miramont, C., Shindo, L., Guibal, F., Marschal, C., Kromer, B.,
Tuna, T., and Bard, E.: Onset of the Younger Dryas recorded with 14C at
annual resolution in French subfossil trees, Radiocarbon, 62, 901–918, https://doi.org/10.1017/RDC.2019.116, 2020.
Cheng, H., Edwards, R. L., Southon, J., Matsumoto, K., Feinberg, J. M., Sinha, A., Zhou, W., Li, H., Li, X., and Xu, Y.: Atmospheric 14C 12C changes during the last glacial period from Hulu Cave, Science, 362, 1293–1297,
2018.
Cooper, A., Turney C. S. M., Palmer, J., Hogg, A., McGlone, M., Wilmshurst, J., Lorrey, A., Heaton, T., Russell, J., McCracken, K., Anet, J., Rozanov, E., Friedel, M., Suter, I., Peter, T., Muscheler, R., Adolphi, F., Dosseto, A., Faith, T., Fenwick, P., Fogwill, C., Hughen, K., Lipson, M., Liu, J., Nowaczyk, N., Rainsley, E., Bronk Ramsey, C., Sebastianelli, P., Souilmi, Y., Stevenson, J., Thomas, Z., Tobler, R., and Zech, R.: A global environmental crisis 42 000 years ago, Science, 371, 811–818,
2021.
Corrick, E. C., Drysdale, R. N., Hellstrom, J. C., Capron, E., Rasmussen, S. O., Zhang, X., Fleitmann, D., Couchoud, I., and Wolff, E.: Synchronous timing of abrupt climate changes during the last
glacial period, Science, 369, 963–969, 2020.
Costa, K., McManus, J., and Anderson, R.: Radiocarbon and Stable Isotope
Evidence for Changes in Sediment Mixing in the North Pacific over the Past
30 kyr, Radiocarbon, 60, 113–135, https://doi.org/10.1017/RDC.2017.91, 2018.
de la Fuente, M., Skinner, L., Calvo, E., Pelejero, C., and Cacho, I.: Increased
reservoir ages and poorly ventilated deep waters inferred in the glacial
Eastern Equatorial Pacific, Nat. Commun., 6, 7420, https://doi.org/10.1038/ncomms8420, 2015.
Delaygue, G. and Bard, E.: An Antarctic view of beryllium-10 and solar activity for the past millennium, Clim. Dynam., 36, 2201–2218, https://doi.org/10.1007/s00382-010-0795-1,
2011.
Delaygue, G., Stocker, T. F., Joos, F., and Plattner, G.-K.: Simulation of
atmospheric radiocarbon during abrupt oceanic circulation changes: trying to
reconcile models and reconstructions, Quaternary Sci. Rev., 22, 1647–1658, https://doi.org/10.1016/S0277-3791(03)00171-9, 2003.
Dolman, A. M., Groeneveld, J., Mollenhauer, G., Ho, S. L., and Laepple, T.:
Estimating bioturbation from replicated small-sample radiocarbon ages, Paleoceanography and Paleoclimatology, 36, e2020PA004142, https://doi.org/10.1029/2020PA004142, 2021.
Fagault, Y., Tuna, T., Rostek, F., and Bard, E.: Radiocarbon dating small carbonate samples with the gas ion source of AixMICADAS, Nucl. Instrum. Meth. B, 455, 276–283,
https://doi.org/10.1016/j.nimb.2018.11.018, 2019.
Fournier, A., Gallet, Y., Usoskin, I., Livermore, P. W., and Kovaltsov, G. A.: The
impact of geomagnetic spikes on the production rates of cosmogenic 14C
and 10Be in the Earth's atmosphere, Geophys. Res. Lett., 42, 2759–2766,
https://doi.org/10.1002/2015GL063461, 2015.
Franke, J., Paul, A., and Schulz, M.: Modeling variations of marine reservoir ages during the last 45 000 years, Clim. Past, 4, 125–136, https://doi.org/10.5194/cp-4-125-2008, 2008.
Goslar, T., Arnold, M., Bard, E., Kuc, T., Pazdur, M. F.,
Ralska-Jasiewiczowa, M., Rozanski, K., Tisnerat, N., Walanus, A., Wicik, B., and Wieckowski, K.: High concentration of atmospheric 14C during the
Younger Dryas cold episode, Nature, 377, 414–417, https://doi.org/10.1038/377414a0, 1995.
Grootes, P. M. and Sarnthein, M.: Community comment on “On the tuning of plateaus in atmospheric and oceanic 14C records to derive calendar chronologies of deep-sea cores and records of 14C marine
reservoir age changes” by Edouard Bard and Timothy J. Heaton, Clim. Past Discuss., https://doi.org/10.5194/cp-2020-164-CC2, 2021.
Grottoli, A. G. and Eakin, C. M.: A review of modern coral δ18O and
Δ14C proxy records, Earth-Sci. Rev., 81, 67–91,
https://doi.org/10.1016/j.earscirev.2006.10.001, 2007.
Heaton, T. J. and Bard, E.: TJHeaton/PlateauTuning: First release of plateau tuning code (v.1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.5176137, 2021.
Heaton, T. J., Bard, E., and Hughen, K.: Elastic Tie-Pointing – Transferring
Chronologies between Records via a Gaussian Process, Radiocarbon, 55, 1975–1997, https://doi.org/10.2458/azu_js_rc.55.17777, 2013.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin,
W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J. F., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.: Marine20 – the marine radiocarbon age calibration curve (0–55 000 cal BP), Radiocarbon, 62, 821–863, https://doi.org/10.1017/RDC.2020.68, 2020a.
Heaton, T. J., Blaauw, M., Blackwell, P. G., Bronk Ramsey, C., Reimer, P. J., and
Scott, E. M.: The IntCal20 approach to radiocarbon calibration curve
construction: a new methodology using Bayesian splines and
errors-in-variables, Radiocarbon, 62, 821–863, https://doi.org/10.1017/RDC.2020.46 2020b.
Hughen, K. and Heaton, T. J.: Updated Cariaco Basin 14C Calibration Dataset from 0–60 cal kyr BP, Radiocarbon, 62, 1001–1043, https://doi.org/10.1017/RDC.2020.53, 2020.
Hughen, K. A., Overpeck, J. T., Lehman, S. J., Kashgarian, M., Southon, J.,
Peterson, L. C., Alley, R., and Sigman, D. M.: Deglacial changes in ocean
circulation from an extended radiocarbon calibration, Nature, 391, 65–68, https://doi.org/10.1038/34150, 1998.
Hughen, K. A., Southon, J. A., Lehman, S. J., Bertrand, C. J. H., and Turnbull, J.:
Marine-Derived 14C Calibration and activity record for the past 50 000
years updated from the Cariaco Basin, Quaternary Sci. Rev., 25, 3216–3227, 2006.
Imbrie, J. and Kipp, N. G.: A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core, in: Late Cenozoic Glacial Ages, edited by: Turekian, K. K., Yale Univ. Press, New Haven, CN, USA, 71–182, 1971.
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M., Chen, M.-T., Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins, S., and Waelbroeck, C.: Reconstruction of sea-surface temperatures from assemblages of
planktonic foraminifera: multi-technique approach based on geographically
constrained calibration data sets and its application to glacial Atlantic
and Pacific Oceans, Quaternary Sci. Rev., 24, 951–998,
https://doi.org/10.1016/j.quascirev.2004.07.014, 2005.
Küssner, K., Sarnthein, M., Lamy, F., and Tiedemann, R.: High-resolution
radiocarbon based age records trace episodes of Zoophycos burrowing, Marine Geol., 403, 48–56, https://doi.org/10.1016/j.margeo.2018.04.013, 2018.
Küssner, K., Sarnthein, M., Michel, E., Mollenhauer, G., Siani G., and Tiedemann, R.: Glacial-to-deglacial reservoir ages of surface waters in the southern South Pacific, Paleoceanography and Paleoclimatology, 47, in review, 2021.
Lamy, F. and Arz, H. W.: Community comment on “On the tuning of plateaus in atmospheric and oceanic 14C records to derive calendar chronologies of deep-sea cores and records of 14C marine reservoir age changes” by Edouard Bard and Timothy J. Heaton, Clim. Past Discuss.,
https://doi.org/10.5194/cp-2020-164-CC5, 2021.
Lamy, F., Arz, H. W., Kilian, R., Lange, C. B., Lembke-Jene, L., Wengler, M.,
Kaiser, J., Baeza-Urrea, O., Hall, I. R., Harada, N., and Tiedemann, R.: Glacial
reduction and millennial-scale variations in Drake Passage throughflow, Proc. Nat. Acad. Sci. USA, 112, 13496–13501, 2015.
Levin, I. and Hesshaimer, V.: Radiocarbon – A Unique Tracer of Global
Carbon Cycle Dynamics, Radiocarbon, 42, 69–80, https://doi.org/10.1017/S0033822200053066, 2000.
Marchal, O., Stocker, T. F., and Muscheler, R.: Atmospheric radiocarbon during the Younger Dryas: production, ventilation, or both?, Earth Planet. Sc. Lett., 185, 383–395, https://doi.org/10.1016/S0277-3791(03)00171-9, 2001.
Mekhaldi, F., Muscheler, R., Adolphi, F., Aldahan, A., Beer, J., McConnell,
J. R., Possnert, G., Sigl, M., Svensson, A., Synal, H. A., Welten, K. C., and
Woodruff, E. T.: Multiradionuclide evidence for the solar origin of the
cosmic-ray events of AD 774/5 and 993/4, Nat. Commun., 6, 8611, https://doi.org/10.1038/ncomms9611,
2015.
Mekhaldi, F., Czymzik, M., Adolphi, F., Sjolte, J., Björck, S., Aldahan, A., Brauer, A., Martin-Puertas, C., Possnert, G., and Muscheler, R.: Radionuclide wiggle matching reveals a nonsynchronous early Holocene climate oscillation in Greenland and western Europe around a grand solar minimum, Clim. Past, 16, 1145–1157, https://doi.org/10.5194/cp-16-1145-2020, 2020.
Michel, E. and Siani, G.: Community comment on “On the tuning of plateaus in atmospheric and oceanic 14C records to derive calendar chronologies of deep-sea cores and records of 14C marine reservoir age changes” by Edouard Bard and Timothy J. Heaton, Clim. Past Discuss.,
https://doi.org/10.5194/cp-2020-164-CC6, 2021.
Miyake, F., Nagaya, K., Masuda, K., and Nakamura, T.: A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan, Nature, 486, 240–242, https://doi.org/10.1038/nature11123, 2012.
Muscheler, R., Joos, F., Beer, J., Muller, S. A., Vonmoos, M., and Snowball,
I.: Solar activity during the last 1000 yr inferred from radionuclide
records, Quaternary Sci. Rev., 26, 82–97, https://doi.org/10.1016/J.Quascirev.2006.07.012, 2007.
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeyer, C. E.: IntCal09 and Marine09 radiocarbon age calibration curves, 0–50 000 years cal BP, Radiocarbon, 51, 1111–1150, https://doi.org/10.1017/S0033822200034202, 2009.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes,
P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton,
T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50 000 Years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, H., Reimer, R. W., Richards, D., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adophi, F., Büntgen, U., Capano, M., Fahrni, S., Fogtmann-Schulz, A., Friedrich, R., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Minoru Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere radiocarbon
calibration curve (0–55 kcal BP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41,
2020.
Ritz, S. P., Stocker, T. F., and Müller, S. A.: Modeling the effect of abrupt ocean circulation change on marine reservoir age, Earth Pl. Sc. Lett., 268, 202–211, https://doi.org/10.1016/j.epsl.2008.01.024, 2008.
Sarnthein, M. and Grootes, P. M.: Community comment on “On the tuning of plateaus in atmospheric and oceanic 14C records to derive calendar chronologies of deep-sea cores and records of 14C marine
reservoir age changes” by Edouard Bard and Timothy J. Heaton, Clim. Past Discuss., https://doi.org/10.5194/cp-2020-164-CC1, 2021.
Sarnthein, M. and Werner, K.: Early Holocene planktic foraminifers record
species specific 14C reservoir ages in Arctic Gateway, Mar. Micropaleontol., 135, 45–55,
https://doi.org/10.1016/j.marmicro.2017.07.002, 2017.
Sarnthein, M., Grootes, P. M., Kennett, J. P., and Nadeau, M. J.: 14C Reservoir
ages show deglacial changes in ocean currents, in: Ocean Circulation:
Mechanisms and Impacts, Geophysical Monograph Series 173, edited by:
Schmittner, A., Chiang, J., and Hemming, S., American Geophysical Union,
Washington, DC, USA, 175–197, 2007.
Sarnthein, M., Grootes, P. M., Holbourn, A., Kuhnt, W., and Kühn, H.:
Tropical warming in the Timor Sea led deglacial Antarctic warming and almost
coeval atmospheric CO2 rise by > 500 yr, Earth Planet. Sc. Lett., 302, 337–348,
https://doi.org/10.1016/j.epsl.2010.12.021, 2011.
Sarnthein, M., Schneider, B., and Grootes, P. M.: Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean, Clim. Past, 9, 2595–2614, https://doi.org/10.5194/cp-9-2595-2013, 2013.
Sarnthein, M., Balmer, S., Grootes, P. M., and Mudelsee, M.: Planktic and
benthic 14C reservoir ages for three ocean basins, calibrated by a suite of 14C plateaus in the glacial-to-deglacial Suigetsu atmospheric 14C record, Radiocarbon, 57, 129–151, https://doi.org/10.2458/azu_rc.57.17916, 2015.
Sarnthein, M., Küssner, K., Grootes, P. M., Ausin, B., Eglinton, T., Muglia, J., Muscheler, R., and Schlolaut, G.: Plateaus and jumps in the atmospheric radiocarbon record – potential origin and value as global age markers for glacial-to-deglacial paleoceanography, a synthesis, Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, 2020.
Siani, G., Michel, E., De Pol-Holz, R., DeVries, T., Lamy, F., Carel, M.,
Isguder, G., Dewilde, F., and Lourantou, A.: Carbon isotope records reveal
precise timing of enhanced Southern Ocean upwelling during the last
deglaciation, Nat. Commun., 4, 2758, https://doi.org/10.1038/ncomms3758, 2013.
Singarayer, J. S., Richards, D. A., Ridgwell, A., Valdes, P. J., Austin, W. E. N., and Beck, J. W.: An oceanic origin for the increase of atmospheric radiocarbon
during the Younger Dryas, Geophys. Res. Lett., 35, L14707, https://doi.org/10.1029/2008GL034074, 2008.
Skinner, L. C., Waelbroeck, C., Scrivner, A., and Fallon, S.: Radiocarbon
evidence for alternating northern and southern sources of ventilation of the
deep Atlantic carbon pool during the last deglaciation, Proc. Natl. Acad. Sci. USA, 111, 5480–5484,
2014.
Skinner, L. C., Freeman, E., Hodell, D., Waelbroeck, C., Vazquez Riveiros,
N., and Scrivner, A. E.: Atlantic Ocean ventilation changes across the last
deglaciation and their carbon cycle implications, Paleoceanography and Paleoclimatology, 36, e2020PA004074, https://doi.org/10.1029/2020PA004074, 2021.
Stocker, T. F. and Wright, D. G.: Rapid changes in ocean circulation and
atmospheric radiocarbon, Paleoceanography, 11, 773–795, https://doi.org/10.1029/96PA02640, 1996.
Stocker, T. F. and Wright, D. G.: The effect of a succession of ocean
ventilation changes on 14C, Radiocarbon, 40, 359–366, https://doi.org/10.1017/S0033822200018233, 1998.
Svetlik, I., Jull, A., Molnár, M., Povinec, P., Kolář, T.,
Demján, P., Pachnerova Brabcova, K., Brychova, V., Dreslerová, D.,
Rybníček, M., and Simek, P.: The Best possible time resolution: How
precise could a radiocarbon dating method be?, Radiocarbon, 61, 1729–1740, https://doi.org/10.1017/RDC.2019.134, 2019.
Turney, C. S. M., Fifield, L. K., Hogg, A. G., Palmer, J. G., Hughen, K., Baillie, M. G. L., Galbraith, R., Ogden, J., Lorrey, A., Tims, S. G., and Jones, R. T.: The potential of New Zealand kauri (Agathis australis) for
testing the synchronicity of abrupt climate change during the Last Glacial
Interval (60 000–11 700 years ago), Quat. Sci. Rev., 29, 3677–3682, 2010.
Turney, C. S. M., Palmer, J., Bronk Ramsey, C., Adolphi, F., Muscheler, R., Hughen, K. A., Staff, R. A., Jones, R. T., Thomas, Z. A., and Fogwill, C. J.: High-precision dating and correlation of ice, marine and
terrestrial sequences spanning Heinrich Event 3: Testing mechanisms of
interhemispheric change using New Zealand ancient kauri (Agathis australis),
Quat. Sci. Rev., 137, 126–134, 2016.
Umling, N. E. and Thunell, R. C.: Synchronous deglacial thermocline and
deep-water ventilation in the eastern equatorial Pacific, Nat. Commun., 8, 14203, https://doi.org/10.1038/ncomms14203, 2017.
Waelbroeck, C., Lougheed, B. C., Vazquez Riveiros, N., Missiaen, L., Pedro, J., Dokken, T., Hajdas, I., Wacker, L., Abbott, P., Dumoulin, J. P., Thil, F., Eynaud, F., Rossignol, L., Fersi, W., Albuquerque, A. L., Arz, H., Austin, W. E. N., Came, R., Carlson, A. E., Collins, J. A., Dennielou, B., Desprat, S., Dickson, A., Elliot, M., Farmer, C., Giraudeau, J., Gottschalk, J., Henderiks, J., Hughen, K., Jung, S., Knutz, P., Lebreiro, S., Lund, D. C., Lynch-Stieglitz, J., Malaizé, B., Marchitto, T., Martínez-Méndez, G., Mollenhauer, G., Naughton, F., Nave, S., Nürnberg, D., Oppo, D., Peck, V., Peeters, F. J. C., Penaud, A., da Costa Portilho-Ramos, R., Repschläger, J., Roberts, J., Rühlemann, C., Salgueiro, E., Sanchez Goni, M. F., Schönfeld, J., Scussolini, P., Skinner, L. C., Skonieczny, C., Thornalley, D., Toucanne, S., Van Rooij, D., Vidal, L., Voelker, A. H. L., Wary, M., Weldeab, S., and Ziegler, M.: Consistently dated Atlantic sediment cores over the last
40 thousand years, Scientific Data, 6, 165, https://doi.org/10.1038/s41597-019-0173-8, 2019.
Weninger, B.: Community comment on “On the tuning of plateaus in atmospheric and oceanic 14C records to derive calendar chronologies of deep-sea cores and records of 14C marine reservoir age changes” by Edouard Bard and Timothy J. Heaton, Clim. Past Discuss., https://doi.org/10.5194/cp-2020-164-CC4, 2021.
Weninger, B. and Edinborough, K.: Bayesian 14C-rationality, Heisenberg
Uncertainty, and Fourier Transform, Doc. Praehist., 47, 536–559, 2020.
Short summary
We assess the 14C plateau tuning technique used to date marine sediments and determine 14C marine reservoir ages. We identify problems linked to assumptions of the technique, the assumed shapes of the 14C / 12C records, and the sparsity and uncertainties in both atmospheric and marine data. Our concerns are supported with carbon cycle box model experiments and statistical simulations, allowing us to question the ability to tune 14C age plateaus in the context of noisy and sparse data.
We assess the 14C plateau tuning technique used to date marine sediments and determine 14C...